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We describe a simple algorithm for approximating the empirical entropy of a stream of m values
up to a multiplicative factor of (1 + ε) using a single pass, O(ε−2 log(δ−1) log m) words of space,
and O(log ε−1 + log log δ−1 + log log m) processing time per item in the stream. Our algorithm
is based upon a novel extension of a method introduced by Alon, Matias, and Szegedy. This
improves over previous work on this problem. We show a space lower bound of Ω(ε−2/ log2(ε−1)),
demonstrating that our algorithm is near-optimal in terms of its dependency on ε.

We show that generalizing to multiplicative-approximation of the kth order entropy requires
close to linear space for k ≥ 1. In contrast we show that additive-approximation is possible in a
single pass using only poly-logarithmic space. Lastly, we show how to compute a multiplicative
approximation to the entropy of a random walk on an undirected graph.
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1. INTRODUCTION

The problem of computing the frequency moments of a stream [Alon et al. 1999]
has stimulated significant research within the algorithms community, leading to
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new algorithmic techniques and lower bounds. For all frequency moments, match-
ing upper and lower bounds for the space complexity are now known [Chakrabarti
et al. 2003; Woodruff 2004; Indyk and Woodruff 2005; Bhuvanagiri et al. 2006].
Subsequently, attention has been focused on the strongly related question of com-
puting the entropy of a stream. Motivated by networking applications [Gu et al.
2005; Wagner and Plattner 2005; Xu et al. 2005], several partial results have been
shown on computing the (empirical) entropy of a sequence of m items in sublin-
ear space [Chakrabarti et al. 2006; Guha et al. 2006; Lall et al. 2006; Bhuvanagiri
and Ganguly 2006]. In this paper, we show a simple algorithm for computing an
(ε, δ)-approximation to this quantity in a single pass, using O(ε−2 log(δ−1) log m)
words of space. We also show a lower bound of Ω(ε−2/ log2(ε−1)), proving that our
algorithm is near-optimal in terms of its dependency on ε. We then give algorithms
and lower bounds for kth order entropy, a quantity that arises in text compres-
sion, based on our results for empirical (zeroth order) entropy. We also provide
algorithms to multiplicatively approximate the entropy of a random walk over an
undirected graph. Our techniques are based on a method originating with Alon,
Matias, and Szegedy [Alon et al. 1999]. However, this alone is insufficient to approx-
imate the entropy in bounded space. Their method involves uniformly sampling
an element from the stream and counting the number of subsequent occurrences of
this element. We show how to extend this to sampling a set of distinct elements
such that the ith element sampled is chosen uniformly from the sub-stream formed
by ignoring all occurrences of first i − 1 sampled elements. This is achieved in
one pass. The idea is straightforward to implement, and may have applications to
other problems. For the estimation of entropy we will show that keeping a “backup
sample” for each estimator is sufficient to guarantee the desired space bounds. In
Section 2, we discuss this case and present our algorithm for approximating entropy
and in Section 3 we present a time-efficient implementation of this algorithm along
with a space lower bound and an adaptation for the sliding-window model. The
results pertaining to kth order entropy are in Section 4. The extension to entropy
of a random walk on a graph is in Section 5.

1.1 Preliminaries

A randomized algorithm is said to (ε, δ)-approximate a real number Q if it outputs
a value Q̂ such that |Q̂−Q| ≤ εQ with probability at least (1− δ) over its internal
coin tosses. Our goal is to produce such (ε, δ)-approximations for the entropy of a
stream. We first introduce some notation and definitions.

Definition 1.1. For a data stream A = 〈a1, a2, . . . , am〉, with each token aj ∈
[n], we define mi := |{j : aj = i}| and pi := mi/m, for each i ∈ [n]. The
empirical probability distribution of A is p := (p1, p2, . . . , pn). The empirical entropy
of A is defined1 as H(p) :=

∑n
i=1−pi lg pi. The entropy norm of A is FH :=∑n

i=1 mi lg mi.

Clearly FH and H are closely related, since we can write FH = m lg m −mH.
However, they differ significantly in their approximability: FH cannot be approxi-
mated within constant factors in poly-logarithmic space [Chakrabarti et al. 2006],

1Here and throughout we use lg x to denote log2 x.
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while we show here an (ε, δ)-approximation of H in poly-logarithmic space.

1.2 Prior Work

Predating the recent work on approximating entropy in the data-stream model,
Batu et al. [Batu et al. 2005] considered the problem of approximating entropy
in a variety of oracle models including the combined oracle model in which an
algorithm may request independent samples from the underlying distribution or
request the exact value a pi. Guha, McGregor, and Venkatasubramanian [Guha
et al. 2006] improved upon their results and observed that they led to a two-pass,
additive approximation in poly-logarithmic space. They also presented a one-pass,
poly-logarithmic space, algorithm that approximated H up to a constant factor
if H was constant. Chakrabarti, Do Ba, and Muthukrishnan [Chakrabarti et al.
2006] gave a one-pass algorithm for approximating H up to a (1 + ε) factor with
sublinear but polynomial in m space, as well as a two-pass algorithm requiring only
poly-logarithmic space. In the networking world, the problem of approximating the
entropy of a stream was considered in Lall et al. [Lall et al. 2006]. They focused
on estimating FH , under assumptions about the distribution defined by the stream
that ensured that computing H based on their estimate of FH would give accurate
results. More recently, Bhuvanagiri and Ganguly [Bhuvanagiri and Ganguly 2006]
described an algorithm that can approximate H in poly-logarithmic space in a
single pass. The algorithm is based on the same ideas and techniques as recent
algorithms for optimally approximating frequency moments [Indyk and Woodruff
2005; Bhuvanagiri et al. 2006]. It has the feature (absent from our results) that
it works for streams with deletions and and negative frequencies. The exact space
bound is

O

(
ε−3(log4 m)(log δ−1)

log m + log n + log ε−1

log ε−1 + log log m

)
,

which is suboptimal in its dependency on ε, and has high cost in terms of log m.
Subsequent to our work, Harvey et al. [Harvey et al. 2008] present an algorithm
in the “sketching model” (permitting deletions and negative frequencies) which
requires space Õ(ε−2 log m).

At the heart of our technique is the idea of identifying and removing any very high
frequency item; similar ideas have been useful in other data stream computations,
such as approximating the frequency moments [Ganguly ].

2. COMPUTING THE ENTROPY OF A STREAM

Consider a data stream A of length m, with mi and n defined as in Definition 1.1.
For a real-valued function f such that f(0) = 0, we define the following notation:

f(A;m) :=
1
m

n∑
i=1

f(mi) .

We base our approach on the method of Alon, Matias and Szegedy [Alon et al.
1999] to estimate quantities of the form f(A;m): note that the empirical entropy
of A is one such quantity with f(mi) = mi log(m/mi).
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Definition 2.1. Let D(A) be the distribution of the random variable R defined
thus: Pick J ∈ [m] uniformly at random and let R = |{j : aj = aJ , J ≤ j ≤
m}|.

The core idea is to space-efficiently generate a random variable R ∼ D(A). For
an integer c, define the random variable

Estf (R, c) :=
1
c

c∑
i=1

Xi , (1)

where the random variables {Xi} are independent and each distributed identically
to (f(R)−f(R−1)). Appealing to Chernoff-Hoeffding bounds one can show that by
increasing c, Estf (R, c) can be made arbitrarily close to f(A;m). This is formalized
in the lemma below.

Lemma 2.2. Let X := f(R)− f(R− 1), a, b ≥ 0 such that −a ≤ X ≤ b, and

c ≥ 3(1 + a/E[X])2ε−2 ln(2δ−1)(a + b)/(a + E[X]) .

Then E[X] = f(A;m) and, if E[X] ≥ 0, the estimator Estf (R, c) gives an (ε, δ)-
approximation to f(A;m) using space c times the space required to maintain R.

Proof. The expectation follows by a simple calculation:

E[X] =
1
m

∑
i∈[n],j∈[mi]

(f(j)− f(j − 1)) =
1
m

∑
i∈[n]

f(mi)− f(0) = f(A;m) .

The claim about the space required to maintain the estimator Estf (R, c) is im-
mediate. So, we focus on the claim about the approximation guarantee of the
estimator.

Consider the random variable Y := (X+a)/(a+b). First note that Y ∈ [0, 1] and
that E[Y ] = (f(A;m)+a)/(a+b). Therefore, the multiplicative Chernoff-Hoeffding
bound implies that, if {Yi} are independent and each distributed identically to Y ,
then

Pr

∣∣∣∣∣∣1c
∑
i∈[c]

Yi −
f(A;m) + a

a + b

∣∣∣∣∣∣ > ε

1 + a/E[X]
f(A;m) + a

a + b


= Pr

∣∣∣∣∣∣1c
∑
i∈[c]

Yi − E[Y ]

∣∣∣∣∣∣ > ε

1 + a/E[X]
E[Y ]


≤ 2 exp

(
−c

(
ε

1 + a/E[X]

)2
f(A;m) + a

3(a + b)

)
≤ δ .

Consequently Est′f (R, c) = c−1
∑

i∈[c] Yi is an (ε/(1+a/E[X]), δ)-approximation
to the quantity (f(A;m)+a)/(a+b). Note that, Est′f (R, c) = (Estf (R, c) + a) /(a+
ACM Journal Name, Vol. V, No. N, Month 20YY.
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b). This implies that,

Pr
[
|Estf (R, c)− f(A;m)| > εf(A;m)

]
= Pr

[∣∣(a + b) Est′f (R, c)− f(A;m)− a
∣∣ > εf(A;m)

]
= Pr

[∣∣∣∣Est′f (R, c)− f(A;m) + a

a + b

∣∣∣∣ > ε

1 + a/E[X]
f(A;m) + a

a + b

]
≤ δ .

Therefore, Estf (R, c) gives an (ε, δ)-approximation to f(A;m) as claimed.

2.1 Overview of the technique

We now give some of the intuition behind our algorithm for estimating H(p). Let A′

denote the substream of A obtained by removing from A all occurrences of the most
frequent token (with ties broken arbitrarily) and let R′ ∼ D(A′). A key component
of our algorithm (see Algorithm 1 below) is a technique to simultaneously maintain
R and enough extra information that lets us recover R′ when we need it. Let
pmax := maxi pi. Let the function λm be given by

λm(x) := x lg(m/x) , where λm(0) := 0 , (2)

so that λm(A;m) = H(p). Define X = λm(R) − λm(R − 1) and X ′ = λm(R′) −
λm(R′ − 1). If pmax is bounded away from 1 then we will show that 1/ E[X] is
“small,” so Estλm(R, c) gives us our desired estimator for a “small” value of c, by
Lemma 2.2. If, on the other hand, pmax > 1

2 then we can recover R′ and can show
that 1/ E[X ′] is “small.” Finally, by our analysis we can show that Estλm(R′, c)
and an estimate of pmax can be combined to give an (ε, δ)-approximation to H(p).
This logic is given in Algorithm 2 below.

Thus, our algorithm must also maintain an estimate of pmax in parallel to Al-
gorithm 1. There are a number of ways of doing this and here we choose to use
the Misra-Gries algorithm [Misra and Gries 1982] with a sufficiently large number
of counters. This (deterministic) algorithm takes a parameter k — the number of
counters — and processes the stream, retaining up to k pairs (i, m̂i), where i is a
token and the counter m̂i is an estimate of its frequency mi. The algorithm starts
out holding no pairs and implicitly setting each m̂i = 0. Upon reading a token, i, if
a pair (i, m̂i) has already been retained, then m̂i is incremented; else, if fewer than
k pairs have been retained, then a new pair (i, 1) is created and retained; else, m̂j is
decremented for each retained pair (j, m̂j) and then all pairs of the form (j, 0) are
discarded. The following lemma summarizes the key properties of this algorithm;
the proof is simple (see, e.g., [Bose et al. 2003]) and we omit it.

Lemma 2.3. The estimates m̂i computed by the Misra-Gries algorithm using k
counters satisfy m̂i ≤ mi and mi − m̂i ≤ (m−mi)/k.

We now describe our algorithm more precisely with some pseudocode. By abuse
of notation we use Estλm(r, c) to also denote the algorithmic procedure of running
in parallel c copies of an algorithm that produces r and combining these results as
in (1).

ACM Journal Name, Vol. V, No. N, Month 20YY.



116 · Amit Chakrabarti et al.

Algorithm 1: Maintain-Samples
(s1, t1, r1)← (0,∞, 0);1

(s0, t0, r0)← (0,∞, 0);2

for a ∈ A do3

Let t be a random number in the range [m3];4

if a = s0 then5

if t < t0 then (s0, t0, r0)← (a, t, 1) else r0 ← r0 + 1;6

else if a 6= s0 then7

if a = s1 then r1 ← r1 + 1;8

if t < t0 then (s1, t1, r1)← (s0, t0, r0); (s0, t0, r0)← (a, t, 1);9

else if t < t1 then (s1, t1, r1)← (a, t, 1)10

Algorithm 2: Entropy-Estimator
c← 16ε−2 ln(2δ−1) lg(me);1

Run the Misra-Gries algorithm on A with k =
⌈
7ε−1

⌉
counters, in2

parallel with Algorithm 1 ;
if Misra-Gries retains a token i with counter m̂i > m/2 then3

(imax, p̂max)← (i, m̂i/m);4

if s0 = imax then r ← r1 else r ← r0 ;5

return (1− p̂max) · Estλm(r, c) + p̂max lg(1/p̂max) ;6

else return Estλm
(r0, c)7

Fig. 1. Algorithms for sampling and estimating entropy.

2.2 Maintaining Samples from the Stream

We show a procedure that allows us to generate R and R′ with the appropriate
distributions. For each token a in the stream, we draw t, a random number in the
range [m3], as its label. We choose to store certain tokens from the stream, along
with their label and the count of the number of times the same token has been
observed in the stream since it was last picked. We store two such tokens: the
token s0 that has achieved the least t value seen so far, and the token s1 such that
it has the least t value of all tokens not equal to s0 seen so far. Let t0 and t1 denote
their corresponding labels, and let r0 and r1 denote their counts in the above sense.
Note that it is easy to maintain these properties as new items arrive in the stream,
as Algorithm 1 illustrates.

Lemma 2.4. Algorithm 1 satisfies the following properties. (i) After processing
the whole stream A, s0 is picked uniformly at random from A and r0 ∼ D(A).
(ii) For a ∈ [n], let A \ a denote the stream A with all occurrences of a removed.
Suppose we set s and r thus: if s0 6= a then s = s0 and r = r0, else s = s1 and
r = r1. Then s is picked uniformly from A \ a and r ∼ D(A \ a).

Proof. To prove (i), note that the way we pick each label t ensures that
(w.h.p.) there are no collisions amongst labels and, conditioned on this, the prob-
ability that any particular token gets the lowest label value is 1/m.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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We show (ii) by reducing to the previous case. Imagine generating the stream
A \a and running the algorithm on it. Clearly, picking the item with the smallest t
value samples uniformly from A\a. Now let us add back in all the occurrences of a
from A. One of these may achieve a lower t value than any item in A \ a, in which
case it will be picked as s0, but then s1 will correspond to the sample we wanted
from A\a, so we can return that. Else, s0 6= a, and is a uniform sample from A\a.
Hence, by checking whether s0 = a or not, we can choose a uniform sample from
A \ a. The claim about the distribution of r is now straightforward: we only need
to observe from the pseudocode that, for j ∈ {0, 1}, rj correctly counts the number
of occurrences of sj in A (equivalently, the number in A \ a) from the time sj was
last picked.

2.3 Analysis of the Algorithm

We now analyse our main algorithm, given in full in Figure 1.

Theorem 2.5. Algorithm 2 uses O(ε−2 log(δ−1) log m(log m + log n)) bits of
space and gives an (ε, δ)-approximation to H(p).

Proof. To argue about the correctness of Algorithm 2, we first look closely at
the Misra-Gries algorithm used within it. By Lemma 2.3, p̂i := m̂i/m is a good
estimate of pi. To be precise, |p̂i − pi| ≤ (1 − pi)/k. Hence, by virtue of the
estimation method, if pi > 2

3 and k ≥ 2, then i must be among the tokens retained
and must satisfy p̂i > 1

2 . Therefore, in this case we will pick imax — the item with
maximum frequency — correctly, and pmax will satisfy

p̂max ≤ pmax and |p̂max − pmax| ≤
1− pmax

k
. (3)

Let A,A′, R, R′, X,X ′ be as before. We break the proof into two cases based on
the value of p̂max.

Case 1: Suppose p̂max ≤ 1
2 . The algorithm then reaches Line 7. By Part (i)

of Lemma 2.4, the returned value is Estλm(R, c). Now (3), together with k ≥ 2,
implies pmax ≤ 2

3 . We lower bound the entropy, H(p), in this case: let Y ∼ p be
a random variable (i.e., Pr[Y = i] = pi), and let S be any subset of indices such
that p(S) :=

∑
i∈S pi satisfies 1

3 ≤ p(S) ≤ 2
3 (given that pmax ≤ 2

3 , such an S is
guaranteed to exist and can be found greedily). Now define the random variable Z
to be 1 if Y ∈ S, and 0 otherwise. We have

H(p) = H(Y ) ≥ H(Z) = − p(S) lg p(S)− (1− p(S)) lg(1− p(S)) > 0.9 .

Further, we can show that − lg e ≤ λm(x)− λm(x− 1) ≤ lg m for 1 ≤ x ≤ m. This
is because

λ′m(x) =
d

dx

(
x lg

(m

x

))
= lg

(m

x

)
− lg e ,

whence λ′m(x)− λ′m(x− 1) = lg(1− 1/x), which shows that λm(x)− λm(x− 1) is
decreasing in the range [1,m]. The maximum value is λm(1) − λm(0) = lg m and
the minimum is λm(m)−λm(m− 1) ≥ λ′m(m) = − lg e. Hence, Lemma 2.2 implies
that c is large enough to ensure that the return value is a ( 3

4ε, δ)-approximation to
H(p).
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Case 2: Suppose p̂max > 1
2 . The algorithm then reaches Line 6. By Part (ii) of

Lemma 2.4, the return value is (1− p̂max) ·Estλm(R′, c) + p̂max lg(1/p̂max), and (3)
implies that pmax > 1

2 . Assume, w.l.o.g., that imax = 1. Then

E[X ′] = λm(A′;m−m1) =
1

m−m1

n∑
i=2

λm(mi) ≥ lg
m

m−m1
≥ 1 ,

where the penultimate inequality follows by convexity arguments. As before, − lg e ≤
λm(x)−λm(x−1) ≤ lg m for 1 ≤ x ≤ m, and hence Lemma 2.2 implies that c is large
enough to ensure that Estλm(R′, c) is a ( 3

4ε, δ)-approximation to λm(A′;m−m1).
Next, we show that p̂1 lg(1/p̂1) is a ( 2

k , 0)-approximation to p1 lg(1/p1), as follows:

|p1 lg(1/p1)− p̂1 lg(1/p̂1)|
p1 lg(1/p1)

≤ |p̂1 − p1|
p1 lg(1/p1)

max
p∈[ 12 ,1]

∣∣∣∣ d

dp
(p lg(1/p))

∣∣∣∣
≤ (1− p1)

k p1 lg(1/p1)
· lg e

≤ 2
k

,

where the final inequality follows from the fact that g(p) := (1 − p)/(p ln(1/p)) is
non-increasing in the interval [ 12 , 1], so g(p) ≤ g( 1

2 ) < 2. To see this, note that
1 − p + ln p ≤ 0 for all positive p and that g′(p) = (1 − p + ln p)/(p ln p)2. Now
observe that

H(p) = (1− p1)λm(A′;m−m1) + p1 lg(1/p1) . (4)
From (3) it follows that (1 − p̂1) is an ( 1

k , 0)-approximation to (1 − p1). Note
that 1

7ε + 3
4ε + 3

28ε2 ≤ ε for ε ≤ 1. Thus, setting k ≥
⌈
7ε−1

⌉
ensures that that

(1 − p̂1) · Estλm(R′, c) is a (ε, δ)-approximation to (1 − p1)λm(A′;m−m1), and
p̂1 lg(1/p̂1) is a (better than) (ε, 0)-approximation to p1 lg(1/p1). Thus, we have
shown that in this case the algorithm returns a (ε, δ)-approximation to H(p), since
both non-negative terms in (4) are approximated with relative error.

The claim about the space usage is straightforward. The Misra-Gries algo-
rithm requires O(k) = O(ε−1) counters and item identifiers. Each run of Algo-
rithm 1 requires O(1) counters, labels, and item identifiers, and there are c =
O(ε−2 log(δ−1) log m) such runs. Everything stored is either a) an item from the
stream, b) a counter that is bounded by m, or c) a label that is bounded by m3,
so the space for each of these is O(log m + log n) bits.

3. EXTENSIONS, VARIATIONS, AND NEAR-OPTIMALITY

3.1 Sliding Window Computation

In many cases it is desirable to compute functions not over the whole semi-infinite
stream, but rather over a sliding window of the last W tokens. Our method accom-
modates such an extension with an O(log2 W ) expansion of space (with high prob-
ability). Formally, define the sliding window count of i as mw

i := |{j : aj = i and
j > m− w}|. The (sliding window) empirical probability is given by pw

i := mw
i /w

and pw := (pw
1 , . . . , pw

n ), and the (sliding window) empirical entropy is H(pw).

Lemma 3.1. We can approximate H(pw) for any w < W in space bounded by
O(ε−2 log(δ−1) log3 W ) machine words with high probability.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Proof. We present an algorithm that retains sufficient information so that, after
observing the stream of values, given w < W we can recover the information that
Algorithm 2 would have stored had only the most recent w values been presented
to it. From this, the correctness follows immediately. Thus, we must be able to
compute sw

0 , rw
0 , sw

1 , rw
1 , iwmax and pw

max, the values of s0, r0, s1, r1, imax and pmax on
the substreams defined by the sliding window specified by w.

For iwmax and pw
max, it is not sufficient to apply standard sliding window frequent

items queries [Arasu and Manku 2004]. To provide the overall accuracy guarantee,
we needed to approximate pw

max with error proportional to ε′(1−pw
max) for a param-

eter ε′. Prior work for estimating frequencies and counts in sliding windows does
not give a sufficiently strong guarantee on the error, so we need to adopt a new
approach. We replace our use of the Misra-Gries algorithm with the Count-Min
sketch [Cormode and Muthukrishnan 2005a]. This is a randomized algorithm that
hashes each input item to O(log δ−1) buckets, and maintains a sum of counts within
each of a total of O(ε−1 log δ−1) buckets. The estimate of the frequency of a given
input token is found by taking the minimum of the counts of the buckets to which
that token has been hashed. If we were able to create a CM-sketch summarizing
just the most recent w tokens, then we would be able to find an (ε, δ) approxima-
tion to (1 − pw

max), and hence also find pw
max with error ε(1 − pw

max). This follows
immediately from the properties of the sketch proved in Theorem 1 of [Cormode
and Muthukrishnan 2005a]. In order to make this valid for arbitrary sliding win-
dows, we replace each counter within the sketch with an Exponential Histogram
or Deterministic Wave data structure [Datar et al. 2002; Gibbons and Tirthapura
2002]. This allows us to (ε, 0) approximate the count of each bucket in the sketch
within the most recent w < W timesteps in space O(ε−1 log2 W ). Combining these
and rescaling ε, one can build an (ε, δ) approximation of (1−pw

max) for any w < W .
The space required for this estimation is O(ε−2 log2 W log δ−1(log m + log n)) bits.

For sw
0 , rw

0 , sw
1 and rw

1 , we can take advantage of the fact that these are defined
by randomly chosen tags tw0 and tw1 , and for any W there are relatively few possible
candidates for all the w < W . Let tj be the random label for the jth item in the
stream. We maintain the following set of tuples,

S0 := {(j, aj , tj , rj) : j = argmin
m−w<i≤m

tj , rj = |{k : ak = aj , k ≥ j}|, w < W} .

This set defines jw
0 = argminm−w<i≤m tj for w < W . We maintain a second set of

tuples,

S1 := {(j, aj , tj , rj) : j = argmin
m−w<i≤m

i 6=jw
0

tj , rj = |{k : ak = aj , k ≥ j}|, w < W} ,

and this set defines jw
1 = argminm−w<i≤m tj for w < W . Note that it is straight-

forward to maintain S0 and S1. Then, for any w < W , we set

(sw
0 , rw

0 )← (ajw
0
, rjw

0
) and (sw

1 , rw
1 )← (ajw

1
, rjw

1
) .

We now bound the sizes of S0 and S1, based on the following fact:

Fact 3.2. Let t = t1 . . . tW be a sequence of W integer labels, each drawn uni-
formly at random such that there are no duplicate values. Define a sequence of
values Ti such that T0 = arg mini{ti} and Tj = arg mini>Tj−1{ti}. This sequence
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terminates when Tj = W . For k such that Tk = W , we have k = O(log W ) with
high probability.

This fact follows from an analysis due to Babcock, Datar and Motwani [Babcock
et al. 2002]: the insight is that if we build a treap over the sequence t and heapify
by the labels, the sequence T0 . . . Tk gives precisely the right spine of the treap.
This approach yields a strong bound on k, since with high probability the height of
a treap with randomly chosen priorities such as these (i.e., a random binary search
tree) is logarithmic.

This fact immediately implies a bound on the size of S0, since S0 exactly cor-
responds to such a derived sequence Ti. Further, we can extend this analysis by
observing that members of S1 correspond to nodes in the treap that are also on
the right spine, are left children of members of S0, or the right descendants of left
children. Thus, if the treap has height h, the size of S1 is O(h2). For windows of
size at most W , the implicit treap has height O(log W ) with high probability.

So with high probability, we need to store a factor of O(log2 W ) more informa-
tion for each instance of the basic estimator. The total space bound is therefore
O(ε−2 log(δ−1) log3 W (log m + log n)) bits, since now the estimator is bounded by
log W rather than log m.

3.2 Efficient Implementation

Observe that a direct implementation of the central algorithm as described in Sec-
tion 2 has a high cost per token, in terms of processing time: we track a number
c of independent samples, and for each new token in the stream we test whether
it is sampled by any copy of the estimator, taking time O(c). However, also note
that as the stream increases in length, it is increasingly unlikely that a new item
will be sampled: over the whole stream, each estimator updates its primary sample
O(log m) times with high probability. This follows by applying Fact 3.2 from above
over a stream indexed in reverse order: for a stream of length m, each chosen sam-
ple has a smaller label than every prior label. So, for the overwhelming majority
of tuples, the decision to sample is negative. In this section, we describe a faster
implementation of our main algorithm that capitalizes on these observations.

3.2.1 Sampling. We adapt an idea from reservoir sampling [Vitter 1985]: when
choosing to sample an item, also determine when the next item will be sampled.
Suppose the random label assigned to an item which is sampled is t. Then for
each new item, we are effectively throwing a biased coin so that with probability
(t − 1)/m3 we choose to sample that item. Thus, the number of tosses (tuples)
before we choose a new item to sample is given by the geometric distribution. So
we can directly draw from this distribution to determine how many items to “skip”
before picking the next. The new label t′ is a uniform random variable over the
range of the random labels, but conditioned on the fact that t′ < t. So t′ can be
chosen uniformly at random from the set [t− 1].

For a “backup sample,” s1, there are two ways that it can be replaced. Either
we sample a new primary item s0, and the old primary item replaces the backup
sample, or else we observe an item not equal to s0 whose random label t satisfies
t0 < t < t1, where t0 and t1 are the tags of the current primary and backup samples,
respectively. The first case can be taken care of whenever the primary sample is
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replaced, as outlined above. The second case can be handled by similar logic: at
each drawing, the probability of the event of the backup sample being replaced is
(t1 − t0 − 1)/m3, and so we can draw from an appropriate geometric distribution
to determine the number of input items not equal to the primary sample that must
be observed before replacing the backup sample, and also draw a new value of the
label.

Algorithm 3: Fast-Maintain-Samples
for i = 1 to m do1

Let a denote the ith token in the stream;2

if a ∈ Dictionary then Increment ca by 1;3

while (Replacement Time of HeapMin of PrimaryHeap = i) do4

/* Replace a primary sample */
Let x = (s0, r0, t0, u0) denote HeapMin of PrimaryHeap;5

Let t be a random uniform number in the range [t0 − 1];6

if s0 6= a then7

/* Primary Sample becomes Backup Sample */
Let y denote the Backup Sample for x;8

Delete y from its Secondary SubHeap, and clean up if SubHeap9

now empty;
Insert (s1 = s0, t1 = t0, r1 = r0, u1 = Geom((t0 − t)/m3) into10

Secondary SubHeap for a as the Backup Sample for x;
if a 6∈ Dictionary then Add a to Dictionary with ca = 111

Update x to (s0 = a, r0 = ca, t0 = t, u0 = Geom(t/m3));12

Heapify PrimaryHeap;13

if (a ∈ SecondaryHeap) then14

/* Delay resampling for backups of a */
Increase Replacement Time of a in Secondary Heap by 1;15

while (Replacement Time of HeapMin of SecondaryHeap = i) do16

/* Replace a backup sample */
if a 6∈ Dictionary then Add a to Dictionary with ca = 1};17

Let y denote the Heap Min of Secondary Heap;18

Let z = (s1, r1, t1, u1) denote the Heap Min of y’s SubHeap;19

Let x = (s0, r0, t0, u0) denote the Primary Sample corresponding to20

y;
Let t be a random uniform number in the range [t0 . . . t1 − 1];21

Update z to (s1 = a, r1 = ca, t1 = t, u1 = Geom((t− t0)/m3);22

Heapify y’s SubHeap;23

Update Replacement time for y based on new HeapMin of SubHeap,24

i, and ca;
Heapify Secondary Heap;25

Fig. 2. Efficient Implementation of the Sampling Procedure.
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3.2.2 Fast Data Structure Maintenance. We next show that we can use these
“waiting times” to more efficiently process the stream. We extend the information
kept about each estimator, so instead of (s, t, r) triples, we now keep (s, t, r, u),
where u is used to track when to update the sample. Firstly, we must maintain
the counts of the sampled items. Note that the same token, a, may be sampled by
multiple independent estimators at different points in the stream. To ensure that
the cost per item in the stream is independent of the number of estimators which
are currently sampling the same item, we keep some additional data structures. We
maintain the set of items that are currently being sampled by any estimator in an
appropriate dictionary structure, along with a counter associated with that item,
ca. When an estimator chooses to sample an item a that is not currently sampled,
it is added to the set, and the counter ca is set to 1. Whenever an estimator chooses
to replace its current sample with an item already in the set, instead of setting its
r value to 1, it sets a variable r′ to the current counter for that item, ca. Whenever
an item a is seen in the stream, we test whether it is in the set of monitored items,
and if so, increment the counter ca. When we come to make an estimate of the
entropy, we can form the value r for each estimate by computing the difference
between the current value of ca and the value r′ of ca when the estimator sampled
a. To maintain space bounds, when a is no longer tracked by any estimator, we
remove a and ca from the dictionary structure.

In order to determine when the waiting time for a particular estimator is met
and we must use the current item in the stream as the new sample, we make use
of heap structures, one for the primary samples, and one for the backup samples.
The primary sample case is the more straightforward: using the above analysis, we
compute the position in the input of the next item to sample for each estimator,
and store these in a heap ordered by times u. At each time step, we test whether
the current item number is equal to the smallest position in the heap. If so, we
update the estimator information (sampled item, random label, count and time to
resample) and heapify. This is repeated, if necessary, until the smallest position in
the heap exceeds the current item number.

To maintain the backup samples, things become more involved. We keep a heap
which contains only one entry for each distinct token a that is a primary sampled
item. The heap key associated with this item is the smallest position at which we
would sample a backup item associated with the primary item, assuming that all
the intermediate items are not equal to that primary item. Thus, when we see an
item a in the stream, we first find if a is in the backup heap, and if so, delay the time
to sampling by one time step (and then heapify). We make use of ca, the number of
copies of a seen in the input while a has been monitored by any estimator to derive
a modified timestep for the stream A \ a, which has all copies of a removed. For
each a in the backup heap, we also store a secondary heap consisting of all backup
items whose primary item is a, ordered by their “resampling” time within A \ a.

The secondary heap of backup samples associated with a gets modified in various
ways: (1) when the resampling time of a backup sample, u, matches the timestamp
within A\a, we remove the minimum value from the heap, re-heapify both the sec-
ondary heap for a and the whole backup heap of heaps (and repeat the resampling
procedure if multiple backup items have the same resampling time); (2) when an
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estimator whose primary sample is a chooses a new backup sample, its resampling
time u is drawn from the appropriate distribution, the appropriate offset in A \ a
is calculated, and a record is inserted into the heap; (3) an item is removed from
the heap, because a primary sample is replaced and the previous primary sample
becomes the new backup sample. In this case, we simply remove the corresponding
entry from the backup heap, and heapify. To ensure space bounds are met, if due
to resampling a secondary heap for a is empty, we delete the empty heap and any
related data. We illustrate this in pseudocode in Figure 2, above (we omit for clar-
ity the details of garbage collecting from the data structure that is needed to ensure
the space bounds.). Here, Geom(p) denotes a sample from a geometric distribution
with probability p.

We claim that this whole procedure still ensures that the algorithm is executed
correctly: if the original version of the algorithm were implemented in parallel, and
made the same decisions about which items to sample, then the same information
(samples and counts) would be computed by both versions. The estimation proce-
dure is as before, however for our estimators, we derive the correct count of each
sampled token s by taking the stored r value and subtracting cs. Next we argue
that the time cost of this implementation is much less than for the original version.

3.2.3 Analysis. The asymptotic space cost is unchanged, since within the var-
ious heaps, each estimator is represented at most a constant number of times, so
the amount of space required is still

O(ε−2 log(δ−1) log m(log m + log n)) bits.

The cost to reflect each update in the sampled token counts is a constant num-
ber of dictionary look-ups to determine whether a is sampled by any primary or
backup samplers, and then a constant amount of work to update counts. This
is a total of O(1) time (expected) if we implement the dictionary structures with
hash tables, plus a heap operation to ensure that the heap condition is met. Over
the course of the execution of algorithm we can bound the total number of times
each estimator updates its primary and backup samples: using a similar argument
to the sliding window analysis above, the primary sample is replaced O(log m)
times with high probability; similarly, the corresponding backup sample is replaced
O(log2 m) times. Each heap operation takes time at most logarithmic in the num-
ber of items stored in a heap, which is bounded by the number of samples, set to
c = O(ε−2 log(δ−1) log m). Hence, we have proved the following theorem.

Theorem 3.3. Algorithm 2 can be implemented such that a length m stream can
be processed in O((m + log3 mε−2 log(δ−1))(log ε−1 + log log δ−1 + log log m)) time.

Observe that even for short streams, the term in log m is dominated by the term
in m, and so we simplify the bound to O(log ε−1+log log δ−1+log log m)) per token
in the stream. The interested reader is referred to http://dimax.rutgers.edu/
∼jthaler/implementation for code of this implementation due to Justin Thaler.
Experiments using this code demonstrate that these asymptotic bounds translate
into high throughput (millions of tokens processed per second), and small space.
They also demonstrate small relative error over a range of entropy values, in com-
parison to prior algorithms which incur higher error when H(p) is small.
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3.3 Extensions to the Technique

We observe that the method we have introduced here, of allowing a sample to be
drawn from a modified stream with an item removed may have other applications.
The method naturally extends to allowing us to specify a set of k items to re-
move from the stream after the fact, by keeping the k + 1 distinct items achieving
the smallest label values. In particular, Lemma 2.4 can be extended to give the
following.

Lemma 3.4. There exists an algorithm using O(k) space, that returns k pairs
(si, ri)i∈[k+1] such that si is picked uniformly at random from A \ {s1, . . . , si−1}
and r ∼ D(A \ {s1, . . . , si−1}). Consequently, given a set S of size less than k and
the output of A it is possible to sample (s, r) such that s is picked uniformly at
random from A \ S and r ∼ D(A \ S).

This may be of use in applications where we can independently identify “junk”
items or other undesirable values which would dominate the stream if not removed.
For example, in the case in which we wish to compute the quantiles of a distribution
after removing the k most frequent items from the distribution. Additionally, the
procedure may have utility in situations where a small fraction of values in the
stream can significantly contribute to the variance of other estimators.

3.4 Near-Optimality: A Lower Bound

We now show that the dependence of the above space bound on ε is nearly tight.
To be precise, we prove the following theorem.

Theorem 3.5. Any one-pass randomized (ε, 1/4)-approximation for H(p) re-
quires Ω(ε−2/ log2(ε−1)) bits of space.

Proof. Let gap-hamdist denote the following (one-way) communication prob-
lem. Alice receives x ∈ {0, 1}N and Bob receives y ∈ {0, 1}N . Alice must send
a message to Bob after which Bob must answer “near” if the Hamming distance
‖x− y‖1 ≤ N/2 and “far” if ‖x− y‖1 ≥ N/2 +

√
N . They may answer arbitrarily

if neither of these two cases hold. The two players may follow a randomized pro-
tocol that must work correctly with probability at least 3

4 . It is known [Indyk and
Woodruff 2003; Woodruff 2004] that gap-hamdist has one-way communication
complexity Ω(N).

We now reduce gap-hamdist to the problem of approximating H(p). Suppose
A is a one-pass algorithm that (ε, δ)-approximates H(p). Let N be chosen such
that ε−1 = 3

√
N(lg N + 1/2) and assume, w.l.o.g., that N is an integer. Alice and

Bob will run A on a stream of tokens from [N ]× {0, 1} as follows. Alice feeds the
stream2 〈(i, xi)〉Ni=1 into A and then sends over the memory contents of A to Bob
who then continues the run by feeding in the stream 〈(i, yi)〉Ni=1. Bob then looks at
the output out(A) and answers “near” if

out(A) < lg N +
1
2

+
1

2
√

N

2Note that in the definition of a stream we considered elements to come from universe [n]. This
definition, and the definition of entropy, trivially extend to other alphabets, in the case [N ]×{0, 1}.
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and answers “far” otherwise. We now prove the correctness of this protocol.
Let d := ‖x − y‖1. Note that the stream constructed by Alice and Bob in the

protocol will have N−d tokens with frequency 2 each and 2d tokens with frequency
1 each. Therefore,

H(p) = (N − d) · 2
2N

lg
2N

2
+ 2d · 1

2N
lg

2N

1
= lg N +

d

N
.

Therefore, if d ≤ N/2, then H(p) ≤ lg N + 1
2 whence, with probability at least 3

4 ,
we will have

out(A) ≤ (1+ε)H(p) ≤
(

1 +
1

3
√

N(lg N + 1/2)

)(
lg N +

1
2

)
< lg N+

1
2
+

1
2
√

N

and Bob will correctly answer “near.” A similar calculation shows that if d ≥ N/2+√
N then, with probability at least 3

4 , Bob will correctly answer “far.” Therefore
the protocol is correct and the communication complexity lower bound implies that
A must use space at least Ω(N) = Ω(ε−2/ log2(ε−1)).

4. HIGHER-ORDER ENTROPY

The kth order entropy is a quantity defined on a sequence that quantifies how easy
it is to predict a character of the sequence given the previous k characters. We
start with a formal definition.

Definition 4.1. For a data stream A = 〈a1, a2, . . . , am〉, with each token aj ∈ [n],
we define

mi1i2...it
:= |{j ≤ m−k : aj−1+l = il for l ∈ [t]}| ; pit|i1,i2,...,it−1 :=

mi1i2...it

mi1i2...it−1

,

for t ∈ [k + 1], i1, i2, . . . , it ∈ [n]. The (empirical) kth order entropy of A is defined
as

Hk(A) := −
∑
i1

pi1

∑
i2

pi2|i1 . . .
∑
ik+1

pik+1|i1...ik
lg pik+1|i1...ik

.

For example, consider the stream A = 〈1, 2, 1, 2, 3, 2〉 and H1. Then

p1 = 2/5; p2 = 2/5; p3 = 1/5; p1|2 = 1/2; p2|1 = 1; p3|2 = 1/2; p2|3 = 1 ,

and p1|1 = p2|2 = p3|3 = p3|1 = p1|3 = 0. Hence,

H1(A) = −2/5× 0− 2/5× (−1)− 1/5× 0 = 2/5 .

Unfortunately, unlike empirical entropy, H0, there is no small space algorithm for
multiplicatively approximating Hk. This is even the case for H1 as substantiated
in the following theorem.

Theorem 4.2. Approximating H1(A) up to any multiplicative error requires
Ω(m/ log m) space.

Proof. Let prefix denote the following (one-way) communication problem.
Alice has a string x ∈ {0, 1}N and Bob has a string y ∈ {0, 1}N ′

with N ′ ≤ N .
Alice must send a message to Bob, and Bob must answer “yes” if y is a prefix of
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x, and “no” otherwise. The one-way probabilistic communication complexity of
prefix is Ω(N/ log N), as the following argument shows. Suppose we could solve
prefix using C bits of communication. Repeating such a protocol O(log N) times
in parallel reduces the probability of failure from constant to O(1/N). But by
posing O(N) prefix queries in response to Alice’s message in this latter protocol,
Bob could learn x with failure probability at most a constant. Therefore, we must
have C log N = Ω(N).

Consider an instance (x, y) of prefix. Let Alice and Bob jointly construct the
stream over universe [N ]× {0, 1},

A = 〈a1, a2, . . . , aN , b1, b2, . . . , bN ′〉 ,

where ai = (i, xi) for i ∈ [N ] and bi = (i, yi) for i ∈ [N ′]. Note that,

H1(A) = −
∑

i

pi

∑
j

pj|i lg pj|i = 0

if x is a prefix of y. But H1(A) 6= 0 if x is not a prefix of y. This reduction proves
that any multiplicative approximation to H1 requires Ω(N/ log N) space, using the
same logic as that in the conclusion of the proof of Theorem 3.5. Since the stream
length m = N + N ′ = Θ(N), this translates to an Ω(m/ log m) lower bound.

Since the above theorem effectively rules out efficient multiplicative approxima-
tion, we now turn our attention to additive approximation. The next theorem (and
its proof) shows how the algorithm in Section 2 gives rise to an efficient algorithm
that additively approximates the kth order entropy.

Theorem 4.3. There exists an O(k2ε−2 log(δ−1) log2 n log2 m)-space algorithm
that returns an estimate H̃k such that |H̃k − Hk(A)| ≤ ε with probability at least
1− δ.

Proof. We first rewrite the kth order entropy as follows.

Hk(A) = −
∑

i1,i2,...,ik+1

pi1pi2|i1 . . . pik+1|i1i2...ik
lg pik+1|i1i2...ik

=
∑

i1,i2,...,ik+1

mi1...ik+1

m− k
lg

mi1...ik

mi1...ik+1

= −
∑

i1,i2,...,ik

mi1...ik

m− k
lg

m− k

mi1...ik

+
∑

i1,i2,...,ik+1

mi1...ik+1

m− k
lg

m− k

mi1...ik+1

= H(pk+1)−H(pk)

where pk is the distribution over nk points with pk
i1i2...ik

= mi1i2...ik
/(m − k) and

pk+1 is the distribution over nk+1 points with pk
i1i2...ik+1

= mi1i2...ik+1/(m − k).
Since H(pk) is less than k lg n, if we approximate it to a multiplicative factor of
at most (1 + ε/(2k lg n)) then we have an additive ε/2 approximation. Appealing
to Theorem 2.5 this can be done in O(k2ε−2 log(δ−1) log2(n) log(m)) space. We
can deal with H(pk+1) similarly and hence we get an ε additive approximation
for Hk(A). Directly implementing these algorithms, we need to store strings of k
characters from the input stream as a single kth order character; for large k, we
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can hash these strings onto the range [m3]. Since there are only m−k substrings of
length k, then there are no collisions in this hashing w.h.p., and the space needed
is only O(log m) bits for each stored item or counter.

5. ENTROPY OF A RANDOM WALK

In Theorem 4.2, we showed that it was impossible to multiplicatively approximate
the first order entropy, H1, of a stream in sub-linear space. In this section we
consider a related quantity HG, the unbiased random walk entropy. This quantity
is identified as a stochastic process of interest [Cover and Thomas 1991]. We will
discuss the nature of the relationship of this entropy to other notions of entropy
after a formal definition.

Definition 5.1. For a data stream A = 〈a1, a2, . . . , am〉, with each token aj ∈ [n],
we define an undirected graph G(V,E) on n vertices, where V = [n] and

E = {{u, v} ∈ [n]2 : u = aj , v = aj+1 for some j ∈ [m− 1]}.

Let di be the degree of node i. Then the unbiased random walk entropy of A is
defined as,

HG :=
1

2|E|
∑
i∈[n]

di lg di .

Consider a stream formed by an unbiased random walk on an undirected graph
G, i.e., if ai = j then ai+1 is uniformally chosen from the dj neighbors of j. Then
HG is the limit of H1(A) as the length of this random walk tends to infinity:

HG =
1

2|E|
∑
i∈[n]

di lg di

= lim
m→∞

∑
i∈[n]

mi

m

∑
j∈[n]

mij

mi
lg

mi

mij

= lim
m→∞

H1(〈a1, a2, . . . , am〉) ,

since limm→∞(mij/mi) = 1/di and limm→∞(mi/m) = di/(2|E|) as the stationary
distribution of a random walk on an undirected graph is (d1/(2|E|), . . . , dn/(2|E|)).
See Section 4.3 of Cover and Thomas [Cover and Thomas 1991], for example, for
more context. We focus on computing HG rather than on computing the entropy of
a sample walk, since this gives greater flexibility: it can be computed on arbitrary
permutations of the edges, for example, and only requires that each edge be observed
at least once.

For the rest of this section it will be convenient to reason about a stream E′ that
can be easily transduced from A. E′ will consist of m− 1, not necessarily distinct,
edges on the set of nodes V = [n], E′ = 〈e1, e2, . . . , em−1〉 where ei = (ai, ai+1) .
We assume that the random walk is long enough to ensure that every edge is visited
at least once, so that E is the set produced by removing all duplicate edges in E′.
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5.1 Overview of the algorithm

Our algorithm uses the standard AMS-Estimator as described in Section 2. How-
ever, because E′ includes duplicate items which we wish to disregard, our basic
estimator is necessarily more complicated. The algorithm combines ideas from
multi-graph streaming [Cormode and Muthukrishnan 2005b] and entropy-norm es-
timation [Chakrabarti et al. 2006] and uses min-wise hashing [Indyk 2001] and
distinct element estimators [Bar-Yossef et al. 2002].

Ideally the basic estimator would sample a node w uniformly from the multi-
set in which each node u occurs du times. Then let r be uniformly chosen from
{1, . . . , dw}. If the basic estimator were to return g(r) = f(r) − f(r − 1) where
f(x) = x lg x then the estimator would be correct in expectation:∑

w∈[n]

dw

2|E|
∑

r∈[dw]

1
dw

(f(r)− f(r − 1)) =
1

2|E|
∑

w∈[n]

dw lg dw .

To mimic this sampling procedure we use an ε-min-wise hash function h [Indyk 2001]
to map the distinct edges in E′ into [m]. It allows us to pick an edge e = (u, v)
(almost) uniformly at random from E by finding the edge e that minimizes h(e).
We pick w uniformly from {u, v}. Note that w has been chosen with probability
proportional to (1 ± ε)dw/(2|E|). Let i = max{j : ej = e} and consider the r
distinct edges among {ei, . . . , em} that are incident on w. Let e1, . . . , edw be the
dw edges that are incident on w and let ik = max{j : ej = ek} for k ∈ [dw]. Then
r is distributed as |{k : ik ≥ i}| and hence takes a value from {1, . . . , dw} with
probability (1± ε)/dw.

Unfortunately we cannot compute r exactly unless it is small. If r ≤ ε−2 then
we maintain an exact count, by keeping the set of distinct edges. Otherwise we
compute an (ε, δ)-approximation of r using a distinct element estimation algorithm,
e.g., [Bar-Yossef et al. 2002]. Note that if this is greater than n we replace the
estimate by n to get a better bound. This will be important when bounding the
maximum value of the estimator. Either way, let this (approximate) count be r̃.
We then return g(r̃). The next lemma demonstrates that using g(r̃) rather than
g(r) only incurs a small amount of additional error.

Lemma 5.2. Assuming ε < 1/4, |g(r)−g(r̃)| ≤ O(ε)g(r) with probability at least
1− δ.

Proof. If r ≤ ε−2, then r = r̃, and the claim follows immediately. Therefore
we focus on the case where r > ε−2. Let r̃ = (1 + γ)r where |γ| ≤ ε. We write g(r)
as the sum of the two positive terms,

g(r) = lg(r − 1) + r lg(1 + 1/(r − 1))

and will consider the two terms in the above expression separately.
Note that for r ≥ 2, r̃−1

r−1 = 1 ± 2ε. Hence, for the first term, and providing the
distinct element estimation succeeds with its accuracy bounds,

| lg(r̃ − 1)− lg(r − 1)| =
∣∣∣∣lg r̃ − 1

r − 1

∣∣∣∣ = O(ε) ≤ O(ε) lg(r − 1) .

where the last inequality follows since r > ε−2, ε < 1/4, and hence lg(r − 1) > 1.
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Note that for r ≥ 2, r lg
(
1 + 1

r−1

)
≥ 1. For the second term,∣∣∣∣r lg

(
1 +

1
r − 1

)
− r̃ lg

(
1 +

1
r̃ − 1

)∣∣∣∣ ≤ |r − r̃| lg
(

1 +
1

r̃ − 1

)
+ r

∣∣∣∣∣lg
(

1 + 1
r−1

1 + 1
r̃−1

)∣∣∣∣∣
≤ O(ε) + O(ε)

≤ O(ε)r lg
(

1 +
1

r − 1

)
.

Hence |g(r)− g(r̃)| ≤ O(ε)g(r) as required.

Theorem 5.3. There exists an (ε, δ)-approximation algorithm for HG using3

O(ε−4 log2 n log2 δ−1) space.

Proof. Consider the expectation of the basic estimator:

E[X] =
∑

w∈[n]

(1±O(ε))dw

2|E|
∑

r∈[dw]

1±O(ε)
dw

(f(r)−f(r−1)) =
1±O(ε)

2|E|
∑

w∈[n]

dw lg dw .

Note that since the graph G is revealed by a random walk, this graph must be
connected. Hence |E| ≥ n−1 and dw ≥ 1 for all w ∈ V . But then

∑
w dw = 2|E| ≥

2(n− 1) and therefore,

1
2|E|

∑
w∈[n]

dw lg dw ≥ lg
2|E|
n
≥ lg 2(1− 1/n) .

The maximum value taken by the basic estimator is,

max[X] ≤ max
1≤r≤n

(f(r)− f(r − 1)) ≤
(

n lg
n

n− 1
+ lg(n− 1)

)
< (2 + lg n) .

Therefore, by appealing to Lemma 2.2, we know that if we take c ≥ 6ε−2(2 +
lg n) ln(2δ−1)/(lg 2(1 − 1/n)) independent copies of this estimator we can get a
(ε, δ)-approximation to E[X]. Hence with probability 1−O(δ), the value returned
is (1±O(ε))HG.

The space bound follows because for each of the O(ε−2 log n log δ−1) basic esti-
mators we require an ε min-wise hash function using O(log n log ε−1) space [Indyk
2001] and a distinct element counter using

O((ε−2 log log n + log n) log δ−1
1 )

space [Bar-Yossef et al. 2002] where δ−1
1 = O(cδ−1). Hence, rescaling ε and δ yields

the required result.

Our bounds are independent of the length of the stream, m, since there are only
n2 distinct edges, and our algorithms are not affected by multiple copies of the
same edge.

Finally, note that our algorithm is actually correct if the multi-set of edges E′

arrives in any order, i.e., it is not necessary that (u, v) is followed by (v, w) for

3Ignoring factors of log log n and log ε−1.
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some w. Hence our algorithm also fits into the adversarial ordered graph stream-
ing paradigm, e.g., [Bar-Yossef et al. 2002; Feigenbaum et al. 2005; Cormode and
Muthukrishnan 2005b].
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