
CS 105: Algorithms (Grad)
Approximation Algorithms (continued) Feb 21, 2005

1 Approximation Algorithms: Vertex Cover

1.1 Introduction to Approximation Algorithms

There are several optimization problems such as Minimum Spanning Tree (MST), Min-Cut, Maximum-
Matching, in which you can solve this exactly and efficiently in polynomial time. But many practical
significant optimization problems are NP-Hard, in which we are unlikely to find an algorithm that
solve the problem exactly in polynomial time. Examples of the standard NP-Hard problems with
some of their brief description are as following:

• Traveling Salesman Problem (TSP) - finding a minimum cost tour of all cities

• Vertex Cover - find minimum set of vertex that covers all the edges in the graph (we will
describe this in more detail)

• Max Clique

• Set Cover - find a smallest size cover set that covers every vertex

• Shortest Superstring - given a set of string, find a smallest subset of strings that contain
specified words

These are NP-Hard problems, i.e., If we could solve any of these problems in polynomial time, then
P = NP. An example of problem that is not known to be either NP-Hard: Given 2 graphs of n
vertices, are they the same up to permutation of vertices? This is called Graph Isomorphism. As
of now, there is no known polynomial exact algorithm for NP-Hard problems. However, it may be
possible to find a near-optimal solutions in polynomial time. An algorithm that runs in polynomial
time and outputs a solution close to the optimal solution is called an approximation algorithm. We
will explore polynomial-time approximation algorithms for several NP-Hard problem.

Definition: Let P be a minimization problem, and I be an instance of P . Let A be an algorithm
that finds feasible solution to instances of P . Let A(I) is the cost of the solution returned by A for
instance I, and OPT (I) is the cost of the optimal solution (mimimum) for I. Then, A is said to
be an α-approximation algorithm for P if

∀I,
A(I)

OPT (I)
≤ α (1)

where α ≥ 1. Notice that since this is a minimum optimization problem A(I) ≥ OPT (I). There-
fore, 1-approximation algorithm produces an optimal solution, an an approximation algorithm with
a large α may return a solution that is much worse than optimal. So the smaller α is, the better
quality of the approximation the algorithm produces.
For instance size n, the most common approximation classes are:

α = O(nc) for c < 1, e.g. Clique.

α = O(log n), e.g. Set Cover.

α = O(1), e.g. Vertex Cover.

Page 1 of 7

CS 105: Algorithms (Grad)
Approximation Algorithms (continued) Feb 21, 2005

α = 1 + ε, ∀ε > 0, this is called Polynomial-time Approximation Scheme (PTAS), e.g. certain
scheduling problems.

α = 1 + ε in time that is polynomial in (n, 1
ε), this is called Fully Polynomial-time approximation

Scheme (FPTAS), e.g. Knapsack, Subset Sum.

Now, let us consider an approximation algorithm for NP-Hard problem, Vertex Cover.

1.2 Approximation Algorithm for Vertex Cover

Given a G = (V,E), find a minimum subset C ⊆ V , such that C “covers” all edges in E, i.e., every
edge ∈ E is incident to at least one vertex in C.

Figure 1: An instance of Vertex Cover problem. An optimal vertex cover is {b, c, e, i, g}.

Algorithm 1: Approx-Vertex-Cover(G)

C←∅1

while E 6= ∅2

pick any {u, v} ∈ E

C ← C ∪ {u, v}
delete all eges incident to either u or v

return C

As it turns out, this is the best approximation algorithm known for vertex cover. It is an open
problem to either do better or prove that this is a lower bound.

Observation: The set of edges picked by this algorithm is a matching, no 2 edges touch each other
(edges disjoint). In fact, it is a maximal matching. We can then have the following alternative
description of the algorithm as follows.

Find a maximal matching M
Return the set of end-points of all edges ∈M .

Page 2 of 7

CS 105: Algorithms (Grad)
Approximation Algorithms (continued) Feb 21, 2005

1.3 Analysis of Approximation Algorithm for VC

Claim 1: This algorithm gives a vertex cover
Proof: Every edge ∈ M is clearly covered. If an edge, e /∈ M is not covered, then M ∪ {e} is a
matching, which contradict to maximality of M . �

Claim 2: This vertex cover has size ≤ 2×minimum size (optimal solution)
Proof:

Figure 2: Another instance of Vertex Cover and its optimal cover shown in blue squares

The optimum vertex cover must cover every edge in M . So, it must include at least one of the
endpoints of each edge ∈ M , where no 2 edges in M share an endpoint. Hence, optimum vertex
cover must have size

OPT (I) ≥ |M |

But the algorithm A return a vertex cover of size 2|M |, so ∀I we have

A(I) = 2|M | ≤ 2×OPT (I)

implying that A is a 2-approximation algorithm. �

We know that the optimal solution is intractable (otherwise we can probably come up with an
algorithm to find it). Thus, we cannot make a direct comparison between algorithm A’s solution
and the optimal solution. But we can prove Claim 2 by making indirect comparisons of A’s solution
and the optimal solution with the size of the maximal matching, |M |. We often use this technique
for approximation proofs for NP-Hard problems, as you will see later on.

But is α = 2 a tight bound for this algorithm? Is it possible that this algorithm can do better than
2-approximation? We can show that 2-approximation is a tight bound by a tight example:
Tight Example: Consider a complete bipartite graph of n black nodes on one side and n red
nodes on the other side, denoted Kn,n.
Notice that size of any maximal matching of this graph equals n,

|M | = n

Page 3 of 7

CS 105: Algorithms (Grad)
Approximation Algorithms (continued) Feb 21, 2005

Figure 3: Kn,n- complete bipartite graph

so the Approx-Vertex-Cover(G) algorithm returns a cover of size 2n.

A(Kn,n) = 2n

But, clearly the optimal solution = n.

OPT (Kn,n) = n

Note that a tight example needs to have arbitrarily large size in order to prove tightness of analysis,
otherwise we can just use brute force for small graphs and A for large ones to get an algorithm
that avoid that tight bound. Here, it shows that this algorithm gives 2-approximation no matter
what size n is.

2 Approximation Algorithms: Traveling Salesman Problem

2.1 Last time: α-approximation algorithms

Definition: For a minimization (or maximization) problem P , A is an α-approximation algorithm
if for every instance I of P , A(I)

OPT(I) ≤ α (or OPT(I)
A(I) ≤ α).

Last time we saw a 2-approximation for Vertex Cover [CLRS 35.1]. Today we will see a 2-
approximation for the Traveling Salesman Problem (TSP) [CLRS 35.2].

2.2 Definition

A salesman wants to visit each of n cities exactly once each, minimizing total distance travelled,
and returning to the starting point.

Traveling Salesman Problem (TSP).
Input: a complete, undirected graph G = (V,E), with edge weights (costs) w : E −→ R+, and

where |V | = n.
Output: a tour (cycle that visits all n vertices exactly once each, and returning to starting

vertex) of minimum cost.

Page 4 of 7

CS 105: Algorithms (Grad)
Approximation Algorithms (continued) Feb 21, 2005

2.3 Inapproximability Result for General TSP

Theorem: For any constant k, it is NP-hard to approximate TSP to a factor of k.

Proof: Recall that Hamiltonian Cycle (HC) is NP-complete (Sipser). The definition of HC is as
follows.

Input: an undirected (not necessarily complete) graph G = (V,E).
Output: YES if G has a Hamiltonian cycle (or tour, as defined above), NO otherwise.

Suppose A is a k-approximation algorithm for TSP. We will use A to solve HC in polynomial time,
thus implying P = NP.

w() = 1

w() = L

Figure 4: Example of construction of G′ from G for HC-to-TSP-approximation reduction.

Given the input G = (V,E) to HC, we modify it to construct the graph G′ = (V ′, E′) and weight
function w as input to A as follows (Figure 4). Let all edges of G have weight 1. Complete the
resulting graph, letting all new edges have weight L for some large constant L. The algorithm for
HC is then:

Algorithm 2: HC-Reduction(G)

Construct G′ as described above.1

if A(G′) returns a ‘small’ cost tour (≤ kn) then2

return YES3

if A(G′) returns a ‘large’ cost tour (≥ L) then4

return NO5

It then remains to choose our constant L ≥ kn, to ensure that the 2 cases are clearly differentiated.
�

2.4 Approximation Algorithm for Metric TSP

Definition. A metric space is a pair (S, d), where S is a set and d : S2 −→ R+ is a distance
function that satisfies, for all u, v, w ∈ S, the following conditions.

1. d(u, v) = 0

2. d(u, v) = d(v, u)

Page 5 of 7

CS 105: Algorithms (Grad)
Approximation Algorithms (continued) Feb 21, 2005

3. d(u, v) + d(v, w) ≥ d(u, w) (triangle inequality)

For a complete graph G = (V,E) with cost c : E −→ R+, we say “the costs form a metric space”
if (V, ĉ) is a metric space, where ĉ(u, v) := c({u, v}).

Given this restriction (in particular, the addition of the triangle inequality condition), we have the
following simple approximation algorithm for TSP.

Algorithm 3: MetricTSPApprox(G)

Compute a weighted MST of G.1

Root MST arbitrarily and traverse in pre-order: v1, v2, . . . , vn.2

Output tour: v1 → v2 → · · · → vn → v1.3

1

2
3

4

5

6 7

8

9

10

11
12

13 14

15

16

17

Figure 5: Example MST, where the output tour would be 1→ 2→ · · · → 17→ 1.

2.5 Analysis of Approximation Algorithm for Metric TSP

On an instance I of TSP, let us compare A(I) to OPT(I), via the intermediate value MST(I) (the
weight of the MST).

Claim: Comparing A(I) to MST(I): A(I) ≤ 2×MST(I).
Proof: Let σ be a full walk along the MST in pre-order (that is, we revisit vertices as we backtrack
through them). In Figure 5, σ would be the path along all the arrows, wrapping around the
entire MST, namely, 1 → 2 → 1 → 3 → 4 → 5 → 4 → 6 → 4 → · · · → 1. It is clear that
cost(σ) = 2 ×MST(I). Now, the tout output by A is a subsequence of the full walk σ, so by the
triangle inequality:

A(I) ≤ cost(σ) = 2×MST(I)

proving our claim. �

Claim: Comparing OPT(I) to MST(I): OPT(I) ≥ MST(I).
Proof: Let σ∗ be an optimum tour, that is, cost(σ∗) = OPT(I). Deleting an edge from σ∗ results
in a spanning tree T , whose cost by definition is cost(T) ≥ MST(I). Hence,

OPT(I) = cost(σ∗) ≥ cost(T) ≥ MST(I)

Page 6 of 7

CS 105: Algorithms (Grad)
Approximation Algorithms (continued) Feb 21, 2005

as required. �

Combining these 2 claims, we get:

A(I) ≤ 2×MST(I) ≤ 2×OPT(I)

Hence, A is a 2-approximation algorithm for (Metric) TSP.

2.6 Concluding Remarks

It is possible (and relatively easy) to improve the approximation factor to 3/2 for Metric TSP. Note
that in the original wording of the problem, with the salesman touring cities, the cost (distance)
function is in fact even more structured than just a metric. Here, we have Euclidean distance, and
as it turns out, this further restriction allows us to get a PTAS, although this is a more difficult
algorithm.

Page 7 of 7

