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Abstract

We consider the k-layer pointer jumping problem in
the one-way multi-party number-on-the-forehead com-
munication model. Sufficiently strong lower bounds for
the problem would have major consequences in circuit
complexity.

We take an information complexity approach to this
problem and obtain three lower bounds that improve
upon earlier work. For myopic protocols (where play-
ers may see only one layer ahead but arbitrarily far be-
hind), we greatly improve a lower bound due to Grone-
meier (2006). Our new lower bound is �(n/k), where
n is the number of vertices per layer. For conservative
protocols (where players may see arbitrarily far ahead
but not behind, instead seeing only the vertex reached by
following the pointers up to their layer), we extend an
�(n/k2) lower bound due to Damm, Jukna and Sgall
(1998) so that it applies for all k.

The above two bounds apply even to the Boolean ver-
sion of pointer jumping. Our third lower bound is for
the non-Boolean case and for k ≤ log∗ n. We obtain an
�(n log(k−1) n) bound for myopic protocols. Damm et
al. had obtained a similar bound for deterministic con-
servative protocols. All our lower bounds apply directly
to randomised protocols.

1. Introduction

Communication complexity has been a central tech-
nique in proving a number of lower bounds, even in
models of computation that do not involve communi-
cation. In particular, it has some well known connec-
tions to circuit complexity: proving sufficiently strong
lower bounds for certain specific communication prob-
lems would place them outside certain restricted, but
well-studied, classes of circuits. For example, the cel-

ebrated super-logarithmic lower bound on the depth of
a monotone circuit for undirected connectivity, due to
Karchmer and Wigderson [14], was proven via a lower
bound on a related communication problem.

Our focus here is on the pointer jumping (also called
pointer chasing) problem and its multi-party commu-
nication complexity in the so-called number-on-the-
forehead (NOF) model, introduced by Chandra, Furst
and Lipton [7]. Due to known connections between this
model and circuits [22, 11, 4], a strong enough commu-
nication lower bound for pointer jumping would place
the problem outside the complexity class ACC0. We say
more about this connection in Section 1.2. In this work
we introduce an approach to proving such communica-
tion lower bounds via information complexity, a concept
formally introduced by Chakrabarti et al. [6] and refined
by Bar-Yossef et al. [3]. Our approach results in lower
bounds for pointer jumping in certain restricted one-way
NOF communication models. Our lower bounds are at
least as high as (in fact, much higher than) would be
required to prove non-membership in ACC0; proving
similar bounds in a less restricted communication model
would imply that pointer jumping is not in ACC0.

1.1. The Problem and Our Results

The term “pointer jumping” has been used to refer to
any of a family of related problems, all of which involve
following pointers (i.e., directed edges) out of a starting
vertex in a given input graph. The variant called multi-
layer pointer jumping with k layers, denoted M̂PJk , is
defined on a fixed underlying graph Gn

k whose vertex
set consists of k + 1 layers of vertices: layer 0 has a
single vertex v0 and layers 1 through k have n vertices
each, and every vertex in layer i has a directed edge to
every vertex in layer i +1. The input is a subgraph of Gn

k
in which every vertex (except those in layer k) has out-
degree 1. The desired output is the name of the unique



vertex in layer k reachable from v0, i.e., the final ver-
tex reached by “jumping along pointers” starting at v0.
The output is therefore dlog ne bits long.1 We can also
consider a Boolean version, denoted MPJk , by shrinking
layer k so that it consists of 2 vertices. We give a more
formal definition later.

A couple of other variants of pointer jumping that
have been studied before are tree pointer jumping (TPJk),
where the underlying graph Gn

k is replaced by a com-
plete n-ary tree of height k + 1, and bipartite pointer
jumping (BPJk), where Gn

k is replaced by a bipartite
graph with directed edges in both directions and one is
required to follow k edges (pointers) from a designated
start vertex.

In the number-on-the-forehead (NOF) model of com-
munication, there are k players who share an input
(x1, . . . , xk) ∈ A1 × · · · × Ak as follows: Player i sees
every x j where j 6= i . We think of xi as being written
on Player i’s forehead. The goal is to exchange mes-
sages according to a protocol so as to jointly compute
a function f : A1 × · · · × Ak → B. For the pur-
poses of proving lower bounds against ACC0 circuits,
it suffices to consider simultaneous message protocols,
where all players simultaneously send their messages to
a referee (who is not one of the k players) who sees no
input and computes the desired output as function of the
messages he receives. In this paper, as in some earlier
work [16, 19, 9], we consider the more general one-way
blackboard communication model, where players com-
municate one after another, in the fixed order 1, 2, . . . , k,
by writing their messages on a blackboard visible to all.
Player k’s message is the desired output.

It is natural to consider k-player NOF protocols for
MPJk where the input on Player i’s forehead describes
the i th layer of edges in the input graph (i.e., edges from
vertices in layer i−1 to vertices in layer i). Note that it is
important that the players speak in the order 1, 2, . . . , k
in order for the problem to be nontrivial: any other order
of speaking leads to an easy protocol with only O(log n)
communication.

Unfortunately, we are unable to prove our results
in the unrestricted one-way model. Instead, we work
with two different restrictions of the model. Our first
lower bound applies to myopic protocols: those in which
Player i only sees x1, . . . , xi−1 and xi+1. This model
was recently introduced by Gronemeier [10] who proved
a lower bound of �(n(1−ε)/k log n) for M̂PJk in this
model, for ε-error protocols.2 Note that this bound be-

1Throughout this paper we use “log” to denote logarithm to the
base 2.

2Gronemeier defines myopic protocols using information theoretic

comes trivial for k = O(log n) players. We prove the
following, much stronger, lower bound.

Theorem 1. A randomised myopic protocol for MPJk
must communicate �(n/k) bits.

Our second lower bound applies to conservative pro-
tocols: those in which Player i only sees xi+1, . . . , xk
and the function gx,i : Ai ×Ai+1×· · ·×Ak → B given
by gx,i (zi , . . . , zk) = f (x1, . . . , xi−1, zi , . . . , zk). For
pointer jumping, this amounts to saying that Player i
sees all layers i + 1, . . . , k of edges (i.e., the lay-
ers following the one on her forehead), but not layers
1, . . . , i − 1; however, she does see the result of fol-
lowing i − 1 pointers starting from v0. This model was
introduced by Damm, Jukna and Sgall [9] who proved
a lower bound of �(n/k2) for M̂PJk for deterministic
protocols involving up to k = o

(
(n/ log n)1/3) players

(their argument also applies to MPJk and can be extended
to randomised protocols using some careful estimation).
Here, we obtain the same lower bound without an extra
restriction on k, and via different techniques.

Theorem 2. A randomised conservative protocol for
MPJk must communicate �(n/k2) bits.

Although these models are quite restrictive, we note
that the only known nontrivial upper bound for pointer
jumping, due to Damm et al. [9], is via a protocol that is
both myopic and conservative (but see Section 1.2, be-
low). Their improvement over a trivial upper bound is
for M̂PJk only: they give a (conservative and myopic)
protocol for it with communication O(n log(k−1) n) for
k ≤ log∗ n and O(n) for k > log∗ n.3 The triv-
ial upper bound would have been O(n log n). This
shows that both restricted models do allow nontrivial
protocols. They also give a matching �(n log(k−1) n)
lower bound for deterministic conservative protocols;
their proof does not generalise to randomised protocols.
Here, we give a matching lower bound for randomised
myopic protocols.

Theorem 3. A randomised myopic protocol for M̂PJk ,
involving k ≤ log∗ n players, must communicate
�(n log(k−1) n) bits.

terminology. In fact, the notion he defines should be described as “pro-
tocol that is myopic for a particular input distribution.” In his work,
he only applies his definition with the uniform distribution on inputs,
in which case his information theoretic definition reduces to our struc-
tural one. Indeed, protocols myopic for arbitrary input distributions
can communicate essentially nothing, for one could always consider
distributions that perfectly correlate the inputs on the players’ fore-
heads.

3We use log(k) n to denote the kth iterated logarithm of n. More
precisely, log(1) n = log n, and log(k) n = log

(
log(k−1) n

)
for k > 1.

We use log∗ n to denote the smallest integer r such that log(r) n ≤ 1.
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Our techniques in fact allow us to combine and ex-
tend Theorems 1 and 2 by relaxing the restrictions on the
communication model somewhat. Rather than constrain
every player in the same way, we can consider protocols
where some players are myopic and others conservative.
We define specific players to be myopic or conserva-
tive in the natural way; e.g., Player i is myopic if she
only sees inputs x1, . . . , xi−1 and xi+1. Let us define
a (km, kc)-split protocol to be a one-way NOF protocol
with (km + kc) players such that players 1 through km
are myopic and the rest are conservative.

Theorem 4. Let k = km + kc where 0 ≤ km ≤ k. A
randomised (km, kc)-split protocol for MPJk must com-
municate �

(
min{n/km, n/k2

c }
)

bits.

1.2. Related Work: Motivation and Prior Results

The complexity class ACC0 is defined to be the class
of all Boolean functions computable using circuits with
constant depth and polynomial size that consist of (un-
bounded fan-in) AND, OR, NOT, and MODm gates, for
arbitrary values of m. This is about the smallest well-
studied class for which we do not know an explicit non-
member. Finding an explicit function not in ACC0 is
a major open problem in complexity theory. The func-
tion MPJk is often considered a good candidate, partly
because it is complete for LOGSPACE, which contains
ACC0, and partly because it seems amenable to a com-
munication complexity approach that we now describe.

A series of papers by Yao [22], Håstad and Gold-
mann [11], and Beigel and Tarui [4] showed that ACC0

is included in SYM+, the class of depth-2 circuits with
polylogarithmic fan-in AND gates at the input level
and a single quasi-polynomial fan-in symmetric gate
at the output level. This in turn means that for ev-
ery function f : {0, 1}

n
→ {0, 1} in ACC0 and ev-

ery possible way of splitting its input bits into k =

poly(log n) parts, the corresponding multi-player com-
munication problem f (x1, . . . , xk) has a simultaneous
message (hence, one-way) NOF protocol that communi-
cates poly(log n) bits. Therefore, removing the restric-
tions (myopia/conservativeness) on the communication
model in either of our Theorems 1 or 2 would imply
MPJk /∈ ACC0. This is our primary motivation.

We have already mentioned the work of Damm et
al. [9] and Gronemeier [10] on lower bounds for MPJk .
One other significant lower bound in the area is due
to Wigderson (unpublished, but see Babai, Hayes and
Kimmel [2] for an exposition), building on the work of
Nisan and Wigderson [16]: it shows that an unrestricted
deterministic one-way NOF protocol for MPJ3 requires

�(
√

n) bits of communication. Improving this bound
is a key open question, as is proving any unrestricted
�(nε) bound for MPJ4. We hope that this work provides
new insights and spurs progress on these problems.

An important potential obstacle in proving more such
unrestricted lower bounds was identified by Pudlák,
Rödl and Sgall [19]. They showed, via an ingenious
non-constructive probabilistic argument, that a special
case of MPJ3, where the middle layer is a permuta-
tion, has a one-way NOF protocol with communica-
tion O((n log log n)/ log n). The protocol is neither my-
opic nor conservative. This result should be viewed as
cautioning against a hasty conjecture of an �(n) lower
bound for MPJ3. However, such a lower bound is not
yet ruled out, because the protocol does not work for a
general instance of MPJ3.

There is also a long line of work on the two-party
complexity of the aforementioned variants BPJk and
B̂PJk , starting with Papadimitriou and Sipser [17] and
continuing with Nisan and Wigderson [16], Ponzio,
Radhakrishnan and Venkatesh [18], Klauck, Nayak, Ta-
Shma and Zuckerman [15] and Jain, Radhakrishnan and
Sen [12]. We refer the reader to the latter paper for more
details and history. There is some work on the variant
TPJk by Klauck et al. [15]. Some of these papers also
consider quantum communication settings.

1.3. Organisation of the Paper

The rest of the paper is organised as follows. In
Section 2, we outline the basic plan that all our proofs
follow. We then introduce our terminology and nota-
tion formally. In Section 3 we introduce some infor-
mation theoretic tools used in the proofs. We then use
these tools to perform certain “protocol manipulations”
in Section 4, culminating in a couple of round elimina-
tion lemmas that form the heart of the argument. Sec-
tion 5 uses the round elimination lemmas to prove The-
orems 1, 2 and 3. Finally, in Section 7 we comment on
some open problems and give a brief sketch of how our
techniques can be extended to prove Theorem 4.

2. Preliminaries

2.1. Plan of the Proofs

Our proof formalises the following intuitive argu-
ment. Suppose there is a k-player one-way NOF pro-
tocol P for MPJk in which each player communicates at
most αn bits, for some “small” quantity α. Let us run P
on a random input and consider the information revealed
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by Player 1’s message about the second layer of pointers
(i.e., the input on Player 2’s forehead). This layer con-
sists of n pointers. Since Player 1 sends at most αn bits,
there exists an i ∈ {1, 2, . . . , n} such that she reveals at
most α bits of information about the i th pointer.

Now, consider instances of MPJk in which the pointer
from v0 always points to the i th vertex in layer 1; note
that such instances are effectively instances of MPJk−1.
We thus have a k-player protocol for MPJk−1, with the
inputs written on the foreheads of Players 2 through
k. In and of itself, such a protocol is silly: the first
player can simply compute the final answer and reveal
it. However, our protocol has the additional property
that Player 1 reveals only α � 1 bits about the input
on Player 2’s forehead. Using an appropriate tool from
information theory, we can argue that it does not make
much difference if we alter Player 1’s behaviour so she
sends zero information about that input. More precisely,
the protocol’s error probability increases by O(

√
α). At

this point, Player 2 can emulate Player 1, so we may
eliminate Player 1 from the game altogether. We now
have a (k − 1)-player protocol Q for MPJk−1 with error
probability slightly larger than that of P .

Iterating this construction k − 2 times, we eventu-
ally arrive at a 2-player protocol for MPJ2, which is sim-
ply a restatement of the INDEX problem. At this point,
we can apply standard two-party one-way communica-
tion lower bounds for INDEX. Note that in order for
the error to have only increased by a constant, we need
α = O(1/k2), limiting us to an �(n/k2) lower bound.
A more careful analysis gives a higher �(n/k) bound
for myopic protocols.

When seeking a super-linear lower bound for M̂PJk ,
the above outline runs into trouble because α > 1, which
means that O(

√
α) additional error is intolerable. There-

fore, we need a different information theoretic tool. The
details appear below, but for readers familiar with the
work of Chakrabarti and Regev [5], we mention that the
tool we need has the flavour of combining a “message
compression lemma” and a “message switching lemma”
from that work. The compression lemma is in turn in-
spired by the work of Jain, Radhakrishnan and Sen [13].

Some earlier lower bounds on pointer jumping in
traditional two-player settings (i.e., for BPJk , B̂PJk and
TPJk) were proven using similar information theoretic
ideas [15, 12] in a quantum communication setting.
However, extra complications are introduced when deal-
ing with MPJk and the NOF model, which makes new
technical ideas necessary in our work.

2.2. Terminology and Notation

For the rest of the paper, “protocols” shall be assumed
to be public coin randomised protocols in the one-way
NOF model, unless explicitly qualified otherwise. The
more common Alice-and-Bob protocols with messages
exchanged between two players shall be called “tradi-
tional protocols.”

We shall assume that each message in a protocol
has a predetermined length independent of the actual
input; this makes no asymptotic difference in commu-
nication cost. Let P be a k-player protocol in which
Player i’s message has length `i . We say that the sig-
nature of P is 〈`1, `2, . . . , `k〉 or, equivalently, that P
is an 〈`1, . . . , `k〉-protocol. We define cost(P) := `1 +

· · · + `k . We denote the error probability of P (over its
internal coin tosses) on its worst case input by err(P).
For deterministic as well as randomised protocols, we
define the distributional error of P with respect to input
distribution D by err(P,D).

For random variables X, Y and Z , we use H(X) to
denote the entropy of X (in bits), I(X : Y ) to denote the
mutual information between X and Y , and H(X | Z)
and I(X : Y | Z) to denote conditional entropy and
conditional mutual information, respectively. We use a
number of basic results from information theory. For
more on the subject we refer the reader to the textbook
by Cover and Thomas [8].

In addition to the restrictions of myopia and conser-
vativeness, defined above, we will need to consider the
following unusual restriction.

Definition 1 (Quasi-private coin protocols). A protocol
involving k ≥ 2 players is said to be quasi-private coin if
the random coin of Player 1 is private. Players 2 through
k may continue to share a public coin.

Definition 2 (Information cost). Let P be a protocol for
a problem φ : A1 ×· · ·×Ak → B and D a distribution
on A1×· · ·×Ak . The information cost of P with respect
to D, denoted icost(P,D) is defined to be the following
conditional mutual information:

icost(P,D) := I(X2 : M | X3, . . . , Xk)

where (X1, . . . , Xk) ∼ D and M is the random message
produced by Player 1 when she sees (X2, . . . , Xk).

Notice that the information cost deals only with the
first message of the protocol and only captures the infor-
mation revealed by this message about the input unavail-
able to Player 2. We have the following simple lemma
relating the information cost of a protocol to a part of its
actual communication cost.
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Lemma 5. Let P be an 〈`1, `2, . . . , `k〉-protocol and
D be any distribution on the input to P. Then
icost(P,D) ≤ `1.

Proof. Using the notation in Definition 2 we have

icost(P,D) = I(M : X2 | X3, . . . , Xk)

≤ H(M | X3, . . . , Xk)

≤ H(M) ≤ |M | = `1 .

Definition 3 (Pointer jumping). For a positive inte-
ger n, let [n] := {1, 2, . . . , n}. For k ≥ 2, we
define M̂PJk : [n] ×

(
[n][n])k−1

→ [n] recursively,
as follows. M̂PJ2(i, f ) := f (i) and, for k > 2,
M̂PJk(i, f2, f3, . . . , fk) := M̂PJk−1( f2(i), f3, . . . , fk).
Here, i ∈ [n] and f, f2, . . . , fk ∈ [n][n].

We define MPJk : [n]×
(
[n][n])k−2

×{0, 1}
n

→ {0, 1}

similarly, except that we start with MPJ2(i, x) = xi for
i ∈ [n] and x ∈ {0, 1}

n .

The crucial fact about pointer jumping that we exploit
is that an instance of MPJk−1 can be “embedded” in an
instance of MPJk . This is made precise in the following
lemma, whose trivial proof we omit.

Lemma 6. For f ∈ [n][n] and i, a ∈ [n], define the
function f i :a

∈ [n][n] as follows:

f i :a( j) =

{
a , if j = i ,
f ( j) , otherwise.

Then, for any k ≥ 3, i ∈ [n] and g ∈ [n][n], we have
MPJk−1(a, f3, . . . , fk) = MPJk(i, gi :a, f3, . . . , fk). A
similar statement holds for M̂PJk−1 and M̂PJk .

3. Information Theoretic Tools

We now present two key information theoretic tools
that we shall use in our proofs. It may be helpful to keep
in mind the following context while reading this section.
We have two random variables — to be thought of as
“input” and “response” — and a function that assigns a
real-valued score to each input-response pair. We would
like to alter the response in some way so as to simplify it
without changing the expected score much. In Lemma 8
below, the input splits into two independent portions (A
and B) and the response (C) carries a negligible amount
of information about one of the portions (A); we show
that the response can be made functionally independent
of that portion. In Lemma 9 below, the response (B)
carries a small amount of information about the input
(A); we show that the response can be restricted to lie in
a correspondingly small set.

The latter lemma is similar to (and stronger than) a
lemma of Chakrabarti and Regev [5] that was used to
compress the first message of a traditional protocol. We
use it here for a very similar purpose. Lemma 8 is in the
spirit of the Average Encoding Theorem of Klauck et
al. [15] and we use it here to eliminate “uninformative”
messages. It explicates and generalises similar ideas in
Sen [20] and Chakrabarti and Regev [5].

We recall the following well known theorem from in-
formation theory (see, e.g, Lemma 12.6.1 of Cover and
Thomas [8]).

Fact 7 (Pinsker’s inequality). Let P andQ be two prob-
ability distributions on the same domain. Then the
Kullback-Leibler divergence DKL(P‖Q) and the L1 dis-
tance ‖P −Q‖1 are related by

DKL(P‖Q) ≥
1

2 ln 2
‖P −Q‖

2
1 .

Lemma 8. Let A, B and C be random variables with
ranges A , B and C respectively. Suppose A and B are
independent. Then, for every function f : A ×B×C →

[0, 1], there exists a function g : B → C such that

EA,B[ f (A, B, g(B))] ≤ EA,B,C [ f (A, B, C)]+√
ln 2
2

· I(A : C | B) .

Proof. Let 5 be the joint distribution of (A, B, C)
and let 5A , 5BC , etc. be its marginals. Define the
distribution 5′ on A × B × C by 5′(a, b, c) =

5A (a)5BC (b, c). By independence of A and B, we
have

DKL(5‖5′) = I(A : BC) = I(A : C | B) . (1)

Observe that∑
b∈B

∑
c∈C

5BC (b, c)
∑
a∈A

5A (a) f (a, b, c) (2)

=

∑
a∈A

∑
b∈B

∑
c∈C

5′(a, b, c) f (a, b, c)

≤ EA,B,C [ f (A, B, C)] +
1
2
‖5 − 5′

‖1 (3)

≤ EA,B,C [ f (A, B, C)] +

√
ln 2
2

· DKL(5‖5′)(4)

= EA,B,C [ f (A, B, C)] +

√
ln 2
2

· I(A : C | B) ,(5)

where (3) holds because f takes values in [0, 1], (4) fol-
lows from Pinsker’s inequality and (5) follows from (1).
Now, define g : B → C by

g(b) := argmin
c∈C

∑
a∈A

5A (a) f (a, b, c) .
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Then, the sum (2) is at least∑
b∈B

∑
a∈A

5A (a) f (a, b, g(b))
∑
c∈C

5BC (b, c)

=

∑
a∈A

∑
b∈B

5A (a)5B(b) f (a, b, g(b))

= EA,B[ f (A, B, g(B))]

which completes the proof.

Lemma 9. Let A and B be random variables with
ranges A and B respectively. Then, for every function
f : A × B → [0, 1] and every λ ≥ 4 I(A : B), there
exists B0 ⊆ B and a function g : A → B0 such that
|B0| ≤ 2λ and EA[ f (A, g(A))] ≤ EA,B[ f (A, B)] +
5
2
√

I(A : B)/λ + (1 + log e)/λ.

Proof. This lemma is an analogue of Lemma 3.5 of
Chakrabarti and Regev [5], but with tighter parameters.
The proof is fairly technical. We give a complete self-
contained proof in Section 6.

4. Protocol Manipulations

4.1. Removing Player 1’s Message

We now prove a result (Lemma 11) that lets us re-
move Player 1’s message in a protocol with a “slight”
additive increase in error probability. The increase is in
fact slight only when the information cost is low, to be-
gin with. We use the result in our round elimination lem-
mas, below. The result requires the protocol to be quasi-
private coin, so we begin with a preliminary lemma that
addresses this requirement.

Lemma 10 (Quasi-privatisation lemma). Let P be a my-
opic NOF protocol in which Player 2 is deterministic.
Then there exists a quasi-private coin myopic protocol
Q, with the same signature and information cost as P,
that behaves identically to P on all inputs.

Proof. If P involves just two players, there is nothing
to prove. If it involves k ≥ 3 players, we construct Q
as follows. Let x2 be the input on Player 2’s forehead,
R be the public random string used by all players in P
to construct their messages, and µP (x2, R) be the func-
tion computed by Player 1 to generate her first message
in P . In Q, Player 1 still sends µP (x2, R) but generates
the random value R privately. Player 2 behaves the same
as in P . Let D[x, m] denote the conditional distribution
of (R | µP (x, R) = m). Players 3 through k, upon see-
ing the Player 1’s message m1, use a new public coin to

generate a value R′ distributed according to D[x2, m1]
and then behave just as in P , using R′ to provide the
randomness in their messages. It is easy to see that Q
has all the desired properties.

Lemma 11. Suppose k ≥ 3. Let P be a quasi-private
coin 〈`1, . . . , `k〉-protocol for a function φ : A1 × · · · ×

Ak → B, and letD be a distribution on A1 ×· · ·×Ak .

(1) If D is a product distribution, there exists a deter-
ministic 〈0, `1 + `2, `3, . . . , `k〉-protocol Q for φ
such that err(Q,D) ≤ err(P,D) +

√
icost(P,D).

(2) If P is myopic, there exists a deterministic my-
opic 〈0, `2, `3, . . . , `k〉-protocol Q for φ such that
err(Q,D) ≤ err(P,D) +

√
icost(P,D).

(3) If P is myopic, then for every λ ≥ 4 · icost(P,D)
there exists a deterministic myopic protocol Q for
φ with signature 〈0, 2λ`2, `3, . . . , `k〉 such that
err(Q,D) ≤ err(P,D) + 3

√
icost(P,D)/λ + 3/λ.

Proof. We give the full details of the argument for Part
(1). The other two parts use much the same argument,
so we merely point out the key differences.

Part (1). Let R1 denote the random string used by
Player 1 to generate her first message and let R2 denote
the random string shared by Players 2 through k. Let εP

be the error indicator function for P , defined as follows:
εP (x1, . . . , xk, m, r2) = 0 or 1 according as P produces
a correct or an incorrect answer on input (x1, . . . , xk),
when R2 = r2 and Player 1 sends the message m. Let
µP (x2, . . . , xk, r1) be the function that Player 1 com-
putes to produce her message. Then err(P,D) equals

E
[
εP (X1, . . . , Xk, µ

P (X2, . . . , Xk, R1), R2)
]

, (6)

where (X1, . . . , Xk) ∼ D and (R1, R2) is dis-
tributed uniformly. Let M be the domain of
Player 1’s message. Define f : A2 × · · · ×

Ak × M → [0, 1] by f (x2, . . . , xk, m) =

EX1,R2 [εP (X1, x2, . . . , xk, m, R2)]. Set A := X2, B :=
(X3, . . . , Xk), and C := µP (X2, . . . , Xk, R1). Note
that A and B are independent because D is a product
distribution. Now, invoking Lemma 8 (and discarding
the constant (ln 2)/2 for simplicity) shows that there ex-
ists a function g : A3 × · · · × Ak → M such that

EA,B[ f (A, B, g(B))]

≤ E[ f (X2, . . . , Xk, C)] +

√
I(X2 : C | X3, . . . , Xk)

= err(P,D) +

√
icost(P,D) ,

where the final equality follows from (6), the definition
of f and the definition of icost.
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Consider a protocol P ′ that is identical to P except
that Player 1 sends the message g(x3, . . . , xk). Since the
function εP has been parametrized by Player 1’s mes-
sage, we can use it to express the error probability of P ′

as well:

err(P ′,D) = E
[
εP (X1, . . . , Xk, g(X3, . . . , Xk), R2)

]
= EA,B[ f (A, B, g(B))] .

But note that Player 1’s message in P ′ is a (determinis-
tic) function of the inputs on the foreheads of Players 3
through k alone. Therefore, Player 2 has all the infor-
mation necessary to generate this message. Therefore,
there is a protocol P ′′ that behaves the same as P ′ on
all inputs, but where Player 1 sends 0 bits and Player 2
sends `1 + `2 bits: the concatenation of Player 1’s and
Player 2’s messages in P ′. Finally, since we only care
about distributional error under D, we can fix the ran-
dom coins of P ′′ to get a deterministic protocol Q that
has the desired properties.

Part (2). We proceed almost exactly as in Part (1). The
key difference is that Player 1 produces her message by
computing a function µP (x2, r1), so when we construct
P ′ as above, we end up with Player 1’s message in P ′

being a constant. Therefore, there is no need for this
message in P ′ at all and we can get the desired protocol
Q by simply eliminating it and then fixing the resulting
protocol’s random coins.

Note that we did not require D to be a product distri-
bution. This is because the condition that A and B are
independent was satisfied vacuously.

Part (3). We proceed as in Part (2). Since P is myopic,
Player 1’s message is given by a function µP (x2, r1) and
we have

err(P,D) = E
[
εP (X1, . . . , Xk, µ

P (X2, R1), R2)
]

= EX2,R1

[
f (X2, µ

P (X2, R1)
]

,

where f (x, m) := E[εP (X1, x2, X3, . . . , Xk, m, R2)],
with the expectation taken over (X1, X3, . . . , Xk, R2).
Let M be the domain of Player 1’s message. Setting
A := X2 and B := µP (X2, R1) and invoking Lemma 9
(and weakening the constants slightly), we see that there
exists M0 ⊆ M and a function g : A2 → M0 such that
|M0| ≤ 2λ and

EA[ f (A, g(A))] ≤ err(P,D) + 3

√
icost(P,D)

λ
+

3
λ

.

Consider a protocol P ′ that is identical to P except
that Player 1 sends the message g(x2). As in Part (1),

we have err(P ′,D) = EA[ f (A, g(A))]. Also, P ′ is
myopic. In particular, every player except Player 2 can
compute Player 1’s message in P ′. Therefore, P ′ be-
haves identically to a protocol P ′′ constructed as fol-
lows. In P ′′, Player 1 sends 0 bits. Player 2 sends her re-
sponse to each of the |M0| messages that Player 1 could
have sent in P ′. Note that this requires |M0| · `2 ≤ 2λ`2
bits. Players 3 through k determine Player 1’s would-be
message in P ′ and pick out the appropriate response to
it from Player 2’s long message and continue the rest of
the protocol exactly as in P ′.

Clearly, the signature of P ′′ is 〈0, 2λ`2, `3, . . . , `k〉.
Fixing the random coins of P ′′ gives us a deterministic
protocol Q with all the desired properties.

4.2. Round Elimination for Pointer Jumping

Here we prove our two central lemmas, showing
how to eliminate the first message — and hence the
first player — of certain NOF protocols for MPJk and
M̂PJk , and thereby obtain NOF protocols for MPJk−1 and
M̂PJk−1, respectively.

Definition 4. We use Uk to denote the uniform distribu-
tion on inputs to MPJk .

Lemma 12 (Round elimination, Boolean case). Sup-
pose MPJk has a deterministic 〈`1, `2, . . . , `k〉-protocol
P with err(P,Uk) ≤ ε, for some k ≥ 3.

(1) If P is conservative, then MPJk−1 has a determin-
istic conservative 〈`1 + `2, `3, . . . , `k〉-protocol Q
with err(Q,Uk−1) ≤ ε +

√
`1/n.

(2) If P is myopic, then MPJk−1 has a deter-
ministic myopic 〈`2, `3, . . . , `k〉-protocol Q with
err(Q,Uk−1) ≤ ε +

√
`1/n.

Proof. For each j ∈ [n], we construct a randomised
protocol Pj for MPJk−1, using k players: the input
(a, f3, . . . , fk) to MPJk−1 is written on the foreheads
of Players 2 through k and Player 1’s forehead is left
blank. The players use a public coin to generate a
uniform random layer of pointers G ∈ [n][n]. They
then behave as they would have in protocol P on in-
put ( j, G j :a, f3, . . . , fk). In other words, if Player 1
would have sent the message µP ( f2, . . . , fk) in P , then
she sends µP (G j :a, f3, . . . , fk) in Pj . From Lemma 6,
it follows that that Pj is correct whenever P is, on the
constructed input ( j, G j :a, f3, . . . , fk). Thus,

1
n

n∑
j=1

err(Pj ,Uk−1) = err(P,Uk) ≤ ε . (7)
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The information cost of P can be decomposed into the
sum of the information costs of the Pj s as follows.

icost(P,Uk)

= I(F2 : µP (F2, . . . , Fk) | F3, . . . , Fk)

≥

n∑
j=1

I(F2( j) : µP (F2, . . . , Fk) | F3, . . . , Fk) (8)

=

n∑
j=1

I(A : µP (G j :A, F3, . . . , Fk) | F3, . . . , Fk)

=

n∑
j=1

icost(Pj ,Uk−1) , (9)

where (8) holds because the n random variables
F2(1), . . . , F2(n) are independent given F3, . . . , Fk .
Combining (7) and (9), and using the concavity of the
square root function, we get

1
n

n∑
j=1

(
err(Pj ,Uk−1) +

√
icost(Pj ,Uk−1)

)

≤ ε +

√
icost(P,Uk)

n
≤ ε +

√
`1

n
,

where the final inequality follows from Lemma 5.
Therefore, there exists a j such that err(Pj ,Uk−1) +√

icost(Pj ,Uk−1) ≤ ε +
√

`1/n. We now prove the
two parts of the lemma separately.

Part (1). Consider the protocol Pj . If P is conser-
vative, then for any i ≥ 3, the message of Player i in
Pj can only depend on fi+1, . . . , fk and on the value
fi−1 ◦ · · · ◦ f3 ◦ F2( j) where F2 = G j :a . Although
F2 is randomly chosen, F2( j) = G j :a( j) = a, which
means that Player i is in fact deterministic. Player 2 is
trivially deterministic, irrespective of whether or not P
is conservative. Thus, Player 1 is the only player to use
randomness in Pj . In particular, Pj is a quasi-private
coin protocol. By Part (1) of Lemma 11, there exists
a deterministic 〈0, `1 + `2, `3, . . . , `k〉-protocol P ′ for
MPJk−1 such that err(P ′,Uk−1) ≤ ε +

√
`1/n. In this

protocol, Player 1 neither has an input on her forehead
nor does she communicate any bits, so we effectively
have a (k − 1)-player 〈`1 + `2, `3, . . . , `k〉-protocol Q
with the desired properties.

Part (2). If P is myopic, then so is Pj . More-
over, Player 2 is deterministic in Pj . Invoking the
quasi-privatisation lemma (Lemma 10), we can replace
Pj with an equivalent quasi-private coin protocol P ′

j .

Applying Part (2) of Lemma 11 to P ′

j and removing
Player 1 as before gives us the desired deterministic
〈`2, . . . , `k〉-protocol Q.

Notice that the above lemma does not provide an in-
teresting result when `1 ≥ n. But we must deal with
`1 ≥ n we are working with the non-Boolean problem,
M̂PJk , and wish to prove a communication lower bound
higher than n. To this end, we introduce another round
elimination lemma, below. The fact that M̂PJk is a non-
Boolean problem does not play a significant role in its
proof. However, for our application later, we need to
work with randomised protocols in this lemma, rather
than with deterministic protocols and distributional er-
ror.

Lemma 13 (Round elimination, non-Boolean case).
Suppose M̂PJk has a myopic 〈`1, `2, . . . , `k〉-protocol P,
for some k ≥ 3. Then, for λ ≥ 4`1/n, M̂PJk−1 has a my-
opic protocol Q with signature 〈2λ`2, `3, . . . , `k〉 and
with err(Q) ≤ err(P) + 3

√
`1/(nλ) + 3/λ.

Proof. We use much the same argument as in Part (2)
of Lemma 12 but without fixing a specific input distri-
bution like Uk . Let Dk−1 be an arbitrary input distri-
bution for M̂PJk−1. By Yao’s minimax principle [21], it
suffices to demonstrate a deterministic protocol Q′ with
signature 〈2λ`2, `3, . . . , `k〉 and with err(Q′,Dk−1) ≤

err(P) + 3
√

`1/(nλ) + 3/λ. Let Dk denote the distribu-
tion of the random input (J, G J :A, F3, . . . , Fk), where
J is drawn uniformly from [n], each of G(1), . . . , G(n)
is drawn independently from the first marginal of Dk−1

and (A, F3, . . . , Fk) ∼ Dk−1. By Yao’s minimax prin-
ciple again (the easy half, this time) there is a determin-
istic protocol P ′ for M̂PJk with the same signature as P
and with err(P ′,Dk) ≤ err(P).

For each j ∈ [n], we now design a protocol Pj for
M̂PJk−1 just as before, the only difference being that
the random layer of pointers G is drawn from the first
marginal of Dk−1. Arguing as in the derivation of (7)
and (9), we now have

1
n

∑n
j=1 err(Pj ,Dk−1) ≤ err(P) , and∑n

j=1 icost(Pj ,Dk−1) ≤ icost(P,Dk) .

We now combine these two inequalities appropriately to
conclude that there exists a j such that

err(Pj ,Dk−1) + 3

√
icost(Pj ,Dk−1)

λ
+

3
λ

≤ err(P) + 3

√
`1

nλ
+

3
λ

.
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Applying the quasi-privatisation lemma (Lemma 10)
followed by Part (3) of Lemma 11 to Pj , and remov-
ing Player 1 as before, we obtain the desired protocol
Q′.

5. The Lower Bounds

Let 6 be a finite alphabet. We shall let 6-INDEX
denote the following traditional (i.e., not NOF) commu-
nication problem. There are two players: Alice, who
holds a string x = x1x2 . . . xn ∈ 6n and Bob, who
holds an index i ∈ [n]. Alice must send Bob a (pos-
sibly randomised) message, after which Bob must de-
termine xi . More precisely, the error of the protocol
is defined to be the probability that Bob’s output dif-
fers from xi . The following lower bound is an easily
proven generalisation of the well known lower bound for
{0, 1}-INDEX [1]. The function H is the binary entropy
function: H(α) = −α log α − (1 − α) log(1 − α).

Fact 14. Let U denote the uniform distribution on inputs
to 6-INDEX. Any traditional protocol for 6-INDEX with
error at most ε on U must communicate at least (1 −

H(ε)) n log |6| bits.

Theorem 15 (Precise restatement of Theorem 2). Let P
be a conservative protocol for MPJk such that err(P) ≤
1
6 . Then cost(P) = �(n/k2).

Proof. We first note that a 2-player NOF protocol for
MPJ2 is simply a traditional protocol for {0, 1}-INDEX.
Now, suppose MPJk has an 1

6 -error randomised conser-
vative 〈`1, . . . , `k〉-protocol P for some k ≥ 3. By the
easy half of Yao’s minimax principle, MPJk has a de-
terministic conservative 〈`1, . . . , `k〉-protocol P ′ with
err(P ′,Uk) ≤

1
6 . Applying Part (1) of Lemma 12 to

P ′ repeatedly (i.e., k − 2 times), we see that MPJ2 has a
deterministic protocol Q with cost(Q) ≤ `1 + · · · + `k
and

err(Q,U2)

≤
1
6

+

√
`1

n
+

√
`1 + `2

n
+ · · · +

√
`1 + · · · + `k−2

n

≤
1
6

+ k

√
`1 + · · · + `k

n
.

Suppose cost(P) ≤ n/(36k2). Then `1 + · · · + `k ≤

n/(36k2), so err(Q,U2) ≤
1
6 +

1
6 =

1
3 . By Fact 14, we

have cost(Q) ≥

(
1 − H

(
1
3

))
n ≥ n/13, a contradic-

tion.

Theorem 16 (Precise restatement of Theorem 1). Let P
be a myopic protocol for MPJk with err(P) ≤

1
3 . Then

cost(P) = �(n/k).

Proof. Proceeding as above, suppose MPJk has an 1
6 -

error randomised myopic 〈`1, . . . , `k〉-protocol P for
some k ≥ 3. Applying Yao’s minimax principle, fol-
lowed by k −2 applications of Part (2) of Lemma 12, we
get a deterministic protocol Q for MPJ2 with cost(Q) ≤

`k−1 + `k and

err(Q,U2) ≤
1
6

+

√
`1

n
+ · · · +

√
`k−2

n

≤
1
6

+

√
k(`1 + · · · + `k)

n
,

where the final inequality is obtained by applying
Cauchy-Schwarz. As before, we can obtain a contra-
diction if we assume that cost(P) ≤ n/(36k).

Theorem 17 (Precise restatement of Theorem 3). Every
1
6 -error myopic protocol for M̂PJk with k ≤ log∗ n must
communicate �(n log(k−1) n) bits.

Proof. LetAk denote the statement “M̂PJk has a myopic
protocol with error at most 1

6 in which each player com-
municates at most (n log(k−1) n)/400 bits”. Fact 14, ap-
plied to [n]-INDEX, implies thatA2 is false. To complete
the proof, we show that Ak ⇒ Ak−1 for each k ≥ 3.

Assume Ak , for some k ≥ 3, and let P be the proto-
col whose existence is guaranteed by Ak . By padding
the messages of the players if necessary, we can as-
sume that the signature of P is 〈`, `, . . . , `〉 with ` =

(n log(k−1) n)/400. Set λ = 399`/n. By Lemma 13,
there exists a 〈2λ`, `, . . . , `〉-protocol Q for M̂PJk−1
with

err(Q) ≤
1
6

+ 3

√
`

n(399`/n)
+

3
399`/n

≤
1
3

.

Consider a random variable Xm ∼ B(m, 1
3 ), where

B(m, p) denotes the binomial distribution with param-
eters m and p. Let c be the smallest integer satisfying
Pr[Xc ≥ c/2] ≤

1
6 . Then, if we repeat a 1

3 -error protocol
for some communication problem c times in parallel and
report the majority output, we obtain a 1

6 -error protocol
for the same problem. This continues to be true even if
the problem is non-Boolean: there may not exist a ma-
jority output, but we can simply output something arbi-
trary in such cases. The upshot is that Q can be repeated
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c times in parallel to obtain a 1
6 -error 〈2λc`, c`, . . . , c`〉-

protocol Q′. Now,

2λc` =
2(399 log(k−1) n)/400

· cn log(k−1) n
400

=
cn

(
log(k−2) n

)399/400
log(k−1) n

400

≤
n log(k−2) n

400
,

for sufficiently large n. Therefore, the existence of Q′

implies Ak−1.

6. Proof of Lemma 9

Theorem 18 (Restatement of Lemma 9). Let A and B
be random variables with ranges A and B respectively.
Then, for every function f : A ×B → [0, 1] and every
λ ≥ 4 I(A : B), there exists B0 ⊆ B and a function g :
A → B0 such that |B0| ≤ 2λ and EA[ f (A, g(A))] ≤

EA,B[ f (A, B)] +
5
2
√

I(A : B)/λ + (1 + log e)/λ.

Proof. Let 5 denote the (marginal) distribution of B
and 5a the distribution of B conditioned on A = a.
For each a ∈ A , we introduce a fraction ρa ∈ (0, 1),
whose precise value we set later. Define the sets Sa and
Ta as follows:

Sa := {b ∈ B : ρa5a(b) ≤ 5(b)}

Ta := {b ∈ B : ρa5a(b) > 5(b)} .

Define δa := 5a(Ta). It will help to think of δa as being
very small. Consider the function h : [0, 1] × A → B
defined by the algorithm in Figure 1.

Let 5′
a denote the distribution of h(R, a), where R

denotes a uniform random real in [0, 1] independent of
A and B. Define σa to be the probability that the al-
gorithm stops (i.e., returns some value) in a particular
iteration. Then

σa =

∑
b∈B

5(b) · min{ρa5a(b)/5(b), 1}

= ρa5a(Sa) + 5(Ta)

= ρa(1 − δa) + 5(Ta) ; (10)

5′
a(b) =

∞∑
k=0

(1 − σa)k5(b) min
{

ρa5a(b)

5(b)
, 1

}
=

min{ρa5a(b), 5(b)}

σa
.

Therefore,

‖5a − 5′
a‖1

=

∑
b∈Sa

∣∣∣∣ρa5a(b)

σa
− 5a(b)

∣∣∣∣ +

∑
b∈Ta

∣∣∣∣5(b)

σa
− 5a(b)

∣∣∣∣
≤

(
ρa

σa
− 1

)
+

(
5(Ta)

σa
+ 5a(Ta)

)
=

ρa − σa + 5(Ta)

σa
+ δa

=
ρaδa

ρa(1 − δa) + 5(Ta)
+ δa (11)

≤
δa

1 − δa
+ δa , (12)

where (11) follows from (10).

Let n(r, a) denote the number of iterations of the in-
finite loop performed by the above algorithm before it
returns a value. Notice that n(R, a) is a geometric ran-
dom variable with expectation 1/σa . Let h′(r, a) be a
function that uses a slightly modified version of the al-
gorithm, where the infinite loop is replaced by a loop
that makes at most 2λ iterations. If no value is returned
within those many iterations, the modified algorithm re-
turns some arbitrary fixed element of B. Let 5′′

a denote
the distribution of h′(R, a). Then we have

1
2
‖5′′

a − 5′
a‖1 ≤ Pr[h′(R, a) 6= h(R, a)]

≤ Pr[n(R, a) > 2λ]
≤ ER[log n(R, a)]/λ (13)
≤ log ER[n(R, a)]/λ
= (− log σa)/λ

≤
− log ρa − log(1 − δa)

λ
. (14)

where (13) follows from Markov’s inequality and (14)
follows from (10). Combining (12) and (14) using the
triangle inequality, we get

‖5a − 5′′
a‖1 ≤

2(− log ρa − log(1 − δa))

λ

+
δa

1 − δa
+ δa

(15)

Consider the two-point distributions P =

(5a(Sa), 5a(Ta)) and Q = (5(Sa), 5(Ta)). By
monotonicity of the Kullback-Leibler divergence, we
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Algorithm h(r, a):
Inputs: r ∈ [0, 1], a ∈ A .
Note: Designed to be invoked with an r chosen at random, uniformly.

Repeat forever:
Using r as a source of random bits, generate b ∈ B according to 5.
Using r again, return b with probability min{ρa5a(b)/5(b), 1}.

Figure 1. Algorithm used in the proof of Theorem 18

have

DKL(5a‖5)

≥ DKL(P‖Q)

= 5a(Sa) log
5a(Sa)

5(Sa)
+ 5a(Ta) log

5a(Ta)

5(Ta)

≥ (1 − δa) log(1 − δa) + δa log
1
ρa

≥ −δa log e − δa log ρa ,

where the penultimate inequality follows from the defi-
nitions of Sa, Ta , and δa . For ρa < 1/e this implies

δa ≤
DKL(5a‖5)

− log ρa − log e
. (16)

We would like to have 5′′
a close to 5. Considering

inequality (15), we notice that the first term on the right
hand side is a decreasing function of ρa , whereas the
second and third terms are increasing functions of δa ,
which is in turn upper bounded by an increasing function
of ρa , according to (16). Therefore, to minimise ‖5a −

5′′
a‖1, we should choose ρa neither too large nor too

small. The asymptotically optimal choice turns out to
be given by

− log ρa =

√
λ

I(A : B)
· DKL(5a‖5) + log e .

Plugging this into (16), we get δa ≤
√

I(A : B)/λ. The
condition on λ implies δa ≤ 1/2, which in turn gives
δa/(1 − δa) + δa ≤ 3δa ≤ 3

√
I(A : B)/λ. We also have

− log(1 − δa) ≤ − log(1 −
1
2 ) = 1. Using these bounds

in (15), we get

‖5a − 5′′
a‖1 ≤

2 · DKL(5a‖5)
√

λ · I(A : B)
+

2(1 + log e)
λ

+3

√
I(A : B)

λ
.

Let us define pa := Pr[A = a]. Then we have

∑
a∈A paDKL(5a‖5) = I(A : B). Therefore

∑
a∈A

pa‖5a − 5′′
a‖1 ≤ 5

√
I(A : B)

λ
+

2(1 + log e)
λ

.

(17)
Recalling that h′(R, a) ∼ 5′′

a , we have

ER[EA[ f (A, h′(R, A))]]
= EA[ER[ f (A, h′(R, A))]]

=

∑
a∈A

pa ER[ f (a, h′(R, a))]

=

∑
a∈A

pa
∑
b∈B

5′′
a(b) f (a, b)

≤

∑
a∈A

pa

2
‖5a − 5′′

a‖1 +

∑
a∈A

pa
∑
b∈B

5a(b) f (a, b)

≤ EA,B[ f (A, B)] +
5
2

√
I(A : B)

λ
+

1 + log e
λ

,

where the penultimate inequality holds because f
takes values in [0, 1] and the final inequality follows
from (17). Therefore, there exists some fixed r0 ∈ [0, 1]
such that

EA[ f (A, h′(r0, A))] ≤ EA,B[ f (A, B)]

+
5
2

√
I(A : B)

λ
+

1 + log e
λ

.

Let g : A → B be defined by g(a) = h′(r0, a) for
a ∈ A , and let B0 ⊆ B be the range of g. Since the
algorithm for h′ stops within 2λ iterations by design, we
have |B0| ≤ 2λ. Thus, the function g has all the desired
properties.

7. Concluding Remarks and an Extension

We have obtained improved lower bounds on the
one-way NOF communication complexity of pointer
jumping in certain previously studied restricted mod-
els. Our approach is based on the information com-
plexity paradigm and leads to proofs that have the nice
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feature of being formalisations of intuitive arguments.
We believe that these results show the promise of this
paradigm in attacking questions about NOF communi-
cation complexity.

At the same time, our proofs help bring out the limi-
tations of the present way of applying information com-
plexity. A key step in the paradigm is to solve a “simple”
problem (in this case, MPJk−1) by simulating the actions
of a protocol for a “compound” or “direct sum” problem
(in this case, MPJk). In a NOF model, in order to create
suitably distributed inputs for this larger problem, the
players require public coins. This presents a challenge
because round elimination seems to require the message
under consideration to be generated using private coins.
A meaningful measure of information complexity in a
public coin setting requires conditioning on the public
random string (for more on this, see Appendix B of
Bar-Yossef et al. [3]) and this seems to stymie our ar-
gument. Here, we are able to work around this issue
when handling either myopic or conservative protocols.
There might, however, be a more sophisticated way of
applying information complexity that can deal with less
restricted models.

We can, in fact, relax our restrictions somewhat and
consider split protocols, as in Theorem 4. Here is a brief
sketch of its proof; the details are straightforward. In
a split protocol, if Player 1 is conservative, so is ev-
ery other player. Therefore, we may apply Theorem 2.
If Player 1 is myopic, our round elimination argument
still goes through, after a suitable modification to the
quasi-privatisation lemma. The modified lemma works
with protocols in which those players that do not see
Player 2’s input are all deterministic. Now, carrying out
calculations very similar to those in the proofs of Theo-
rems 1 and 2 completes the proof.

The most obvious open problem is to remove the
restrictions from our lower bounds, thereby proving
MPJk /∈ ACC0. Less ambitious goals include improv-
ing the known �(

√
n) lower bound for MPJ3 and prov-

ing nontrivial lower bounds for MPJ4, both in the unre-
stricted one-way NOF model. It is tempting to conjec-
ture an �(n) lower bound for MPJ3, but the protocol of
Pudlák et al. [19] sounds a note of caution.
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