
D
RA

FTData Stream Algorithms

Lecture Notes

Amit Chakrabarti
Dartmouth College

Latest Update: March 7, 2024

D
RA

FTPreface
This book grew out of lecture notes for offerings of a course on data stream algorithms
at Dartmouth, beginning with a first offering in Fall 2009. Its primary goal is to be a
resource for students and other teachers of this material. The choice of topics reflects
this: the focus is on foundational algorithms for space-efficient processing of massive
data streams. I have emphasized algorithms that are simple enough to permit a clean and
fairly complete presentation in a classroom, assuming not much more background than an
advanced undergraduate student would have. Where appropriate, I have provided pointers to
more advanced research results that achieve improved bounds using heavier technical machinery.

I would like to thank the many Dartmouth students who took various editions of my course, as
well as researchers around the world who told me that they had found my course notes useful.
Their feedback inspired me to make a book out of this material. I thank Suman Kalyan Bera,
Sagar Kale, and Jelani Nelson for numerous comments and contributions. Of special note are
the 2009 students whose scribing efforts got this book started: Radhika Bhasin, A. Cherne,
Robin Chhetri, Joe Cooley, Jon Denning, Alina Djamankulova, Ryan Kingston, Ranganath
Kondapally, Adrian Kostrubiak, Konstantin Kutzkow, Aarathi Prasad, Priya Natarajan, and
Zhenghui Wang.

Amit Chakrabarti
April 2020

D
RA

FT

Contents

0 Preliminaries: The Data Stream Model 6
0.1 The Basic Setup . 6

0.2 The Quality of an Algorithm’s Answer . 6

0.3 Variations of the Basic Setup . 7

0.4 Randomization and Hashing . 7

1 Finding Frequent Items Deterministically 10
1.1 The Problem . 10

1.2 Frequency Estimation: The Misra–Gries Algorithm . 10

1.3 Analysis of the Algorithm . 11

1.4 Finding the Frequent Items . 12

Exercises . 12

2 Estimating the Number of Distinct Elements 13
2.1 The Problem . 13

2.2 The Tidemark Algorithm . 13

2.3 The Quality of the Algorithm’s Estimate . 14

2.4 The Median Trick . 15

Exercises . 15

3 A Better Estimate for Distinct Elements 17
3.1 The Problem . 17

3.2 The BJKST Algorithm . 17

3.3 Analysis: Space Complexity . 18

3.4 Analysis: The Quality of the Estimate . 18

3.5 Optimality . 19

Exercises . 19

4 Approximate Counting 21
4.1 The Problem . 21

2

D
RA

FT

CONTENTS
Dartmouth: CS 35/135

Data Stream Algorithms

4.2 The Algorithm . 21

4.3 The Quality of the Estimate . 22

4.4 The Median-of-Means Improvement . 23

Exercises . 24

5 Finding Frequent Items via (Linear) Sketching 25
5.1 The Problem . 25

5.2 Sketches and Linear Sketches . 25

5.3 CountSketch . 26

5.3.1 The Quality of the Basic Sketch’s Estimate . 26

5.3.2 The Final Sketch . 27

5.4 The Count-Min Sketch . 28

5.4.1 The Quality of the Algorithm’s Estimate . 28

5.5 Comparison of Frequency Estimation Methods . 29

Exercises . 30

6 Estimating Frequency Moments 31
6.1 Background and Motivation . 31

6.2 The (Basic) AMS Estimator for Fk . 31

6.3 Analysis of the Basic Estimator . 32

6.4 The Final Estimator and Space Bound . 34

6.4.1 The Soft-O Notation . 34

7 The Tug-of-War Sketch 35
7.1 The Basic Sketch . 35

7.1.1 The Quality of the Estimate . 36

7.2 The Final Sketch . 36

7.2.1 A Geometric Interpretation . 36

Exercises . 37

8 Estimating Norms Using Stable Distributions 38
8.1 A Different ℓ2 Algorithm . 38

8.2 Stable Distributions . 39

8.3 The Median of a Distribution and its Estimation . 40

8.4 The Accuracy of the Estimate . 40

8.5 Annoying Technical Details . 41

9 Sparse Recovery 42
9.1 The Problem . 42

9.2 Special case: 1-sparse recovery . 42

9.3 Analysis: Correctness, Space, and Time . 43

9.4 General Case: s-sparse Recovery . 44

3

D
RA

FT

CONTENTS
Dartmouth: CS 35/135

Data Stream Algorithms

Exercises . 46

10 Weight-Based Sampling 47
10.1 The Problem . 47

10.2 The ℓ0-Sampling Problem . 48

10.2.1 An Idealized Algorithm . 48

10.2.2 The Quality of the Output . 49

10.3 ℓ2 Sampling . 50

10.3.1 An ℓ2-sampling Algorithm . 50

10.3.2 Analysis: . 50

11 Finding the Median 53
11.1 The Problem . 53

11.2 Preliminaries for an Algorithm . 53

11.3 The Munro–Paterson Algorithm . 55

11.3.1 Computing a Core . 55

11.3.2 Utilizing a Core . 55

11.3.3 Analysis: Pass/Space Tradeoff . 55

Exercises . 57

12 Geometric Streams and Coresets 58
12.1 Extent Measures and Minimum Enclosing Ball . 58

12.2 Coresets and Their Properties . 58

12.3 A Coreset for MEB . 59

12.4 Data Stream Algorithm for Coreset Construction . 60

Exercises . 61

13 Metric Streams and Clustering 62
13.1 Metric Spaces . 62

13.2 The Cost of a Clustering: Summarization Costs . 63

13.3 The Doubling Algorithm . 63

13.4 Metric Costs and Threshold Algorithms . 65

13.5 Guha’s Cascading Algorithm . 65

13.5.1 Space Bounds . 66

13.5.2 The Quality of the Summary . 66

Exercises . 67

14 Graph Streams: Basic Algorithms 68
14.1 Streams that Describe Graphs . 68

14.1.1 Semi-Streaming Space Bounds . 69

14.2 The Connectedness Problem . 69

14.3 The Bipartiteness Problem . 69

4

D
RA

FT

CONTENTS
Dartmouth: CS 35/135

Data Stream Algorithms

14.4 Shortest Paths and Distance Estimation via Spanners . 70

14.4.1 The Quality of the Estimate . 71

14.4.2 Space Complexity: High-Girth Graphs and the Size of a Spanner 71

Exercises . 72

15 Finding Maximum Matchings 73
15.1 Preliminaries . 73

15.2 Maximum Cardinality Matching . 73

15.3 Maximum Weight Matching . 74

Exercises . 76

16 Graph Sketching 77
16.1 The Value of Boundary Edges . 77

16.1.1 Testing Connectivity Using Boundary Edges . 77

16.1.2 Testing Bipartiteness . 78

16.2 The AGM Sketch: Producing a Boundary Edge . 79

17 Counting Triangles 81
17.1 A Sampling-Based Algorithm . 81

17.2 A Sketch-Based Algorithm . 82

Exercises . 82

18 Communication Complexity and a First Look at Lower Bounds 83
18.1 Communication Games, Protocols, Complexity . 83

18.2 Specific Two-Player Communication Games . 84

18.2.1 Definitions . 84

18.2.2 Results and Some Proofs: Deterministic Case . 85

18.2.3 More Proofs: Randomized Case . 86

18.3 Data Streaming Lower Bounds . 88

18.3.1 Lower Bound for Majority . 88

18.3.2 Lower Bound for Frequency Estimation . 89

Exercises . 89

19 Further Reductions and Lower Bounds 90
19.1 The Importance of Randomization . 90

19.2 Multi-Pass Lower Bounds for Randomized Algorithms . 91

19.2.1 Graph Problems . 91

19.2.2 The Importance of Approximation . 92

19.3 Space versus Approximation Quality . 92

Exercises . 92

5

D
RA

FT
Unit 0
Preliminaries: The Data Stream Model

0.1 The Basic Setup

In this book, we are concerned with algorithms that compute some function of a massively long input stream σ . In the
most basic model (which we shall call the vanilla streaming model), this is formalized as a sequence σ = ⟨a1,a2, . . . ,am⟩,
where the elements of the sequence, called tokens, are drawn from the universe [n] := {1,2, . . . ,n}. Note the two
important size parameters: the stream length, m, and the universe size, n. If you read the literature in the area, you will
notice that some authors interchange these two symbols. Throughout this book, we shall consistently use m and n as we
have just defined them.

Our central goal will be to process the input stream using a small amount of space s, i.e., to use s bits of random-
access working memory. Since m and n are to be thought of as “huge,” we want to make s much smaller than these;
specifically, we want s to be sublinear in both m and n. In symbols, we want

s = o(min{m,n}) . (0.1)

The holy grail is to achieve
s = O(logm+ logn) (0.2)

because this amount of space is what we need to store a constant number of tokens from the stream and a constant
number of counters that can count up to the length of the stream. Sometimes we can only come close and achieve a
space bound of the form s = polylog(min{m,n}), where f (n) = polylog(g(n)) means that there exists a constant c > 0
such that f (n) = O((logg(n))c).

The reason for calling the input a stream is that we are only allowed to access the input in “streaming fashion.” That
is, we do not have random access to the tokens and we can only scan the sequence in the given order. We do consider
algorithms that make p passes over the stream, for some “small” integer p, keeping in mind that the holy grail is to
achieve p = 1. A streaming algorithm is one that accesses its input in streaming fashion, possibly using multiple passes.
As we shall see, in our first few algorithms, we will be able to do quite a bit in just one pass.

For a streaming algorithm to be practical, we will want it to process each token quickly. However, in this book, we
will focus primarily on space complexity and not time complexity. As it turns out, most of our algorithms use very
simple computations, as a result of which they naturally have low time complexity.

0.2 The Quality of an Algorithm’s Answer

The function we wish to compute—φ(σ), say—is often real-valued. We shall typically seek to compute only an
estimate or approximation of the true value of φ(σ), because many basic functions can provably not be computed

6

D
RA

FT

UNIT 0. PRELIMINARIES: THE DATA STREAM MODEL
Dartmouth: CS 35/135

Data Stream Algorithms

exactly using sublinear space. For the same reason, we shall often allow randomized algorithms than may err with some
small, but controllable, probability. This motivates the following basic definition.

Definition 0.2.1 (Estimation). Let A (σ) denote the output of a randomized streaming algorithm A on input σ ; note
that this is a random variable. Let φ be the real-valued function that A is supposed to compute. We say that the
algorithm (ε,δ)-estimates φ if we have

Pr
[∣∣∣∣A (σ)

φ(σ)
−1
∣∣∣∣> ε

]
≤ δ .

Notice that the above definition insists on a multiplicative approximation. This is sometimes too strong a condition
when the value of φ(σ) can be close to, or equal to, zero. Therefore, for some problems, we might instead seek an
additive approximation, as defined below.

Definition 0.2.2 (Additive estimation). In the above setup, the algorithm A is said to (ε,δ)+-estimate φ if we have

Pr [|A (σ)−φ(σ)|> ε]≤ δ .

We have mentioned that certain things are provably impossible in sublinear space. Towards the end of the book, we
shall study how to prove such impossibility results. Such impossibility results, also called lower bounds, are a rich field
of study in their own right; this book will only scratch the surface.

0.3 Variations of the Basic Setup

Quite often, the function we are interested in computing is some statistical property of the multiset of items in the input
stream σ . This multiset can be represented by a frequency vector fff = (f1, f2, . . . , fn), where

f j = |{i : ai = j}|= number of occurrences of j in σ .

In other words, σ implicitly defines this vector fff , and we are then interested in computing some function of the form
Φ(fff). While processing the stream, when we scan a token j ∈ [n], the effect is to increment the frequency f j. Thus, σ

can be thought of as a sequence of update instructions, updating the vector fff .

With this in mind, it is interesting to consider more general updates to fff : for instance, what if items could both
“arrive” and “depart” from our multiset, i.e., if the frequencies f j could be both incremented and decremented, and by
variable amounts? This leads us to the turnstile model, in which the tokens in σ belong to [n]×{−L, . . . ,L}, interpreted
as follows:

Upon receiving token ai = (j,c) , update f j← f j + c .

Naturally, the vector fff is assumed to start out at 0. In this generalized model, it is natural to change the role of the
parameter m: instead of the stream’s length, it will denote the maximum number of items in the multiset at any point of
time. More formally, we require that, at all times, we have

∥ fff∥1 = | f1|+ · · ·+ | fn| ≤ m .

A special case of the turnstile model, that is sometimes important to consider, is the strict turnstile model, in which
we assume that fff ≥ 0 at all times. A further special case is the cash register model, where we only allow positive
updates: i.e., we require that every update (j,c) have c > 0.

0.4 Randomization and Hashing

As noted above, many of the algorithms we will study are randomized. Their analysis often uses tail bounds for random
variables. There are three especially important tail bounds that are ubiquitous in computer science and we recall them
below.

In what follows, let X be a random variable and t > 0 be a threshold parameter.

7

D
RA

FT

UNIT 0. PRELIMINARIES: THE DATA STREAM MODEL
Dartmouth: CS 35/135

Data Stream Algorithms

Theorem 0.4.1 (Markov bound or Markov’s Inequality). If X ≥ 0, then P{X ≥ t} ≤ EX/t.

Proof. By the law of total expectation, EX = P{X < t}·E(X | X < t)+P{X ≥ t}·E(X | X ≥ t)≥ 0+P{X ≥ t}· t.

Theorem 0.4.2 (Chebyshev bound or Chebyshev’s Inequality). P{|X−EX | ≥ t} ≤ (VarX)/t2.

Proof. By the Markov bound, P{(X−EX)2 ≥ t2} ≤ E(X−EX)2/t2 = (VarX)/t2.

The third “bound” is in fact a family of related bounds, known variously as Chernoff bounds, Hoeffding bounds, or
Chernoff–Hoeffding inequalities. It can be applied whenever we have a sum X = Y1 + · · ·+Yn of independent random
variables Yi, each bounded in a finite interval. In its most basic form, the Yi variables are i.i.d. (meaning “independent
and identically distributed”) indicator variables, so the sum follows a binomial distribution. The Chernoff bound then
says that the probability that X deviates from its expectation falls off “exponentially fast.” That’s not precise, of course,
but here’s a precise and more general statement.

Theorem 0.4.3 (Chernoff-Hoeffding bounds). Let X = Y1 + · · ·+Yn, where each Yi is a random variable taking values
in [0,1] and the variables {Yi} are mutually independent. Then the following bounds hold.

P{X > (1+ t)EX} ≤ (et/(1+ t)1+t)EX ; (0.3)

P{X < (1− t)EX} ≤ (e−t/(1− t)1−t)EX ; (0.4)

P{X > (1+ t)EX} ≤ exp(− 1
3 t2EX) ; (0.5)

P{X < (1− t)EX} ≤ exp(− 1
2 t2EX) ; (0.6)

P{X > EX + t} ≤ exp(−2t2/n) ; (0.7)

P{X < EX− t} ≤ exp(−2t2/n) . (0.8)

The asymmetry between eq. (0.5) and eq. (0.6) is not a typo!

There is a further generalization of these bounds that one often needs in practice, because we might not know EX
exactly but only have bound(s) on it.

Theorem 0.4.4 (More general Chernoff-Hoeffding bounds). Let X be as above and let µL,µH be real numbers such
that µL ≤ EX ≤ µH . Then the following bounds hold.

P{X > (1+ t)µH} ≤ exp(− 1
3 t2

µH) ; (0.9)

P{X < (1− t)µL} ≤ exp(− 1
2 t2

µL) ; (0.10)

P{X > µH + t} ≤ exp(−2t2/n) ; (0.11)

P{X < µL− t} ≤ exp(−2t2/n) . (0.12)

We won’t prove these bounds here, but it’s worth noting that they do follow from the Markov bound applied to the
random variable eλX , where λ is a free parameter, followed by some algebraic manipulation and analytic reasoning. If
you’d like to see proofs, the book by Dubhashi and Panconesi [DP09] is recommended.

In designing algorithms, especially ones handling a massive amount of data, randomization is often used to pick
a random sample of some large set. A different way of using randomization is to “hash” the elements of a set (by
applying a “hash function”) and work with the resulting hash values, which, being random, behave more predictably
than the original set. In practice, there are several different recipes for constructing such hash functions. For theoretical
analysis, as done in this book, we’ll want hash functions that have certain precise mathematical properties, such as the
ones satisfied by universal hashing.

The term “hash function” has no formal meaning; strictly speaking, one should say “family of hash functions”
or “hash family.” Let X and Y be finite sets and let Y X denote the set of all functions from X to Y . Each such
function h hashes a domain element x ∈X to a hash value y = h(x) ∈ Y . If h is picked uniformly at random from
Y X (we denote this as h ∈R Y X), then such hash values are fully independent. However, Y X is a very large family
and there is neither a succinct representation nor an efficient algorithm for computing h(x) if h ∈R Y X . This motivates
the following definitions.

8

D
RA

FT

UNIT 0. PRELIMINARIES: THE DATA STREAM MODEL
Dartmouth: CS 35/135

Data Stream Algorithms

Definition 0.4.5 (Universal hashing). A family H ⊆ Y X is said to be 2-universal if the following property holds,
with h ∈R H :

∀x,x′ ∈X ∀y,y′ ∈ Y

(
x ̸= x′ ⇒ P

{
h(x) = y∧h(x′) = y′

}
=

1
|Y |2

)
.

More generally, H is said to be k-universal if, for every k distinct elements x1, . . . ,xk ∈X , upon picking h ∈R H , the
k-tuple (h(x1), . . . ,h(xk)), is uniformly distributed in Y k.

The literature has a few different ways of talking about such hash families. Several authors call such families
“pairwise independent” and “k-wise independent” respectively. The originators of the concepts [CW79, WC79] called
them “strongly universal2” and “strongly universalk” respectively. Many authors use “universal hash family” to mean a
family H that satisfies a weaker property, namely that for all distinct x,x′ ∈X , one has P{h(x) = h(x′)} ≤ 1/|Y |. In
this book, we’ll be using the term “k-universal” exactly as in Definition 0.4.5.

9

D
RA

FT
Unit 1
Finding Frequent Items Deterministically

Our study of data stream algorithms begins with statistical problems: the input stream describes a multiset of items and
we would like to be able to estimate certain statistics of the empirical frequency distribution (see Section 0.3). We shall
study a number of such problems over the next several units. In this unit, we consider one such problem that admits a
particularly simple and deterministic (yet subtle and powerful) algorithm.

1.1 The Problem

We are in the vanilla streaming model. We have a stream σ = ⟨a1, . . . ,an⟩, with each ai ∈ [n], and this implicitly defines
a frequency vector fff = (f1, . . . , fn). Note that f1 + · · ·+ fn = m.

In the MAJORITY problem, our task is as follows. If ∃ j : f j > m/2, then output j, otherwise, output “⊥”.

This can be generalized to the FREQUENT problem, with parameter k, as follows: output the set { j : f j > m/k}.
In this unit, we shall limit ourselves to deterministic algorithms for this problem. If we further limit ourselves to

one-pass algorithms, even the simpler problem, MAJORITY, provably requires Ω(min{m,n}) space. However, we shall
soon give a one-pass algorithm—the Misra–Gries Algorithm [MG82]—that solves the related problem of estimating
the frequencies f j. As we shall see,

1. the properties of Misra–Gries are interesting in and of themselves, and

2. it is easy to extend Misra–Gries, using a second pass, to then solve the FREQUENT problem.

Thus, we now turn to the FREQUENCY-ESTIMATION problem. The task is to process σ to produce a data structure
that can provide an estimate f̂a for the frequency fa of a given token a ∈ [n]. Note that the query a is given to us only
after we have processed σ . This problem can also be thought of as querying the frequency vector fff at the point a, so it
is also known as the POINT-QUERY problem.

1.2 Frequency Estimation: The Misra–Gries Algorithm

As with all one-pass data stream algorithms, we shall have an initialization section, executed before we see the stream,
a processing section, executed each time we see a token, and an output section, where we answer question(s) about the
stream, perhaps in response to a given query.

This algorithm (see Algorithm 1) uses a parameter k that controls the quality of the answers it gives. (Looking
ahead: to solve the FREQUENT problem with parameter k, we shall run the Misra–Gries algorithm with parameter k.) It
maintains an associative array, A, whose keys are tokens seen in the stream, and whose values are counters associated
with these tokens. We keep at most k−1 counters at any time.

10

D
RA

FT

UNIT 1. FINDING FREQUENT ITEMS DETERMINISTICALLY
Dartmouth: CS 35/135

Data Stream Algorithms

Algorithm 1 The Misra–Gries frequency estimation algorithm
Initialize:

1: A← (empty associative array)

Process (token j) :
2: if j ∈ keys(A) then
3: A[j]← A[j]+1
4: else if |keys(A)|< k−1 then
5: A[j]← 1
6: else
7: foreach ℓ ∈ keys(A) do
8: A[ℓ]← A[ℓ]−1
9: if A[ℓ] = 0 then remove ℓ from A

Output (query a) :
10: if a ∈ keys(A) then report f̂a = A[a] else report f̂a = 0

1.3 Analysis of the Algorithm

To process each token quickly, we could maintain the associative array A using a balanced binary search tree. Each key
requires ⌈logn⌉ bits to store and each value requires at most ⌈logm⌉ bits. Since there are at most k−1 key/value pairs
in A at any time, the total space required is O(k(logm+ logn)).

We now analyze the quality of the algorithm’s output.

Pretend that A consists of n key/value pairs, with A[j] = 0 whenever j is not actually stored in A by the algorithm.
Consider the increments and decrements to A[j]s as the stream comes in. For bookkeeping, pretend that upon entering
the loop at line 7, A[j] is incremented from 0 to 1, and then immediately decremented back to 0. Further, noting that
each counter A[j] corresponds to a set of occurrences of j in the input stream, consider a variant of the algorithm (see
Algorithm 2) that explicitly maintains this set. Of course, actually doing so is horribly space-inefficient!

Algorithm 2 Thought-experiment algorithm for analysis of Misra–Gries
Initialize:

1: B← (empty associative array)

Process (stream-position i, token j) :
2: if j ∈ keys(B) then
3: B[j]← B[j]∪{i}
4: else
5: B[j]←{i}
6: if |keys(B)|= k then
7: foreach ℓ ∈ keys(B) do
8: B[ℓ]← B[ℓ]\min(B[ℓ]) ▷ forget earliest occurrence of ℓ
9: if B[ℓ] =∅ then remove ℓ from B

Output (query a) :
10: if a ∈ keys(B) then report f̂a = |B[a] | else report f̂a = 0

Notice that after each token is processed, each A[j] is precisely the cardinality of the corresponding set B[j]. The
increments to A[j] (including the aforementioned pretend ones) correspond precisely to the occurrences of j in the
stream. Thus, f̂ j ≤ f j.

On the other hand, decrements to counters (including the pretend ones) occur in sets of k. To be precise, referring
to Algorithm 2, whenever the sets B[ℓ] are shrunk, exactly k of the sets shrink by one element each and the removed

11

D
RA

FT

UNIT 1. FINDING FREQUENT ITEMS DETERMINISTICALLY
Dartmouth: CS 35/135

Data Stream Algorithms

elements are k distinct stream positions. Focusing on a particular item j, each decrement of A[j]— is “witnessed” by
a collection of k distinct stream positions. Since the stream length is m, there can be at most m/k such decrements.
Therefore, f̂ j ≥ f j−m/k. Putting these together, we have the following theorem.

Theorem 1.3.1. The Misra–Gries algorithm with parameter k uses one pass and O(k(logm+ logn)) bits of space, and
provides, for any token j, an estimate f̂ j satisfying

f j−
m
k
≤ f̂ j ≤ f j .

1.4 Finding the Frequent Items

Using the Misra–Gries algorithm, we can now easily solve the FREQUENT problem in one additional pass. By the
above theorem, if some token j has f j > m/k, then its corresponding counter A[j] will be positive at the end of the
Misra–Gries pass over the stream, i.e., j will be in keys(A). Thus, we can make a second pass over the input stream,
counting exactly the frequencies f j for all j ∈ keys(A), and then output the desired set of items.

Alternatively, if limited to a single pass, we can solve FREQUENT in an approximate sense: we may end up
outputting items that are below (but not too far below) the frequency threshold. We explore this in the exercises.

Exercises

1-1 Let m̂ be the sum of all counters maintained by the Misra–Gries algorithm after it has processed an input stream,
i.e., m̂ = ∑ℓ∈keys(A) A[ℓ]. Prove that the bound in Theorem 1.3.1 can be sharpened to

f j−
m− m̂

k
≤ f̂ j ≤ f j . (1.1)

1-2 Items that occur with high frequency in a dataset are sometimes called heavy hitters. Accordingly, let us define
the HEAVY-HITTERS problem, with real parameter ε > 0, as follows. The input is a stream σ . Let m,n, fff have
their usual meanings. Let

HHε(σ) = { j ∈ [n] : f j ≥ εm}

be the set of ε-heavy hitters in σ . Modify Misra–Gries to obtain a one-pass streaming algorithm that outputs this
set “approximately” in the following sense: the set H it outputs should satisfy

HHε(σ)⊆ H ⊆ HHε/2(σ) .

Your algorithm should use O(ε−1(logm+ logn)) bits of space.

1-3 Suppose we have run the (one-pass) Misra–Gries algorithm on two streams σ1 and σ2, thereby obtaining a
summary for each stream consisting of k counters. Consider the following algorithm for merging these two
summaries to produce a single k-counter summary.

1: Combine the two sets of counters, adding up counts for any common items.

2: If more than k counters remain:

2.1: c← value of (k+1)th counter, based on decreasing order of value.
2.2: Reduce each counter by c and delete all keys with non-positive counters.

Prove that the resulting summary is good for the combined stream σ1 ◦σ2 (here “◦” denotes concatenation of
streams) in the sense that frequency estimates obtained from it satisfy the bounds given in Eq. (1.1).

12

D
RA

FT
Unit 2
Estimating the Number of Distinct Elements

We continue with our study of data streaming algorithms for statistical problems. Previously, we focused on identifying
items that are particularly dominant in a stream, appearing with especially high frequency. Intuitively, we could solve
this in sublinear space because only a few items can be dominant and we can afford to throw away information about
non-dominant items. Now, we consider a very different statistic: namely, how many distinct tokens (elements) appear in
the stream. This is a measure of how “spread out” the stream is. It is not intuitively clear that we can estimate this
quantity well in sublinear space, because we can’t afford to ignore rare items. In particular, merely sampling some
tokens from the stream will mislead us, since a sample will tend to pick up frequent items rather than rare ones.

2.1 The Problem

As in Unit 1, we are in the vanilla streaming model. We have a stream σ = ⟨a1, . . . ,an⟩, with each ai ∈ [n], and this
implicitly defines a frequency vector fff = (f1, . . . , fn). Let d = |{ j : f j > 0}| be the number of distinct elements that
appear in σ .

In the DISTINCT-ELEMENTS problem, our task is to output an (ε,δ)-estimate (as in Definition 0.2.1) to d.

It is provably impossible to solve this problem in sublinear space if one is restricted to either deterministic algorithms
(i.e., δ = 0), or exact algorithms (i.e., ε = 0). Thus, we shall seek a randomized approximation algorithm. In this unit,
we give a simple algorithm for this problem that has interesting, but not optimal, quality guarantees. Despite being
sub-optimal, it is worth studying because

• the algorithm is especially simple;

• it introduces us to two ingredients used in tons of randomized algorithms, namely, universal hashing and the
median trick;

• it introduces us to probability tail bounds, a basic technique for the analysis of randomized algorithms.

2.2 The Tidemark Algorithm

The idea behind the algorithm is originally due to Flajolet and Martin [FM85]. We give a slightly modified presentation,
due to Alon, Matias and Szegedy [AMS99]. Since that paper designs several other algorithms as well (for other
problems), it’s good to give this particular algorithm a name more evocative than “AMS algorithm.” I call it the tidemark
algorithm because of how it remembers information about the input stream. Metaphorically speaking, each token has
an opportunity to raise the “water level” and the algorithm simply keeps track of the high-water mark, just as a tidemark
records the high-water mark left by tidal water.

13

D
RA

FT

UNIT 2. ESTIMATING THE NUMBER OF DISTINCT ELEMENTS
Dartmouth: CS 35/135

Data Stream Algorithms

For an integer p > 0, let zeros(p) denote the number of zeros that the binary representation of p ends with. Formally,

zeros(p) = max{i : 2i divides p} .

Our algorithm’s key ingredient is a 2-universal hash family (Definition 0.4.5), a very important concept that will come
up repeatedly. If you are unfamiliar with the concept, working through Exercises 2-1 and 2-2 is strongly recommended.
Once we have this key ingredient, our algorithm is very simple.

Algorithm 3 The tidemark algorithm for the number of distinct elements
Initialize:

1: Choose a random hash function h : [n]→ [n] from a 2-universal family
2: z← 0

Process (token j) :
3: if zeros(h(j))> z then z← zeros(h(j))

Output: 2z+ 1
2

The basic intuition here is that we expect 1 out of the d distinct tokens to hit zeros(h(j)) ≥ logd, and we don’t
expect any tokens to hit zeros(h(j))≫ logd. (As an aside, at this point, you may want to estimate the probabilities of
these events under the unrealistic assumption that h is a uniformly random function in [n][n].) Thus, the maximum value
of zeros(h(j)) over the stream—which is what we maintain in z—should give us a good approximation to logd. We
now analyze this.

2.3 The Quality of the Algorithm’s Estimate

Formally, for each j ∈ [n] and each integer r≥ 0, let Xr, j be an indicator random variable for the event “zeros(h(j))≥ r,”
and let Yr = ∑ j: f j>0 Xr, j. Let T denote the value of z when the algorithm finishes processing the stream. Clearly,

Yr > 0 ⇐⇒ T ≥ r . (2.1)

We can restate the above fact as follows (this will be useful later):

Yr = 0 ⇐⇒ T ≤ r−1 . (2.2)

Since h(j) is uniformly distributed over the (logn)-bit strings, we have

EXr, j = P{zeros(h(j))≥ r}= P{2r divides h(j)}= 1
2r .

We now estimate the expectation and variance of Yr as follows. The first step of Eq. (2.3) below uses the pairwise
independence of the random variables {Xr, j} j∈[n], which follows from the 2-universality of the hash family from which
h is drawn.

EYr = ∑
j: f j>0

EXr, j =
d
2r .

VarYr = ∑
j: f j>0

VarXr, j ≤ ∑
j: f j>0

E(X2
r, j) = ∑

j: f j>0
EXr, j =

d
2r . (2.3)

Thus, using Markov’s and Chebyshev’s inequalities respectively, we have

P{Yr > 0}= P{Yr ≥ 1} ≤ EYr

1
=

d
2r , and (2.4)

P{Yr = 0} ≤ P{|Yr−EYr| ≥ d/2r} ≤ VarYr

(d/2r)2 ≤
2r

d
. (2.5)

14

D
RA

FT

UNIT 2. ESTIMATING THE NUMBER OF DISTINCT ELEMENTS
Dartmouth: CS 35/135

Data Stream Algorithms

Let d̂ be the estimate of d that the algorithm outputs. Then d̂ = 2T+ 1
2 . Let a be the smallest integer such that

2a+ 1
2 ≥ 3d. Using eqs. (2.1) and (2.4), we have

P
{

d̂ ≥ 3d
}
= P{T ≥ a}= P{Ya > 0} ≤ d

2a ≤
√

2
3

. (2.6)

Similarly, let b be the largest integer such that 2b+ 1
2 ≤ d/3. Using Eqs. (2.2) and (2.5), we have

P
{

d̂ ≤ d/3
}
= P{T ≤ b}= P{Yb+1 = 0} ≤ 2b+1

d
≤
√

2
3

. (2.7)

These guarantees are weak in two ways. Firstly, the estimate d̂ is only of the “same order of magnitude” as d, and is
not an arbitrarily good approximation. Secondly, these failure probabilities in eqs. (2.6) and (2.7) are only bounded by
the rather large

√
2/3≈ 47%. Of course, we could make the probabilities smaller by replacing the constant “3” above

with a larger constant. But a better idea, that does not further degrade the quality of the estimate d̂, is to use a standard
“median trick” which will come up again and again.

2.4 The Median Trick

Imagine running k copies of this algorithm in parallel, using mutually independent random hash functions, and outputting
the median of the k answers. If this median exceeds 3d (a bad event), then at least k/2 of the individual answers must
exceed 3d, whereas we expect at most k

√
2/3 of them to exceed 3d. By a standard Chernoff bound (e.g., Theorem 0.4.3,

eq. (0.5)), this bad event has probability 2−Ω(k). Similarly, the probability that the median is below d/3 is also 2−Ω(k).

Choosing k = Θ(log(1/δ)), we can make the sum of these two probabilities work out to at most δ . This gives us an
(O(1),δ)-estimate for d. Later, we shall give a different algorithm that will provide an (ε,δ)-estimate with ε → 0.

The original algorithm requires O(logn) bits to store (and compute) a suitable hash function, and O(log logn) more
bits to store z. Therefore, the space used by this final algorithm is O(log(1/δ) · logn). This is very good: it achieves the
holy grail bound of O(logn) for a constant probability of error.

Exercises

These exercises are designed to get you familiar with some bread-and-butter ideas that are repeatedly used in designing
and analyzing randomized streaming algorithms. The first two exercises develop your intuition for universal hashing
and show you constructive examples of 2-universal hash families (see Definition 0.4.5) from the domain X = {0,1}n

to the range Y = {0,1}k (with k ≤ n).

2-1 Treat the elements of X and Y as column vectors with entries in {0,1}. For a matrix AAA ∈ {0,1}k×n and vector
bbb ∈ {0,1}k, define the function hAAA,bbb : X → Y by hAAA,bbb(x) = AAAxxx+bbb, where all additions and multiplications are
performed mod 2.

Prove that the family of functions H = {hAAA,bbb : AAA ∈ {0,1}k×n,bbb ∈ {0,1}k} is 2-universal.

2-2 Identify X with the finite field F2n using an arbitrary bijection—truly arbitrary: e.g., the bijection need not map
the string 0n to the zero element of F2n . For elements a,b ∈ X , define the function ga,b : X → Y as follows:

ga,b(x) = rightmost k bits of fa,b(x) , where
fa,b(x) = ax+b , with addition and multiplication performed in F2n .

Prove that the family of functions G = {ga,b : a,b ∈ F2n} is 2-universal. Is the family G better or worse than H
in any sense? Why?

15

D
RA

FT

UNIT 2. ESTIMATING THE NUMBER OF DISTINCT ELEMENTS
Dartmouth: CS 35/135

Data Stream Algorithms

The next exercise shows you how to boost the performance of an algorithm from “somewhat correct” to “very likely
correct” by combining the results from a few independent runs of the initial algorithm.

2-3 Suppose that we seek to estimate a quantity q: we are happy if we obtain an estimate in the interval [qL,qH], where
qL and qH are real values with qL < q < qH . In many applications, we will want something like qL = q(1− ε)
and qH = q(1+ ε), but for this problem, there is no need to assume anything further about qL and qH .

We have designed an randomized algorithm A that outputs an estimate q̂ of q satisfying P{q̂≤ qL} ≤ α and
P{q̂≥ qH} ≤ α , for some constant α < 1

2 . Let B(k) be the following algorithm: run k copies of A in parallel,
using independent random sources, and output the median of the k estimates obtained.

Use Chernoff bounds (Theorem 0.4.3) to give a good lower bound on the probability that B(k) makes us happy.
Based on your findings, how many independent runs of the tidemark algorithm do we need to boost its quality to
one that makes us happy with ≥ 99% probability? Assume that we’re happy with an estimate d̂ ∈ [d/3,3d] and
use the

√
2/3 upper bound in eqs. (2.6) and (2.7).

16

D
RA

FT
Unit 3
A Better Estimate for Distinct Elements

3.1 The Problem

We revisit the DISTINCT-ELEMENTS problem from Unit 2, giving a better solution, in terms of both approximation
guarantee and space usage. We also seek good time complexity. Thus, we are again in the vanilla streaming model. We
have a stream σ = ⟨a1,a2,a3, . . . ,am⟩, with each ai ∈ [n], and this implicitly defines a frequency vector fff = (f1, . . . , fn).
Let d = |{ j : f j > 0}| be the number of distinct elements that appear in σ . We want an (ε,δ)-approximation (as in
Definition 0.2.1) to d.

3.2 The BJKST Algorithm

In this section we present the algorithm dubbed BJKST, after the names of the authors: Bar-Yossef, Jayram, Kumar,
Sivakumar and Trevisan [BJK+02]. The original paper in which this algorithm is presented actually gives three
algorithms, the third (and, in a sense, “best”) of which we are presenting. The “zeros” notation below is the same as in
Section 2.2. The values b and c are universal constants that will be determined later, based on the desired guarantees on
the algorithm’s estimate.

Algorithm 4 The BJKST algorithm for DISTINCT-ELEMENTS

Initialize:
1: Choose a random hash function h : [n]→ [n] from a 2-universal family
2: Choose a random hash function g : [n]→ [bε−4 log2 n] from a 2-universal family
3: z← 0
4: B←∅

Process (token j) :
5: if zeros(h(j))≥ z then
6: B← B∪{(g(j),zeros(h(j))}
7: while |B| ≥ c/ε2 do
8: z← z+1
9: shrink B by removing all (α,β) with β < z

Output: |B|2z

Intuitively, this algorithm is a refined version of the tidemark algorithm from Section 2.2. This time, rather than
simply tracking the maximum value of zeros(h(j)) in the stream, we try to determine the size of the bucket B consisting

17

D
RA

FT

UNIT 3. A BETTER ESTIMATE FOR DISTINCT ELEMENTS
Dartmouth: CS 35/135

Data Stream Algorithms

of all tokens j with zeros(h(j)) ≥ z. Of the d distinct tokens in the stream, we expect d/2z to fall into this bucket.
Therefore |B|2z should be a good estimate for d.

We want B to be small so that we can store enough information (remember, we are trying to save space) to track |B|
accurately. At the same time, we want B to be large so that the estimate we produce is accurate enough. It turns out that
letting B grow to about Θ(1/ε2) in size is the right tradeoff. Finally, as a space-saving trick, the algorithm does not
store the actual tokens in B but only their hash values under g, together with the value of zeros(h(j)) that is needed to
remove the appropriate elements from B when B must be shrunk.

We now analyze the algorithm in detail.

3.3 Analysis: Space Complexity

We assume that 1/ε2 = o(m): otherwise, there is no point to this algorithm! The algorithm has to store h,g,z, and B.
Clearly, h and B dominate the space requirement. Using the finite-field-arithmetic hash family from Exercise 2-2 for
our hash functions, we see that h requires O(logn) bits of storage. The bucket B has its size capped at O(1/ε2). Each
tuple (α,β) in the bucket requires log(bε−4 log2 n) = O(log(1/ε)+ log logn) bits to store the hash value α , which
dominates the ⌈log logn⌉ bits required to store the number of zeros β .

Overall, this leads to a space requirement of O(logn+(1/ε2)(log(1/ε)+ log logn)).

3.4 Analysis: The Quality of the Estimate

The entire analysis proceeds under the assumption that storing hash values (under g) in B, instead of the tokens
themselves, does not change |B|. This is true whenever g does not have collisions on the set of tokens to which it is
applied. By choosing the constant b large enough, we can ensure that the probability of this happening is at most 1/6,
for each choice of h (you are asked to flesh this out in Exercise 3-1). Thus, making this assumption adds at most 1/6 to
the error probability. We now analyze the rest of the error, under this no-collision assumption.

The basic setup is the same as in Section 2.3. For each j ∈ [n] and each integer r ≥ 0, let Xr, j be an indicator random
variable for the event “zeros(h(j)) ≥ r,” and let Yr = ∑ j: f j>0 Xr, j. Let T denote the value of z when the algorithm
finishes processing the stream, and let d̂ denote the estimate output by the algorithm. Then we have

YT = value of |B| when the algorithm finishes, and

d̂ = YT 2T .

Proceeding as in Section 2.3, we obtain

∀r : EYr =
d
2r ; VarYr ≤

d
2r . (3.1)

Notice that if T = 0, then the algorithm never incremented z, which means that d < c/ε2 and d̂ = |B|= d. In short,
the algorithm computes d exactly in this case.

Otherwise (T ≥ 1), we say that a FAIL event occurs if d̂ is not a (1± ε)-approximation to d. That is,

FAIL ⇐⇒ |YT 2T −d| ≥ εd ⇐⇒
∣∣∣∣YT −

d
2T

∣∣∣∣≥ εd
2T .

We can estimate this probability by summing over all possible values r ∈ {1,2, . . . , logn} of T . For the small values
of r, a failure will be unlikely when T = r, because failure requires a large deviation of Yr from its mean. For the large
values of r, simply having T = r is unlikely. This is the intuition for splitting the summation into two parts below. We
need to choose the threshold that separates “small” values of r from “large” ones and we do it as follows.

Let s be the unique integer such that
12
ε2 ≤

d
2s <

24
ε2 . (3.2)

18

D
RA

FT

UNIT 3. A BETTER ESTIMATE FOR DISTINCT ELEMENTS
Dartmouth: CS 35/135

Data Stream Algorithms

Then we calculate

P(FAIL) =
logn

∑
r=1

P
{∣∣∣∣Yr−

d
2r

∣∣∣∣≥ εd
2r ∧ T = r

}

≤
s−1

∑
r=1

P
{∣∣∣∣Yr−

d
2r

∣∣∣∣≥ εd
2r

}
+

logn

∑
r=s

P{T = r}

=
s−1

∑
r=1

P
{
|Yr−EYr| ≥

εd
2r

}
+P{T ≥ s} ▷ by eq. (3.1)

=
s−1

∑
r=1

P
{
|Yr−EYr| ≥

εd
2r

}
+P{Ys−1 ≥ c/ε

2} . (3.3)

Bounding the terms in (3.3) using Chebyshev’s inequality and Markov’s inequality, respectively, we continue:

P(FAIL)≤
s−1

∑
r=1

VarYr

(εd/2r)2 +
EYs−1

c/ε2

≤
s−1

∑
r=1

2r

ε2d
+

ε2d
c2s−1

≤ 2s

ε2d
+

2ε2d
c2s

≤ 1
ε2 ·

ε2

12
+

2ε2

c
· 24

ε2 ▷ by eq. (3.2)

≤ 1
6
, (3.4)

where the final bound is achieved by choosing a large enough constant c.

Recalling that we had started with a no-collision assumption for g, the final probability of error is at most
1/6+1/6 = 1/3. Thus, the above algorithm (ε, 1

3)-estimates d. As before, by using the median trick, we can improve
this to an (ε,δ)-estimate for any 0 < δ ≤ 1/3, at a cost of an O(log(1/δ))-factor increase in the space usage.

3.5 Optimality

This algorithm is very close to optimal in its space usage. Later in this course, when we study lower bounds, we shall
show both an Ω(logn) and an Ω(ε−2) bound on the space required by an algorithm that (ε, 1

3)-estimates the number
of distinct elements. The small gap between these lower bounds and the above upper bound was subsequently closed
by Kane, Nelson, and Woodruff [KNW10]: using considerably more advanced ideas, they achieved a space bound of
O(ε−2 + logn).

Exercises

3-1 Let H ⊆ Y X be a 2-universal hash family, with |Y | = cM2, for some constant c > 0. Suppose we apply a
random function h∈R H to the elements of a set S⊆X , where |S|= M. Prove that the probability of a collision
(i.e., the event that two distinct elements of S hash to the same value) is at most 1/(2c).

Using the above result, work out a concrete value of b that can be plugged in to Algorithm 4 to guarantee that the
probability of g ever having a collision (which could affect the correctness of the algorithm) is at most 1/6. This
will complete the analysis of the algorithm, as noted at the start of Section 3.4.

3-2 The high-level idea in Algorithm 4 can be expressed as follows. Suppose D = { j ∈ [n] : f j > 0} is the set of all
tokens that appear in the input stream σ . Then, the algorithm collects a random sample B of D with sampling

19

D
RA

FT

UNIT 3. A BETTER ESTIMATE FOR DISTINCT ELEMENTS
Dartmouth: CS 35/135

Data Stream Algorithms

rate p = 1/2z and then estimates |D| as |B|/p. The appropriate value of z is learned on the fly by starting at z = 0
and increasing it as necessary to keep B from growing too big.

In Algorithm 4, the sampling was carried out by applying a hash function h to each token. An alternative method
that avoids the use of hashing is as follows: on seeing a token j, first remove j from B (if present) and then add j
with probability p, by flipping a suitably biased coin. Upon processing σ this way, the net effect is to draw a
random sample from the set consisting of the last appearance in σ of each token in D.

Write out this algorithm in detail, spelling out how to keep the size of B under control. What changes do you
need to make to the analysis?

20

D
RA

FT
Unit 4
Approximate Counting

While observing a data stream, we would like to know how many tokens we have seen. Just maintain a counter and
increment it upon seeing a token: how simple! For a stream of length m, the counter would use O(logm) space which
we said (in eq. 0.2) was the holy grail.

Now suppose, just for this one unit, that even this amount of space is too much and we would like to solve this
problem using o(logm) space: maybe m is really huge or maybe we have to maintain so many counters that we want
each one to use less than the trivial amount of space. Since the quantity we wish to maintain—the number of tokens
seen—has m+1 possible values, maintaining it exactly necessarily requires ≥ log(m+1) bits. Therefore, our solution
will have to be approximate.

4.1 The Problem

We are, of course, in the vanilla streaming model. In fact, the identities of the tokens are now immaterial. Therefore,
we can think of the input as a stream ⟨1,1,1, . . .⟩. Our goal is to maintain an approximate count of n, the number of
tokens so far, using o(logm) space, where m is some promised upper bound on n. Note that we’re overriding our usual
meaning of n: we shall do so for just this unit.

4.2 The Algorithm

The idea behind the algorithm is originally due to Morris [Sr.78], so the approximate counter provided by it is called a
“Morris counter.” We now present it in a more general form, using modern notation.

Algorithm 5 The Morris counter
Initialize:

1: x← 0

Process (token) :
2: with probability 2−x do x← x+1

Output: 2x−1

As stated, this algorithm requires ⌈logm⌉ space after all, because the counter x could grow up to m. However,
as we shall soon see, x is extremely unlikely to grow beyond 2logm (say), so we can stay within a space bound of
⌈log logm⌉+O(1) by aborting the algorithm if x does grow larger than that.

21

D
RA

FT

UNIT 4. APPROXIMATE COUNTING
Dartmouth: CS 35/135

Data Stream Algorithms

4.3 The Quality of the Estimate

The interesting part of the analysis is understanding the quality of the algorithm’s estimate. Let Cn denote the (random)
value of 2x after n tokens have been processed. Notice that n̂, the algorithm’s estimate for n, equals Cn−1. We shall
prove that ECn = n+1, which shows that n̂ is an unbiased estimator for n. This by itself is not enough: we would like
to prove a concentration result stating that n̂ is unlikely to be too far from n. Let’s see how well we can do.

To aid the analysis, it will help to rewrite Algorithm 5 in the numerically equivalent (though space-inefficient) way
shown below.

Algorithm 6 Thought-experiment algorithm for analysis of Morris counter
Initialize:

1: c← 1

Process (token) :
2: with probability 1/c do c← 2c

Output: c−1

Clearly, the variable c in this version of the algorithm is just 2x in Algorithm 5, so Cn equals c after n tokens. Here
is the key lemma in the analysis.

Lemma 4.3.1. For all n≥ 0, ECn = n+1 and VarCn = n(n−1)/2.

Proof. Let Zi be an indicator random variable for the event that c is increased in line 2 upon processing the (i+1)th
token. Then, Zi ∼ Bern(1/Ci) and Ci+1 = (1+Zi)Ci. Using the law of total expectation and the simple formula for
expectation of a Bernoulli random variable,

ECi+1 = EE[(1+Zi)Ci |Ci] = E
(

1+
1
Ci

)
Ci = 1+ECi .

Since EC0 = 1, this gives us ECn = n+1 for all n. Similarly,

EC2
i+1 = EE[(1+2Zi +Z2

i)C
2
i |Ci]

= EE[(1+3Zi)C2
i |Ci] ▷ since Z2

i = Zi

= E
(

1+
3
Ci

)
C2

i

= EC2
i +3(i+1) . ▷ by our above formula for ECi

Since EC2
0 = 1, this gives us EC2

n = 1+∑
n
i=1 3i = 1+3n(n+1)/2. Therefore,

VarCn = EC2
n − (ECn)

2 = 1+
3n(n+1)

2
− (n+1)2 =

n(n−1)
2

,

upon simplification.

Unfortunately, this variance is too large for us to directly apply the median trick introduced in Section 2.4. (Exercise:
try it out! See what happens if you try to bound P{n̂ < n/100} using Chebyshev’s inequality and Lemma 4.3.1).
However, we can still get something good out of Algorithm 5, in two different ways.

• We could tune a parameter in the algorithm, leading to a lower variance at the cost of higher space complexity.
This technique, specific to this algorithm, is explored further in the exercises.

• We could plug the algorithm into a powerful, widely-applicable template that we describe below.

22

D
RA

FT

UNIT 4. APPROXIMATE COUNTING
Dartmouth: CS 35/135

Data Stream Algorithms

4.4 The Median-of-Means Improvement

As noted above, we have an estimator (n̂, in this case) for our quantity of interest (n, in this case) that is unbiased but
with variance so large that we are unable to get an (ε,δ)-estimate (as in Definition 0.2.1). This situation arises often.
A generic way to deal with it is to take our original algorithm (Algorithm 5, in this case) to be a basic estimator and
then build from it a final estimator that runs several independent copies of the basic estimator in parallel and combines
their output. The key idea is to first bring the variance down by averaging a number of independent copies of the basic
estimator, and then apply the median trick.

Lemma 4.4.1. There is a universal positive constant c such that the following holds. Let random variable X be an
unbiased estimator for a real quantity Q. Let {Xi j}i∈[t], j∈[k] be a collection of independent random variables with each
Xi j distributed identically to X, where

t = c log
1
δ
, and

k =
3VarX

ε2(EX)2 .

Let Z = mediani∈[t]

(
1
k

∑
k
j=1 Xi j

)
. Then, we have P{|Z−Q| ≥ εQ} ≤ δ , i.e., Z is an (ε,δ)-estimate for Q.

Thus, if an algorithm can produce X using s bits of space, then there is an (ε,δ)-estimation algorithm using

O
(

s · VarX
(EX)2 ·

1
ε2 log

1
δ

)
bits of space.

Proof. For each i ∈ [t], let Yi = k−1
∑

k
j=1 Xi j. Then, by linearity of expectation, we have EYi = Q. Since the variables

Xi j are (at least) pairwise independent, we have

VarYi =
1
k2

k

∑
j=1

VarXi j =
VarX

k
.

Applying Chebyshev’s inequality, we obtain

P{|Yi−Q| ≥ εQ} ≤ VarYi

(εQ)2 =
VarX

kε2(EX)2 =
1
3
.

Now an application of a Chernoff bound (exactly as in the median trick from Section 2.4) tells us that for an appropriate
choice of c, we have P{|Z−Q| ≥ εQ} ≤ δ .

Applying the above lemma to the basic estimator given by Algorithm 5 gives us the following result.

Theorem 4.4.2. For a stream of length at most m, the problem of approximately counting the number of tokens admits
an (ε,δ)-estimation in O(log logm · ε−2 logδ−1) space.

Proof. If we run the basic estimator as is (according to Algorithm 5), using s bits of space, the analysis in Lemma 4.3.1
together with the median-of-means improvement (Lemma 4.4.1) gives us a final (ε,δ)-estimator using O(sε−2 logδ−1)
space.

Now suppose we tweak the basic estimator to ensure s = O(log logm) by aborting if the stored variable x exceeds
2logm. An abortion would imply that Cn ≥ m2 ≥ n2. By Lemma 4.3.1 and Markov’s inequality,

P{Cn ≥ n2} ≤ ECn

n2 =
n+1

n2 .

Then, by a simple union bound, the probability that any one of the Θ(ε−2 logδ−1) parallel runs of the basic estimator
aborts is at most o(1). Thus, a final estimator based on this tweaked basic estimator produces an (ε,δ +o(1))-estimate
within the desired space bound.

23

D
RA

FT

UNIT 4. APPROXIMATE COUNTING
Dartmouth: CS 35/135

Data Stream Algorithms

Exercises

4-1 Here is a different way to improve the accuracy of the basic estimator in Algorithm 5. Observe that the given
algorithm roughly tracks the logarithm (to base 2) of the stream length. Let us change the base from 2 to 1+β

instead, where β is a small positive value, to be determined. Update the pseudocode using this idea, ensuring
that the output value is still an unbiased estimator for n.

Analyze the variance of this new estimator and show that, for a suitable setting of β , it directly provides an
(ε,δ)-estimate, using only loglogm+O(logε−1 + logδ−1) bits of space.

4-2 Show how to further generalize the version of the Morris counter given by the previous exercise to solve a more
general version of the approximate counting problem where the stream tokens are positive integers and a token
j is to be interpreted as “add j to the counter.” As usual, the counter starts at zero. Provide pseudocode and
rigorously analyze the algorithm’s output quality and space complexity.

4-3 Instead of using a median of means for improving the accuracy of an estimator, what if we use a mean of
medians? Will it work just as well, or at all?

24

D
RA

FT
Unit 5
Finding Frequent Items via (Linear) Sketching

5.1 The Problem

We return to the FREQUENT problem that we studied in Unit 1: given a parameter k, we seek the set of tokens with
frequency > m/k. The Misra–Gries algorithm, in a single pass, gave us enough information to solve FREQUENT with a
second pass: namely, in one pass it computed a data structure which could be queried at any token j ∈ [n] to obtain a
sufficiently accurate estimate f̂ j to its frequency f j. We shall now give two other one-pass algorithms for this same
problem, that we can call FREQUENCY-ESTIMATION.

5.2 Sketches and Linear Sketches

Let MG(σ) denote the data structure computed by Misra–Gries upon processing the stream σ . In Exercise 1-3, we saw
a procedure for combining two instances of this data structure that would let us space-efficiently compute MG(σ1 ◦σ2)
from MG(σ1) and MG(σ2), where “◦” denotes concatenation of streams. Clearly, it would be desirable to be able to
combine two data structures in this way, and when it can be done, such a data structure is called a sketch.

Definition 5.2.1. A data structure DS(σ) computed in streaming fashion by processing a stream σ is called a sketch if
there is a space-efficient combining algorithm COMB such that, for every two streams σ1 and σ2, we have

COMB(DS(σ1),DS(σ2)) = DS(σ1 ◦σ2) .

However, the Misra–Gries has the drawback that it does not seem to extend to the turnstile (or even strict turnstile)
model. In this unit, we shall design two different solutions to the FREQUENT problem that do generalize to turnstile
streams. Each algorithm computes a sketch of the input stream in the above sense, but these sketches have an additional
important property that we now explain.

Since algorithms for FREQUENT are computing functions of the frequency vector fff (σ) determined by σ , their
sketches will naturally be functions of fff (σ). It turns out that for the two algorithms in this unit, the sketches will be
linear functions. That’s special enough to call out in another definition.

Definition 5.2.2. A sketching algorithm “sk” is called a linear sketch if, for each stream σ over a token universe [n],
sk(σ) takes values in a vector space of dimension ℓ= ℓ(n), and sk(σ) is a linear function of fff (σ). In this case, ℓ is
called the dimension of the linear sketch.

Notice that the combining algorithm for linear sketches is to simply add the sketches (in the appropriate vector
space). A data stream algorithm based on a linear sketch naturally generalizes from the vanilla to the turnstile model.
If the arrival of a token j in the vanilla model causes us to add a vector vvv j to the sketch, then an update (j,c) in the
turnstile model is handled by adding cvvv j to the sketch: this handles both cases c≥ 0 and c < 0.

25

D
RA

FT

UNIT 5. FINDING FREQUENT ITEMS VIA (LINEAR) SKETCHING
Dartmouth: CS 35/135

Data Stream Algorithms

We can make things more explicit. Put fff = fff (σ) ∈ Rn and yyy = sk(σ) ∈ Rℓ, where “sk” is a linear sketch. Upon
choosing a basis for Rn and one for Rℓ, we can express the algorithm “sk” as left multiplication by a suitable sketch
matrix SSS ∈ Rℓ×n: i.e., yyy = SSS fff . The vector vvv j defined above is simply the jth column of SSS. Importantly, a sketching
algorithm should not be storing SSS: that would defeat the purpose, which is to save space! Instead, the algorithm should
be performing this multiplication implicitly.

All of the above will be easier to grasp upon seeing the concrete examples in this unit, so let us get on with it.

5.3 CountSketch

We now describe the first of our sketching algorithms, called CountSketch, which was introduced by Charikar, Chen
and Farach-Colton [CCFC04]. We start with a basic sketch that already has most of the required ideas in it. This sketch
takes an accuracy parameter ε which should be thought of as small and positive.

Algorithm 7 CountSketch: basic estimator
Initialize:

1: C[1 . . .k]← 0⃗, where k := 3/ε2

2: Choose a random hash function h : [n]→ [k] from a 2-universal family
3: Choose a random hash function g : [n]→{−1,1} from a 2-universal family

Process (token (j,c)) :
4: C[h(j)]←C[h(j)]+ cg(j)

Output (query a) :
5: report f̂a = g(a)C[h(a)]

The sketch computed by this algorithm is the array of counters C, which can be thought of as a vector in Zk. Note
that for two such sketches to be combinable, they must be based on the same hash functions h and g.

5.3.1 The Quality of the Basic Sketch’s Estimate

Fix an arbitrary token a and consider the output X = f̂a on query a. For each token j ∈ [n], let Yj be the indicator for the
event “h(j) = h(a)”. Examining the algorithm’s workings we see that a token j contributes to the counter C[h(a)] iff
h(j) = h(a), and the amount of the contribution is its frequency f j times the random sign g(j). Thus,

X = g(a)
n

∑
j=1

f jg(j)Yj = fa + ∑
j∈[n]\{a}

f jg(a)g(j)Yj .

Since g and h are independent and g is drawn from a 2-universal family, for each j ̸= a, we have

E[g(a)g(j)Yj] = Eg(a) ·Eg(j) ·EYj = 0 ·0 ·EYj = 0 . (5.1)

Therefore, by linearity of expectation, we have

EX = fa + ∑
j∈[n]\{a}

f j E[g(a)g(j)Yj] = fa . (5.2)

Thus, the output X = f̂a is an unbiased estimator for the desired frequency fa.

We still need to show that X is unlikely to deviate too much from its mean. For this, we analyze its variance. By
2-universality of the family from which h is drawn, we see that for each j ∈ [n]\{a}, we have

EY 2
j = EYj = P{h(j) = h(a)}= 1

k
. (5.3)

26

D
RA

FT

UNIT 5. FINDING FREQUENT ITEMS VIA (LINEAR) SKETCHING
Dartmouth: CS 35/135

Data Stream Algorithms

Next, we use 2-universality of the family from which g is drawn, and independence of g and h, to conclude that for all
i, j ∈ [n] with i ̸= j, we have

E[g(i)g(j)YiYj] = Eg(i) ·Eg(j) ·E[YiYj] = 0 ·0 ·E[YiYj] = 0 . (5.4)

Thus, we calculate

VarX = 0+Var

[
g(a) ∑

j∈[n]\{a}
f jg(j)Yj

]

= E

g(a)2
∑

j∈[n]\{a}
f 2

j Y 2
j + g(a)2

∑
i, j∈[n]\{a}

i̸= j

fi f jg(i)g(j)YiYj

−(∑
j∈[n]\{a}

f j E[g(a)g(j)Yj]

)2

= ∑
j∈[n]\{a}

f 2
j

k
+ 0 − 0 ▷ using g(a)2 = 1, (5.3), (5.4), and (5.1)

=
∥ fff∥2

2− f 2
a

k
, (5.5)

where fff = fff (σ) is the frequency distribution determined by σ . From (5.2) and (5.5), using Chebyshev’s inequality, we
obtain

P
{
| f̂a− fa| ≥ ε

√
∥ fff∥2

2− f 2
a

}
= P

{
|X−EX | ≥ ε

√
∥ fff∥2

2− f 2
a

}
≤ Var[X]

ε2(∥ fff∥2
2− f 2

a)

=
1

kε2

=
1
3
.

For j ∈ [n], let us define fff− j to be the (n−1)-dimensional vector obtained by dropping the jth entry of fff . Then∥∥ fff− j
∥∥2

2 = ∥ fff∥2
2− f 2

j . Therefore, we can rewrite the above statement in the following more memorable form.

Pr
{
| f̂a− fa| ≥ ε

∥∥ fff−a
∥∥

2

}
≤ 1

3
. (5.6)

5.3.2 The Final Sketch

The sketch that is commonly referred to as “Count Sketch” is in fact the sketch obtained by applying the median trick
(see Section 2.4) to the above basic sketch, bringing its probability of error down to δ , for a given small δ > 0. Thus,
the Count Sketch can be visualized as a two-dimensional array of counters, with each token in the stream causing
several counter updates. For the sake of completeness, we spell out this final algorithm in full below.

As in Section 2.4, a standard Chernoff bound argument proves that this estimate f̂a satisfies

P
{
| f̂a− fa| ≥ ε

∥∥ fff−a
∥∥

2

}
≤ δ . (5.7)

With a suitable choice of hash family, we can store the hash functions above in O(t logn) space. Each of the tk
counters in the sketch uses O(logm) space. This gives us an overall space bound of O(t logn+ tk logm), which is

O
(

1
ε2 log

1
δ
· (logm+ logn)

)
.

27

D
RA

FT

UNIT 5. FINDING FREQUENT ITEMS VIA (LINEAR) SKETCHING
Dartmouth: CS 35/135

Data Stream Algorithms

Algorithm 8 CountSketch: final estimator
Initialize:

1: C[1 . . . t][1 . . .k]← 0⃗, where k := 3/ε2 and t := O(log(1/δ))
2: Choose t independent hash functions h1, . . .ht : [n]→ [k], each from a 2-universal family
3: Choose t independent hash functions g1, . . .gt : [n]→{−1,1}, each from a 2-universal family

Process (token (j,c)) :
4: for i← 1 to t do
5: C[i][hi(j)]←C[i][hi(j)]+ cgi(j)

Output (query a) :
6: report f̂a = median1≤i≤t gi(a)C[i][hi(a)]

5.4 The Count-Min Sketch

Another solution to FREQUENCY-ESTIMATION is the so-called “Count-Min Sketch”, which was introduced by Cormode
and Muthukrishnan [CM05]. As with the Count Sketch, this sketch too takes an accuracy parameter ε and an error
probability parameter δ . And as before, the sketch consists of a two-dimensional t× k array of counters, which are
updated in a very similar manner, based on hash functions. The values of t and k are set, based on ε and δ , as shown
below.

Algorithm 9 Count-Min Sketch
Initialize:

1: C[1 . . . t][1 . . .k]← 0⃗, where k := 2/ε and t := ⌈log(1/δ)⌉
2: Choose t independent hash functions h1, . . .ht : [n]→ [k], each from a 2-universal family

Process (token (j,c)) :
3: for i← 1 to t do
4: C[i][hi(j)]←C[i][hi(j)]+ c

Output (query a) :
5: report f̂a = min1≤i≤t C[i][hi(a)]

Note how much simpler this algorithm is, as compared to Count Sketch! Also, note that its space usage is

O
(

1
ε

log
1
δ
· (logm+ logn)

)
,

which is better than that of Count Sketch by a 1/ε factor. The place where Count-Min Sketch is weaker is in its
approximation guarantee, which we now analyze.

5.4.1 The Quality of the Algorithm’s Estimate

We focus on the case when each token (j,c) in the stream satisfies c > 0, i.e., the cash register model. Clearly, in this
case, every counter C[i][hi(a)], corresponding to a token a, is an overestimate of fa. Thus, we always have

fa ≤ f̂a ,

where f̂a is the estimate of fa output by the algorithm.

For a fixed a, we now analyze the excess in one such counter, say in C[i][hi(a)]. Let the random variable Xi denote
this excess. For j ∈ [n]\{a}, let Yi, j be the indicator of the event “hi(j) = hi(a)”. Notice that j makes a contribution to

28

D
RA

FT

UNIT 5. FINDING FREQUENT ITEMS VIA (LINEAR) SKETCHING
Dartmouth: CS 35/135

Data Stream Algorithms

the counter iff Yi, j = 1, and when it does contribute, it causes f j to be added to this counter. Thus,

Xi = ∑
j∈[n]\{a}

f jYi, j .

By 2-universality of the family from which hi is drawn, we compute that EYi, j = 1/k. Thus, by linearity of
expectation,

EXi = ∑
j∈[n]\{a}

f j

k
=
∥ fff∥1− fa

k
=

∥∥ fff−a
∥∥

1
k

.

Since each f j ≥ 0, we have Xi ≥ 0, and we can apply Markov’s inequality to get

P{Xi ≥ ε
∥∥ fff−a

∥∥
1} ≤

∥∥ fff−a
∥∥

1

kε
∥∥ fff−a

∥∥
1

=
1
2
,

by our choice of k.

The above probability is for one counter. We have t such counters, mutually independent. The excess in the output,
f̂a− fa, is the minimum of the excesses Xi, over all i ∈ [t]. Thus,

P
{

f̂a− fa ≥ ε
∥∥ fff−a

∥∥
1

}
= P

{
min{X1, . . . ,Xt} ≥ ε

∥∥ fff−a
∥∥

1

}
= P

{
t∧

i=1

(
Xi ≥ ε

∥∥ fff−a
∥∥

1

)}

=
t

∏
i=1

Pr{Xi ≥ ε
∥∥ fff−a

∥∥
1}

≤ 1
2t ,

and using our choice of t, this probability is at most δ . Thus, we have shown that, with high probability,

fa ≤ f̂a ≤ fa + ε
∥∥ fff−a

∥∥
1 ,

where the left inequality always holds, and the right inequality fails with probability at most δ .

The reason this estimate is weaker than that of Count Sketch is that its deviation is bounded by ε
∥∥ fff−a

∥∥
1, rather

than ε
∥∥ fff−a

∥∥
2. For all vectors zzz ∈ Rn, we have ∥zzz∥1 ≥ ∥zzz∥2. The inequality is tight when zzz has a single nonzero entry.

It is at its weakest when all entries of zzz are equal in absolute value: the two norms are then off by a factor of
√

n from
each other. Thus, the quality of the estimate of Count Sketch gets better (in comparison to Count-Min Sketch) as the
stream’s frequency vector gets more “spread out”.

5.5 Comparison of Frequency Estimation Methods

At this point, we have studied three methods to estimate frequencies of tokens in a stream. The following table throws
in a fourth method, and compares these methods by summarizing their key features.

Method f̂a− fa ∈ ·· · Space, O(·) Error Probability Model

Misra–Gries
[
− ε
∥∥ fff−a

∥∥
1 , 0
] 1

ε
(logm+ logn) 0 (deterministic) Cash register

CountSketch
[
− ε
∥∥ fff−a

∥∥
2 , ε

∥∥ fff−a
∥∥

2

] 1
ε2 log 1

δ
· (logm+ logn) δ (overall) Turnstile

Count-Min Sketch
[
0, ε

∥∥ fff−a
∥∥

1

] 1
ε

log 1
δ
· (logm+ logn) δ (upper bound) Cash register

Count/Median
[
− ε
∥∥ fff−a

∥∥
1 , ε

∥∥ fff−a
∥∥

1

] 1
ε

log 1
δ
· (logm+ logn) δ (overall) Turnstile

The claims in the first row can be proved by analyzing the Misra–Gries algorithm from Lecture 1 slightly differently.
The last row refers to an algorithm that maintains the same data structure as the Count-Min Sketch, but answers queries
by reporting the median of the values of the relevant counters, rather than the minimum. It is a simple (and instructive)
exercise to analyze this algorithm and prove the claims in the last row.

29

D
RA

FT

UNIT 5. FINDING FREQUENT ITEMS VIA (LINEAR) SKETCHING
Dartmouth: CS 35/135

Data Stream Algorithms

Exercises

5-1 Prove that for every integer n ≥ 1 and every vector zzz ∈ Rn, we have ∥zzz∥1 /
√

n ≤ ∥zzz∥2 ≤ ∥zzz∥1. For both
inequalities, determine when equality holds.

5-2 Write out the Count/Median algorithm formally and prove that it satisfies the properties claimed in the last row
of the above table.

5-3 Our estimate of ε
∥∥ fff−a

∥∥
2 on the absolute error of CountSketch is too pessimistic in many practical situations

where the data are highly skewed, i.e., where most of the weight of the vector fff is supported on a small “constant”
number of elements. To make this precise, we define fff res(ℓ)

−a to be the (n−1)-dimensional vector obtained by
dropping the ath entry of fff and then setting the ℓ largest (by absolute value) entries to zero.

Now consider the CountSketch estimate f̂a as computed by the algorithm in Sec 5.3.2 with the only change
being that k is set to 6/ε2. Prove that

P
{
| f̂a− fa| ≥ ε

∥∥∥ fff res(ℓ)
−a

∥∥∥
2

}
≤ δ ,

where ℓ= 1/ε2.

5-4 Consider a stream σ in the turnstile model, defining a frequency vector fff ≥ 000. The Count-Min Sketch solves the
problem of estimating f j, given j, but does not directly give us a quick way to identify, e.g., the set of elements
with frequency greater than some threshold. Fix this.

In greater detail: Let α be a constant with 0 < α < 1. We would like to maintain a suitable summary of the
stream (some enhanced version of Count-Min Sketch, perhaps?) so that we can, on demand, quickly produce
a set S ⊆ [n] satisfying the following properties w.h.p.: (1) S contains every j such that f j ≥ αF1; (2) S does
not contain any j such that f j < (α − ε)F1. Here, F1 = F1(σ) = ∥ fff∥1. Design a data stream algorithm that
achieves this. Your space usage, as well as the time taken to process each token and to produce the set S, should
be polynomial in the usual parameters, logm, logn, and 1/ε , and may depend arbitrarily on α .

30

D
RA

FT
Unit 6
Estimating Frequency Moments

6.1 Background and Motivation

We are in the vanilla streaming model. We have a stream σ = ⟨a1, . . . ,am⟩, with each a j ∈ [n], and this implicitly defines
a frequency vector fff = fff (σ) = (f1, . . . , fn). Note that f1 + · · ·+ fn = m. The kth frequency moment of the stream,
denoted Fk(σ) or simply Fk, is defined as follows:

Fk :=
n

∑
j=1

f k
j = ∥ fff∥k

k . (6.1)

Using the terminology “kth” suggests that k is a positive integer. But in fact the definition above makes sense
for every real k > 0. And we can even give it a meaning for k = 0, if we first rewrite the definition of Fk slightly:
Fk = ∑ j: f j>0 f k

j . With this definition, we get

F0 = ∑
j: f j>0

f 0
j = |{ j : f j > 0}| ,

which is the number of distinct tokens in σ . (We could have arrived at the same result by sticking with the original
definition of Fk and adopting the convention 00 = 0.)

We have seen that F0 can be (ε,δ)-approximated using space logarithmic in m and n. And F1 = m is trivial to
compute exactly. Can we say anything for general Fk? We shall investigate this problem in this and the next few lectures.

By way of motivation, note that F2 represents the size of the self join r ⋊⋉ r, where r is a relation in a database, with
f j denoting the frequency of the value j of the join attribute. Imagine that we are in a situation where r is a huge relation
and n, the size of the domain of the join attribute, is also huge; the tuples can only be accessed in streaming fashion (or
perhaps it is much cheaper to access them this way than to use random access). Can we, with one pass over the relation
r, compute a good estimate of the self join size? Estimation of join sizes is a crucial step in database query optimization.

The solution we shall eventually see for this F2 estimation problem will in fact allow us to estimate arbitrary
equi-join sizes (not just self joins). For now, though, we give an (ε,δ)-approximation for arbitrary Fk, provided k ≥ 2,
using space sublinear in m and n. The algorithm we present is due to Alon, Matias and Szegedy [AMS99], and is not
the best algorithm for the problem, though it is the easiest to understand and analyze.

6.2 The (Basic) AMS Estimator for Fk

We first describe a surprisingly simple basic estimator that gets the answer right in expectation, i.e., it is an unbiased
estimator. Eventually, we shall run many independent copies of this basic estimator in parallel and combine the results
to get our final estimator, which will have good error guarantees.

31

D
RA

FT

UNIT 6. ESTIMATING FREQUENCY MOMENTS
Dartmouth: CS 35/135

Data Stream Algorithms

The estimator works as follows. Pick a token from the stream σ uniformly at random, i.e., pick a position J ∈R [m].
Count the length, m, of the stream and the number, r, of occurrences of our picked token aJ in the stream from that
point on: r = |{ j ≥ J : a j = aJ}|. The basic estimator is then defined to be m(rk− (r−1)k).

The catch is that we don’t know m beforehand, and picking a token uniformly at random requires a little cleverness,
as seen in the pseudocode below. This clever way of picking a uniformly random stream element is called reservoir
sampling.

Algorithm 10 AMS basic estimator for frequency moments
Initialize:

1: (m,r,a)← (0,0,0)

Process (token j) :
2: m← m+1
3: with probability 1/m do
4: a← j
5: r← 0
6: if j = a then
7: r← r+1

Output: m(rk− (r−1)k)

This algorithm uses O(logm) bits to store m and r, plus ⌈logn⌉ bits to store the token a, for a total space usage of
O(logm+ logn). Although stated for the vanilla streaming model, it has a natural generalization to the cash register
model. It is a good homework exercise to figure this out.

6.3 Analysis of the Basic Estimator

First of all, let us agree that the algorithm does indeed compute r as described above. For the analysis, it will be
convenient to think of the algorithm as picking a random token from σ in two steps, as follows.

1. Pick a random token value, a ∈ [n], with P{a = j}= f j/m for each j ∈ [n].

2. Pick one of the fa occurrences of a in σ uniformly at random.

Let A and R denote the (random) values of a and r after the algorithm has processed σ , and let X denote its output.
Taking the above viewpoint, let us condition on the event A = j, for some particular j ∈ [n]. Under this condition, R
is equally likely to be any of the values {1, . . . , f j}, depending on which of the f j occurrences of j was picked by the
algorithm. Therefore,

E[X | A = j] = E[m(Rk− (R−1)k) | A = j] =
f j

∑
i=1

1
f j
·m(ik− (i−1)k) =

m
f j
(f k

j −0k) .

By the law of total expectation,

EX =
n

∑
j=1

P{A = j}E[X | A = j] =
n

∑
j=1

f j

m
· m

f j
· f k

j = Fk .

This shows that X is indeed an unbiased estimator for Fk.

We shall now bound VarX from above. Calculating the expectation as before, we have

VarX ≤ EX2 =
n

∑
j=1

f j

m

f j

∑
i=1

1
f j
·m2(ik− (i−1)k)2 = m

n

∑
j=1

f j

∑
i=1

(
ik− (i−1)k

)2
. (6.2)

32

D
RA

FT

UNIT 6. ESTIMATING FREQUENCY MOMENTS
Dartmouth: CS 35/135

Data Stream Algorithms

By the mean value theorem (from basic calculus), for all x≥ 1, there exists ξ (x) ∈ [x−1,x] such that

xk− (x−1)k = kξ (x)k−1 ≤ kxk−1 ,

where the last step uses k ≥ 1. Using this bound in (6.2), we get

VarX ≤ m
n

∑
j=1

f j

∑
i=1

kik−1
(

ik− (i−1)k
)

≤ m
n

∑
j=1

k f k−1
j

f j

∑
i=1

(
ik− (i−1)k

)
= m

n

∑
j=1

k f k−1
j f k

j

= kF1F2k−1 . (6.3)

For reasons we shall soon see, it will be convenient to bound VarX by a multiple of (EX)2, i.e., F2
k . To do so, we shall

use the following lemma.

Lemma 6.3.1. Let n > 0 be an integer and let x1, . . . ,xn ≥ 0 and k ≥ 1 be reals. Then(
∑xi

)(
∑x2k−1

i

)
≤ n1−1/k

(
∑xk

i

)2
,

where all the summations range over i ∈ [n].

Proof. We continue to use the convention that summations range over i ∈ [n]. Let x∗ = maxi∈[n] xi. Then, we have

xk−1
∗ =

(
xk
∗
)(k−1)/k ≤

(
∑xk

i

)(k−1)/k
. (6.4)

Since k ≥ 1, by the power mean inequality (or directly, by the convexity of the function x 7→ xk), we have

1
n ∑xi ≤

(
1
n ∑xk

i

)1/k

. (6.5)

Using (6.4) and (6.5) in the second and third steps (respectively) below, we compute(
∑xi

)(
∑x2k−1

i

)
≤
(
∑xi

)(
xk−1
∗ ∑xk

i

)
≤
(
∑xi

)(
∑xk

i

)(k−1)/k(
∑xk

i

)
≤ n1−1/k

(
∑xk

i

)1/k(
∑xk

i

)(k−1)/k(
∑xk

i

)
= n1−1/k

(
∑xk

i

)2
,

which completes the proof.

Using the above lemma in (6.3), with x j = f j, we get

VarX ≤ kF1F2k−1 ≤ kn1−1/kF2
k . (6.6)

33

D
RA

FT

UNIT 6. ESTIMATING FREQUENCY MOMENTS
Dartmouth: CS 35/135

Data Stream Algorithms

6.4 The Final Estimator and Space Bound

Our final Fk estimator, which gives us good accuracy guarantees, is obtained by combining several independent basic
estimators and using the median-of-means improvement (Lemma 4.4.1 in Section 4.4). By that lemma, we can obtain
an (ε,δ)-estimator for Fk by combining O(tε−2 logδ−1) independent copies of the basic estimator X , where

t =
VarX
(EX)2 ≤

kn1−1/kF2
k

F2
k

= kn1−1/k .

As noted above, the space used to compute each copy of X , using Algorithm 10, is O(logm+ logn), leading to a
final space bound of

O
(

1
ε2 log

1
δ
· kn1−1/k(logm+ logn)

)
= Õ(ε−2n1−1/k) . (6.7)

6.4.1 The Soft-O Notation

For the first time in this book, we have a space bound that is sublinear, but not polylogarithmic, in n (or m). In such cases
it is convenient to adopt an Õ-notation, also known as a “soft-O” notation, which suppresses factors polynomial in logm,
logn, logε−1, and logδ−1. We have adopted this notation in eq. (6.7), leading to the memorable form Õ(ε−2n1−1/k).
Note that we are also treating k as a constant here.

The above bound is good, but not optimal, as we shall soon see. The optimal bound (upto polylogarithmic factors)
is Õ(ε−2n1−2/k) instead; there are known lower bounds of Ω(n1−2/k) and Ω(ε−2). We shall see how to achieve this
better upper bound in a subsequent unit.

34

D
RA

FT
Unit 7
The Tug-of-War Sketch

At this point, we have seen a sublinear-space algorithm — the AMS estimator — for estimating the kth frequency
moment, Fk = f k

1 + · · ·+ f k
n , of a stream σ . This algorithm works for k ≥ 2, and its space usage depends on n as

Õ(n1−1/k). This fails to be polylogarithmic even in the important case k = 2, which we used as our motivating example
when introducing frequency moments in the previous lecture. Also, the algorithm does not produce a sketch in the
sense of Section 5.2.

But Alon, Matias and Szegedy [AMS99] also gave an amazing algorithm that does produce a sketch—a linear
sketch of merely logarithmic size—which allows one to estimate F2. What is amazing about the algorithm is that seems
to do almost nothing.

7.1 The Basic Sketch

We describe the algorithm in the turnstile model.

Algorithm 11 Tug-of-War Sketch for F2

Initialize:
1: Choose a random hash function h : [n]→{−1,1} from a 4-universal family
2: z← 0

Process (token (j,c)) :
3: z← z+ ch(j)

Output: z2

The sketch is simply the random variable z. It is pulled in the positive direction by those tokens j that have h(j) = 1
and is pulled in the negative direction by the rest of the tokens; hence the name Tug-of-War Sketch. Clearly, the absolute
value of z never exceeds f1 + · · ·+ fk = m, so it takes O(logm) bits to store this sketch. It also takes O(logn) bits to
store the hash function h, for an appropriate 4-universal family.

35

D
RA

FT

UNIT 7. THE TUG-OF-WAR SKETCH
Dartmouth: CS 35/135

Data Stream Algorithms

7.1.1 The Quality of the Estimate

Let Z denote the value of z after the algorithm has processed σ . For convenience, define Yj = h(j) for each j ∈ [n].
Then Z = ∑

n
j=1 f jYj. Note that Y 2

j = 1 and EYj = 0, for each j. Therefore,

EZ2 = E
[n

∑
j=1

f 2
j Y 2

j +
n

∑
i=1

n

∑
j=1
j ̸=i

fi f jYiYj

]
=

n

∑
j=1

f 2
j +

n

∑
i=1

n

∑
j=1
j ̸=i

fi f j EYiEYj = F2 ,

where we used the fact that {Yj} j∈[n] are pairwise independent (in fact, they are 4-wise independent, because h was
picked from a 4-universal family). This shows that the algorithm’s output, Z2, is indeed an unbiased estimator for F2.

The variance of the estimator is VarZ2 = EZ4− (EZ2)2 = EZ4−F2
2 . We bound this as follows. By linearity of

expectation, we have

EZ4 =
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
ℓ=1

fi f j fk fℓE[YiYjYkYℓ] .

Suppose one of the indices in (i, j,k, ℓ) appears exactly once in that 4-tuple. Without loss of generality, we have
i /∈ { j,k, ℓ}. By 4-wise independence, we then have E[YiYjYkYℓ] = EYi ·E[YjYkYℓ] = 0, because EYi = 0. It follows that
the only potentially nonzero terms in the above sum correspond to those 4-tuples (i, j,k, ℓ) that consist either of one
index occurring four times, or else two distinct indices occurring twice each. Therefore we have

EZ4 =
n

∑
j=1

f 4
j EY 4

j +6
n

∑
i=1

n

∑
j=i+1

f 2
i f 2

j E[Y 2
i Y 2

j] = F4 +6
n

∑
i=1

n

∑
j=i+1

f 2
i f 2

j ,

where the coefficient “6” corresponds to the
(4

2

)
= 6 permutations of (i, i, j, j) with i ̸= j. Thus,

VarZ2 = F4−F2
2 +6

n

∑
i=1

n

∑
j=i+1

f 2
i f 2

j

= F4−F2
2 +3

((n

∑
j=1

f 2
j

)2
−

n

∑
j=1

f 4
j

)
= F4−F2

2 +3(F2
2 −F4)≤ 2F2

2 .

7.2 The Final Sketch

As before, having bounded the variance, we can design a final sketch from the above basic sketch by a median-of-means
improvement. By Lemma 4.4.1, this will blow up the space usage by a factor of

VarZ2

(EZ2)2 ·O
(

1
ε2 log

1
δ

)
≤ 2F2

2

F2
2
·O
(

1
ε2 log

1
δ

)
= O

(
1
ε2 log

1
δ

)
in order to give an (ε,δ)-estimate. Thus, we have estimated F2 using space O(ε−2 log(δ−1)(logm+ logn)), with a
sketching algorithm that in fact computes a linear sketch.

7.2.1 A Geometric Interpretation

The AMS Tug-of-War Sketch has a nice geometric interpretation. Consider a final sketch that consists of t independent
copies of the basic sketch. Let MMM ∈ Rt×n be the matrix that “transforms” the frequency vector fff into the t-dimensional
sketch vector yyy. Note that MMM is not a fixed matrix but a random matrix with ±1 entries: it is drawn from a certain
distribution described implicitly by the hash family. Specifically, if Mi j denotes the (i, j)-entry of MMM, then Mi j = hi(j),
where hi is the hash function used by the ith basic sketch.

36

D
RA

FT

UNIT 7. THE TUG-OF-WAR SKETCH
Dartmouth: CS 35/135

Data Stream Algorithms

Let t = 6/ε2. By stopping the analysis in Lemma 4.4.1 after the Chebyshev step (and before the “median trick”
Chernoff step), we obtain that

P

{∣∣∣∣1t t

∑
i=1

y2
i −F2

∣∣∣∣≥ εF2

}
≤ 1

3
,

where the probability is taken with respect to the above distribution of MMM, resulting in a random sketch vector
yyy = (y1, . . . ,yt). Thus, with probability at least 2/3, we have∥∥∥∥ 1√

t
MMM fff
∥∥∥∥

2
=

1√
t
∥yyy∥2 ∈

[√
1− ε ∥ fff∥2 ,

√
1+ ε ∥ fff∥2

]
⊆
[
(1− ε)∥ fff∥2 ,(1+ ε)∥ fff∥2

]
. (7.1)

This can be interpreted as follows. The (random) matrix MMM/
√

t performs a dimension reduction, simplifying an
n-dimensional vector fff to a t-dimensional sketch yyy—with t = O(1/ε2)—while preserving ℓ2-norm within a (1± ε)
factor. Of course, this is only guaranteed to happen with probability at least 2/3. But clearly this correctness probability
can be boosted to an arbitrary constant less than 1, while keeping t = O(1/ε2).

The “amazing” AMS sketch now feels quite natural, under this geometric interpretation. We are using dimension
reduction to maintain a low-dimensional image of the frequency vector. This image, by design, has the property that its
ℓ2-length approximates that of the frequency vector very well. Which of course is what we’re after, because the second
frequency moment, F2, is just the square of the ℓ2-length.

Since the sketch is linear, we now also have an algorithm to estimate the ℓ2-difference ∥ fff (σ)− fff (σ ′)∥2 between
two streams σ and σ ′.

Exercises

7-1 In Section 6.1, we noted that F2 represents the size of a self join in a relational database and remarked that our
F2 estimation algorithm would allow us to estimate arbitrary equi-join sizes (not just self joins). Justify this by
designing a sketch that can scan a relation in one streaming pass such that, based on the sketches of two different
relations, we can estimate the size of their join. Explain how to compute the estimate.

Recall that for two relations (i.e., tables in a database) r(A,B) and s(A,C), with a common attribute (i.e.,
column) A, we define the join r ⋊⋉ s to be a relation consisting of all tuples (a,b,c) such that (a,b) ∈ r and
(a,c) ∈ s. Therefore, if fr, j and fs, j denote the frequencies of j in the first columns (i.e., “A”-columns) of r and s,
respectively, and j can take values in [n], then the size of the join is ∑

n
j=1 fr, j fs, j.

7-2 As noted in Section 7.2.1, the t×n matrix that realizes the tug-of-war sketch has every entry in {−1/
√

t,1/
√

t}:
in particular, every entry is nonzero. Therefore, in a streaming setting, updating the sketch in response to a
token arrival takes Θ(t) time, under the reasonable assumption that the processor can perform arithmetic on
Θ(logn)-bit integers in constant time.

Consider the matrix PPP ∈ Rt×n given by

Pi j =

{
g(j) , if i = h(j) ,
0 , otherwise,

where hash functions g : [n]→{−1,1} and h : [n]→ [t] are drawn from a k1-universal and a k2-universal family,
respectively. Show that using PPP as a sketch matrix (for some choice of constants k1 and k2) leads to dimension
reduction guarantees similar to eq. (7.1). What is the per-token update time achievable using PPP as the sketch
matrix?

37

D
RA

FT
Unit 8
Estimating Norms Using Stable Distributions

As noted at the end of Unit 7, the AMS Tug-of-War sketch allows us to estimate the ℓ2-difference between two data
streams. Estimating similarity metrics between streams is an important class of problems, so it is nice to have such a
clean solution for this specific metric.

However, this raises a burning question: Can we do the same for other ℓp norms, especially the ℓ1 norm? The
ℓ1-difference between two streams can be interpreted (modulo appropriate scaling) as the total variation distance (a.k.a.,
statistical distance) between two probability distributions: a fundamental and important metric. Unfortunately, although
our log-space F2 algorithm automatically gave us a log-space ℓ2 algorithm, the trivial log-space F1 algorithm works
only in the cash register model and does not give an ℓ1 algorithm at all.

It turns out that thinking harder about the geometric interpretation of the AMS Tug-of-War Sketch leads us on a path
to polylogarithmic space ℓp norm estimation algorithms, for all p∈ (0,2]. Such algorithms were given by Indyk [Ind06],
and we shall study them now. For the first time in this course, it will be necessary to gloss over several technical details
of the algorithms, so as to have a clear picture of the important ideas.

8.1 A Different ℓℓℓ222 Algorithm

The length-preserving dimension reduction achieved by the Tug-of-War Sketch is reminiscent of the famous Johnson-
Lindenstrauss Lemma [JL84, FM88]. One high-level way of stating the JL Lemma is that the random linear map
given by a t × n matrix whose entries are independently drawn from the standard normal distribution N (0,1) is
length-preserving (up to a scaling factor) with high probability. To achieve 1± ε error, it suffices to take t = O(1/ε2).
Let us call such a matrix a JL Sketch matrix. Notice that the sketch matrix for the Tug-of-War sketch is a very similar
object, except that

1. its entries are uniformly distributed in {−1,1}: a much simpler distribution;

2. its entries do not have to be fully independent: 4-wise independence in each row suffices; and

3. it has a succinct description: it suffices to describe the hash functions that generate the rows.

The above properties make the Tug-of-War Sketch “data stream friendly”. But as a thought experiment one can
consider an algorithm that uses a JL Sketch matrix instead. It would give a correct algorithm for ℓ2 estimation, except
that its space usage would be very large, as we would have to store the entire sketch matrix. In fact, since this
hypothetical algorithm calls for arithmetic with real numbers, it is unimplementable as stated.

Nevertheless, this algorithm has something to teach us, and will generalize to give (admittedly unimplementable) ℓp
algorithms for each p ∈ (0,2]. Later we shall make these algorithms realistic and space-efficient. For now, we consider
the basic sketch version of this algorithm, i.e., we maintain just one entry of MMM fff , where MMM is a JL Sketch matrix. The
pseudocode below shows the operations involved.

38

D
RA

FT

UNIT 8. ESTIMATING NORMS USING STABLE DISTRIBUTIONS
Dartmouth: CS 35/135

Data Stream Algorithms

Algorithm 12 Sketch for ℓ2 based on normal distribution
Initialize:

1: Choose Y1, . . . ,Yn independently, each from N (0,1)
2: z← 0

Process (token (j,c)) :
3: z← z+ cYj

Output: z2

Let Z denote the value of x when this algorithm finishes processing σ . Then Z = ∑
n
j=1 f jYj. From basic statistics,

using the independence of the collection {Yj} j∈[n], we know that Z has the same distribution as ∥ fff∥2 Y , where
Y ∼N (0,1). This is a fundamental property of the normal distribution.1 Therefore, we have EZ2 = ∥ fff∥2

2 = F2, which
gives us our unbiased estimator for F2.

8.2 Stable Distributions

The fundamental property of the normal distribution that was used above has a generalization, which is the key to
generalizing this algorithm. The next definition captures the general property.

Definition 8.2.1. Let p > 0 be a real number. A probability distribution Dp over the reals is said to be p-stable if for
all integers n≥ 1 and all c = (c1, . . . ,cn) ∈ Rn, the following property holds. If X1, . . . ,Xn are independent and each
Xi ∼Dp, then c1X1 + · · ·+ cnXn has the same distribution as c̄X , where X ∼Dp and

c̄ =
(
cp

1 + · · ·+ cp
n
)1/p

= ∥c∥p .

The concept of stable distributions dates back to Lévy [Lév54] and is more general than what we need here. It
is known that p-stable distributions exist for all p ∈ (0,2], and do not exist for any p > 2. The fundamental property
above can be stated simply as: “The standard normal distribution is 2-stable.”

Another important example of a stable distribution is the Cauchy distribution, which can be shown to be 1-stable.
Just as the standard normal distribution has density function

φ(x) =
1√
2π

e−x2/2 ,

the Cauchy distribution also has a density function expressible in closed form as

c(x) =
1

π(1+ x2)
.

But what is really important to us is not so much that the density function of Dp be expressible in closed form, but that
it be easy to generate random samples drawn from Dp. The Chambers-Mallows-Stuck method [CMS76] gives us the
following simple algorithm. Let

X =
sin(pθ)

(cosθ)1/p

(
cos((1− p)θ)

ln(1/r)

)(1−p)/p

,

where (θ ,r) ∈R [−π/2,π/2]× [0,1]. Then the distribution of X is p-stable.

Replacing N (0,1) with Dp in the above pseudocode, where Dp is p-stable, allows us to generate a random variable
distributed according to Dp “scaled” by ∥ fff∥p. Note that the scaling factor ∥ fff∥p is the quantity we want to estimate. To
estimate it, we shall simply take the median of a number of samples from the scaled distribution, i.e., we shall maintain
a sketch consisting of several copies of the basic sketch and output the median of (the absolute values of) the entries of
the sketch vector. Here is our final “idealized” sketch.

1The proof of this fact is a nice exercise in calculus.

39

D
RA

FT

UNIT 8. ESTIMATING NORMS USING STABLE DISTRIBUTIONS
Dartmouth: CS 35/135

Data Stream Algorithms

Algorithm 13 Indyk’s sketch for ℓp estimation
Initialize:

1: M[1 . . . t][1 . . .n]← tn independent samples from Dp, where t = O(ε−2 log(δ−1))

2: z[1 . . . t]← 0⃗

Process (token (j,c)) :
3: for i = 1 to t do
4: z[i]← z[i]+ cM[i][j]

Output: median1≤i≤t |zi|/ median(|Dp|)

8.3 The Median of a Distribution and its Estimation

To analyze this algorithm, we need the concept of the median of a probability distribution over the reals. Let D be an
absolutely continuous distribution, let φ be its density function, and let X ∼D . A median of D is a real number µ that
satisfies

1
2
= P{X ≤ µ}=

∫
µ

−∞

φ(x)dx .

The distributions that we are concerned with here are nice enough to have uniquely defined medians; we will simply
speak of the median of a distribution. For such a distribution D , we will denote this unique median as median(D).

For a distribution D , with density function φ , we denote by |D | the distribution of the absolute value of a random
variable drawn from D . It is easy to show that the density function of |D | is ψ , where

ψ(x) =

{
2φ(x) , if x≥ 0
0 if x < 0 .

For p ∈ (0,2] and c ∈ R, let φp,c denote the density function of the distribution of c|X |, where X ∼Dp, and let µp,c
denote the median of this distribution. Note that

φp,c(x) =
1
c

φp,1

(x
c

)
, and µp,c = cµp,1 .

Let Zi denote the final value of zi after Algorithm 13 has processed σ . By the earlier discussion, and the defintion
of p-stability, we see that Zi ≡ ∥ fff∥p Z, where Z ∼ Dp. Therefore, |Zi|/median(|Dp|) has a distribution whose
density function is φp,λ , where λ = ∥ fff∥p /median(|Dp|) = ∥ fff∥p /µp,1. Thus, the median of this distribution is
µp,λ = λ µp,1 = ∥ fff∥p.

The algorithm—which seeks to estimate ∥ fff∥p—can thus be seen as attempting to estimate the median of an
appropriate distribution by drawing t = O(ε−2 logδ−1) samples from it and outputting the sample median. We now
show that this does give a fairly accurate estimate.

8.4 The Accuracy of the Estimate

Lemma 8.4.1. Let ε > 0, and let D be a distribution over R with density function φ , and with a unique median µ > 0.
Suppose that φ is absolutely continuous on [(1− ε)µ,(1+ ε)µ] and let φ∗ = min{φ(z) : z ∈ [(1− ε)µ,(1+ ε)µ]}. Let
Y = median1≤i≤t Zi, where Z1, . . . ,Zt are independent samples from D . Then

P{|Y −µ| ≥ εµ} ≤ 2exp
(
−2

3
ε

2
µ

2
φ

2
∗ t
)
.

Proof. We bound P{Y < (1− ε)µ} from above. A similar argument bounds P{Y > (1+ ε)µ} and to complete the
proof we just add the two bounds.

40

D
RA

FT

UNIT 8. ESTIMATING NORMS USING STABLE DISTRIBUTIONS
Dartmouth: CS 35/135

Data Stream Algorithms

Let Φ(y) =
∫ y
−∞

φ(z)dz be the cumulative distribution function of D . Then, for each i ∈ [t], we have

P{Zi < (1− ε)µ}=
∫

µ

−∞

φ(z)dz−
∫

µ

(1−ε)µ
φ(z)dz

=
1
2
−Φ(µ)+Φ((1− ε)µ)

=
1
2
− εµφ(ξ) ,

for some ξ ∈ [(1− ε)µ,µ], where the last step uses the mean value theorem and the fundamental theorem of calculus:
Φ′ = φ . Let α be defined by (

1
2
− εµφ(ξ)

)
(1+α) =

1
2
. (8.1)

Let N = |{i ∈ [t] : Zi < (1− ε)µ}|. By linearity of expectation, we have EN = (1
2 − εµφ(ξ))t. If the sample median,

Y , falls below a limit λ , then at least half the Zis must fall below λ . Therefore

P{Y < (1− ε)µ} ≤ P{N ≥ t/2}= P{N ≥ (1+α)EN} ≤ exp(−ENα
2/3) ,

by a standard Chernoff bound. Now, from (8.1), we derive ENα = εµφ(ξ)t and α ≥ 2εµφ(ξ). Therefore

P{Y < (1− ε)µ} ≤ exp
(
−2

3
ε

2
µ

2
φ(ξ)2t

)
≤ exp

(
−2

3
ε

2
µ

2
φ

2
∗ t
)
.

To apply the above lemma to our situation we need an estimate for φ∗. We will be using the lemma with φ = φp,λ
and µ = µp,λ = ∥ fff∥p, where λ = ∥ fff∥p /µp,1. Therefore,

µφ∗ = µp,λ ·min{φp,λ (z) : z ∈ [(1− ε)µp,λ ,(1+ ε)µp,λ]}

= λ µp,1 ·min
{

1
λ

φp,1

(z
λ

)
: z ∈ [(1− ε)λ µp,1,(1+ ε)λ µp,1]

}
= µp,1 ·min{φp,1(y) : y ∈ [(1− ε)µp,1,(1+ ε)µp,1]} ,

which is a constant depending only on p: call it cp. Thus, by Lemma 8.4.1, the output Y of the algorithm satisfies

P
{∣∣Y −∥ fff∥p

∣∣≥ ε ∥ fff∥p

}
≤ exp

(
−2

3
ε

2c2
pt
)
≤ δ ,

for the setting t = (3/(2c2
p))ε

−2 log(δ−1).

8.5 Annoying Technical Details

There are two glaring issues with the “idealized” sketch we have just discussed and proven correct. As stated, we do not
have a proper algorithm to implement the sketch, because

• the sketch uses real numbers, and algorithms can only do bounded-precision arithmetic; and

• the sketch depends on a huge matrix — with n columns — that does not have a convenient implicit representation.

We will not go into the details of how these matters are resolved, but here is an outline.

We can approximate all real numbers involved by rational numbers with sufficient precision, while affecting the
output by only a small amount. The number of bits required per entry of the matrix M is only logarithmic in n, 1/ε and
1/δ .

We can avoid storing the matrix M explicitly by using a pseudorandom generator (PRG) designed to work with
space-bounded algorithms. One such generator is given by a theorem of Nisan [Nis90]. Upon reading an update
to a token j, we use the PRG (seeded with j plus the initial random seed) to generate the jth column of M. This
transformation blows up the space usage by a factor logarithmic in n and adds 1/n to the error probability.

41

D
RA

FT
Unit 9
Sparse Recovery

We have seen several algorithms that maintain a small linear sketch of an evolving vector fff (that undergoes turnstile
updates) and then answer questions about fff using this sketch alone. When fff is arbitrary, such sketches must necessarily
throw away most of the information in fff due to size constraints. However, when fff itself holds only a small amount of
information—for instance, by having at most s many nonzero coordinates—it is reasonable to ask whether such a linear
sketch can allow a complete reconstruction of fff on demand. This is the problem of sparse recovery.

Sparse recovery is an important area of research first studied extensively in the world of signal processing (especially
for the problem of image acquisition), where it also goes by such names as compressed sensing and compressive
sensing. It has many connections to topics throughout computer science and mathematics [GI10]. We will focus on a
clean version of the problem, rather than the most general version.

9.1 The Problem

We are in the turnstile streaming model. Stream tokens are of the form (j,c), where j ∈ [n] and c ∈ Z and have the
usual meaning “ f j← f j + c.” The net result is to build a frequency vector fff ∈ Zn. We will need a bound on how large
the individual entries of fff can get: we assume that ∥ fff∥

∞
:= max j∈[n] | f j| ≤M at all times. One often assumes that

M = poly(n), so that logM = Θ(logn).

The support of a vector vvv = (v1, . . . ,vn) is defined to be the set of indices where the vector is nonzero:

suppvvv = { j ∈ [n] : v j ̸= 0} .

We say that vvv is s-sparse if |suppvvv| ≤ s, and the cardinality |suppvvv| is called the sparsity of vvv.

The streaming s-sparse recovery problem is to maintain a sketch yyy of the vector fff , as the stream comes in, so that if
fff ends up being s-sparse, it can be recovered from yyy, and otherwise we can detect the non-sparsity. Think s≪ n. We
would like our sketch size to be “not much bigger” than s, with the dependence on the ambient dimension n being only
polylogarithmic.

9.2 Special case: 111-sparse recovery

An important special case is s = 1, i.e., the problem of 1-sparse recovery. Let us first consider a promise version of the
problem, where it is guaranteed that the final frequency vector fff resulting from the stream is indeed 1-sparse.

For this, consider the following very simple deterministic algorithm: maintain the population size ℓ (the net number

42

D
RA

FT

UNIT 9. SPARSE RECOVERY
Dartmouth: CS 35/135

Data Stream Algorithms

of tokens seen) and the frequency-weighted sum z of all token values seen. In other words,

ℓ=
n

∑
j=1

f j ; z =
n

∑
j=1

j f j .

Since fff is 1-sparse, fff = λeeei for some i ∈ [n] and λ ∈ Z, where eeei is the standard basis vector that has a 1 entry at index
i and 0 entries elsewhere. Therefore, ℓ= λ and z = i fi = iλ = iℓ. It follows that we can recover fff using

fff =

{
000 , if ℓ= 0 ,
ℓeeez/ℓ , otherwise.

Of course, in the absence of the promise, the above technique cannot detect whether fff is indeed 1-sparse.

To solve the more general problem of 1-sparse detection and recovery, we employ the important idea of fingerprint-
ing. Informally speaking, a fingerprint is a randomized mapping from a large object to a much smaller sketch with the
property that two distinct large objects will very likely have distinct sketches, just as two distinct humans will very
likely have distinct fingerprints. In computer science, an often-used technique is to treat the large object as a polynomial
and use a random evaluation of that polynomial as its fingerprint.

These ideas are incorporated into the algorithm below, which is parametrized by a finite field F, the size of which
affects the eventual error probability. As we shall see, a good choice for F is one with n3 < |F| ≤ 2n3. We know that we
can always find a finite field (in fact a prime field) with size in this range.

Algorithm 14 Streaming 1-sparse detection and recovery
Initialize:

1: (ℓ,z, p)← (0,0,0) ▷ (population, sum, fingerprint)
2: r← uniform random element of finite field F ▷ |F| controls the error probability

Process (token (j,c)) :
3: ℓ← ℓ+ c
4: z← z+ c j
5: p← p+ cr j

Output:
6: if ℓ= z = p = 0 then declare fff = 000 ▷ very likely correct
7: else if z/ℓ /∈ [n] then declare ∥ fff∥0 > 1 ▷ definitely correct
8: else if p ̸= ℓrz/ℓ then declare ∥ fff∥0 > 1 ▷ definitely correct
9: else

10: declare fff = ℓeeez/ℓ ▷ very likely correct

9.3 Analysis: Correctness, Space, and Time

Let R be the random value of r picked in the initialization. The final values of ℓ, z, and p computed by Algorithm 14 are

ℓ=
n

∑
j=1

f j , (9.1)

z =
n

∑
j=1

j f j , (9.2)

p =
n

∑
j=1

f jR j = q(R) , (9.3)

43

D
RA

FT

UNIT 9. SPARSE RECOVERY
Dartmouth: CS 35/135

Data Stream Algorithms

where q(X) ∈ F[X] is the polynomial q(X) = ∑
n
j=1 f jX j. This polynomial q(X) is naturally in 1-to-1 correspondence

with the vector fff : coefficients of the polynomial correspond to entries in the vector.

Consider the case when fff is indeed 1-sparse: say fff = λeeei. As before, we have ℓ= λ and z = iℓ. So, z/ℓ= i ∈ [n]
and p = fiRi = ℓRz/ℓ. In the subcase fff = 000, this makes p = 0 and the algorithm gives a correct output, by the logic of
line 6. In the subcase ∥ fff∥0 = 1, the algorithm reaches line 10 and thus gives a correct output. Overall, we see that there
are no false negatives.

Consider the case when fff is not 1-sparse. Then, for certain “bad” choices of R, Algorithm 14 might err by giving
a false positive. To be precise, an error happens when ℓ = z = p = 0 in line 6 or z/ℓ happens to lie in [n] and then
p = ℓRz/ℓ in line 8. These cases can be “cleverly” combined by defining

i =

{
0 , if ℓ= z = 0 or z/ℓ /∈ [n] ,
z/ℓ, otherwise.

A false positive happens only if q(R)− ℓRi = 0, i.e., only if R is a root of the polynomial q(X)− ℓX i. This latter
polynomial has degree at most n and is not the zero polynomial, since q(X) has at least two nonzero coefficients. Recall
the following basis theorem from algebra.

Theorem 9.3.1. Over any field, a nonzero polynomial of degree d has at most d roots.

By Theorem 9.3.1, q(X)− ℓX i has at most n roots. Since R is drawn uniformly from F,

P{false positive} ≤ n
|F|

= O
(

1
n2

)
, (9.4)

by choosing F such that n3 < |F| ≤ 2n3.

For the space and time cost analysis, suppose that |F| = Θ(n3). Algorithm 14 maintains the values ℓ,z, p, and
r. Recall that ∥ fff∥

∞
≤ M at all times. By eqs. (9.1) and (9.2), |ℓ| ≤ nM and |z| ≤ n2M; so ℓ and z take up at most

O(logn+ logM) bits of space. Since p and r lie in F, they take up at most ⌈log |F|⌉= O(logn) bits of space. Overall,
the space usage is O(logn+ logM), which is Õ(1) under the standard (and reasonable) assumption that M = poly(n).

Assume, further, that the processor has a word size of Θ(logn). Then, by using repeated squaring for the computation
of r j, the processing of each token takes O(logn) arithmetic operations and so does the post-processing to produce the
output. We have thus proved the following result.

Theorem 9.3.2. Given turnstile updates to a vector fff ∈ Zn where ∥ fff∥
∞
= poly(n), the 1-sparse detection and recovery

problem for fff can be solved with error probability O(1/n) using a linear sketch of size Õ(1). The sketch can be updated
in Õ(1) time per token and the final output can be computed in Õ(1) time from the sketch.

9.4 General Case: sss-sparse Recovery

We turn to the general case. Let s≪ n be a parameter. We would like to recover the vector fff exactly, provided ∥ fff∥0 ≤ s,
and detect that ∥ fff∥0 > s if not. Our solution will make use of the above 1-sparse recovery sketch as a black-box data
structure, denoted D . When an instance of D produces an actual 1-sparse vector as output, let’s say that it reports
positive; otherwise, let’s say that it reports negative. Remember that there are no false negatives and that a false positive
occurs with probability O(1/n).

The basic idea behind the algorithm is to hash the universe [n] down to the range [2s], thereby splitting the input
stream into 2s sub-streams, each consisting of items that hash to a particular target. This range size is large enough to
single out any particular item in supp fff , causing the sub-stream containing that item to have a 1-sparse frequency vector.
By repeating this idea some number of times, using independent hashes, we get the desired outcome. The precise logic
is given in Algorithm 15 below.

Clearly, the space usage of this algorithm is dominated by the 2st copies of D . Plugging in the value of t and our
previous space bound on D , the overall space usage is

O
(
s(logs+ logδ

−1)(logn+ logM)
)
.

44

D
RA

FT

UNIT 9. SPARSE RECOVERY
Dartmouth: CS 35/135

Data Stream Algorithms

Algorithm 15 Streaming s-sparse recovery
Initialize:

1: t← ⌈log(s/δ)⌉ ▷ δ controls the failure probability
2: D[1 . . . t][1 . . .2s]← 0⃗ ▷ each D[i][k] is a copy of D
3: Choose independent hash functions h1, . . .ht : [n]→ [2s], each from a 2-universal family

Process (token (j,c)) :
4: foreach i ∈ [t] do
5: update D[i][hi(j)] with token (j,c)

Output:
6: A← (empty associative array)
7: foreach i ∈ [t], k ∈ [2s] do ▷ query all copies of D and collate outputs
8: if D[i][k] reports positive and outputs λeeea where λ ̸= 0 then
9: if a ∈ keys(A) and A[a] ̸= λ then abort

10: A[a]← λ

11: if |keys(A)|> s then abort
12: declare fff = ∑a∈keys(A) A[a]eeea

Turning to the error analysis, suppose that fff is indeed s-sparse and that supp fff ⊆ { j1, . . . , js}. Notice that the
data structure D[i][k] sketches the sub-stream consisting of those tokens (j,c) for which hi(j) = k. This sub-stream is
1-sparse if there is at most one j ∈ supp fff such that hi(j) = k. Therefore, Algorithm 15 correctly outputs fff if both of
the following happen.

[SR1] For each j ∈ supp fff , there exists i ∈ [t] such that h−1
i (hi(j))∩ supp fff = { j}.

[SR2] None of the 2st copies of D gives a false positive.

Consider a particular item j ∈ supp fff . For each i ∈ [t],

P
{

h−1
i (hi(j))∩ supp fff ̸= { j}

}
= P

{
∃ j′ ∈ supp fff : j′ ̸= j∧hi(j′) = hi(j)

}
≤ ∑

j′∈supp fff
j′ ̸= j

P
{

hi(j′) = hi(j)
}

≤ ∑
j′∈supp fff

j′ ̸= j

1
2s
≤ 1

2
,

where the penultimate step uses the 2-universality property. By the mutual independence of the t hash functions,

P{SR1 fails for item j}=
t

∏
i=1

P
{

h−1
i (hi(j))∩ supp fff ̸= { j}

}
≤
(

1
2

)t

≤ δ

s
.

By a union bound over the items in supp fff ,

P(¬ SR1)≤ |supp fff | · δ
s
≤ δ .

By another union bound over the copies of D , using the false positive rate bound from eq. (9.4),

P(¬ SR2)≤ 2st ·O
(

1
n2

)
= o(1) ,

since s≤ n. Overall, the probability that the recovery fails is at most δ +o(1).

45

D
RA

FT

UNIT 9. SPARSE RECOVERY
Dartmouth: CS 35/135

Data Stream Algorithms

Theorem 9.4.1. Given turnstile updates to a vector fff ∈ Zn where ∥ fff∥
∞
= poly(n), the s-sparse recovery problem for

fff can be solved with error probability δ using a linear sketch of size O(s log(s/δ) logn).

With just a little more work (and analysis), we can solve the s-sparse detection and recovery problem as well. This
is left as an exercise.

Exercises

9-1 Suppose that in Algorithm 14, we modified line 6 to declare fff = 000 whenever ℓ= z = 0, without using the value
of p. Would this still be correct? Why?

9-2 As described and analyzed, Algorithm 15 requires the vector fff to be s-sparse. Explain clearly why it does not
already solve the problem of detecting whether this s-sparsity condition holds. Make a simple enhancement to
the algorithm to enable this detection and analyze your modified algorithm to prove that it works.

46

D
RA

FT
Unit 10
Weight-Based Sampling

The problem of sampling a coordinate at random from a high-dimensional vector is important both in its own right
and as a key primitive for other, more advanced, data stream algorithms [JW18]. For instance, consider a stream
of visits by customers to the busy website of some business or organization. An analyst might want to sample one
or a few customers according to some distribution defined by the frequencies of various customers’ visits. Letting
fff ∈ Zn be the vector of frequencies (as usual), we would like to pick a coordinate i ∈ [n] according to some distribution
πππ = (π1, . . . ,πn) ∈ [0,1]n. Here are three specific examples of distributions we may want to sample from.

• Sample a customer uniformly from the set of all distinct customers who visited the website. In our formalism,
πi = 1/∥ fff∥0 for each i ∈ supp fff and πi = 0 for all other i ∈ [n]. This is called ℓ0-sampling.

• Sample a customer with probability proportional to their visit frequency. In our formalism, πi = | fi|/∥ fff∥1. This
is called ℓ1-sampling.

• Sample a customer with frequent visitor weighted disproportionately highly, for instance, proportional to the
square of their visit frequency. In our formalism, πi = f 2

i /∥ fff∥2
2. More generally, one can consider πi =

| fi|p/∥ fff∥p
p, for a parameter p > 0. This is called ℓp-sampling.

10.1 The Problem

We shall study an algorithm for approximate ℓ0 sampling and then one for approximate ℓ2-sampling: these algorithms
are “approximate” because the distribution over items (coordinates) that they induce are close to, but not identical to,
the respective target distributions.

To be precise, the task is as follows. The input is a turnstile stream σ that builds up a frequency vector fff ∈ Zn.
Assume that at all times we have ∥ fff∥

∞
≤M, for some bound M = poly(n). We must maintain a small-sized linear

sketch of fff from which we can produce a random index i ∈ [n] distributed approximately according to πππ , where πππ is
one of the distributions listed above. With small probability, we may output FAIL instead of producing an index in [n].
If the output I of the algorithm satisfies

P{I = i} ∈ [(1− ε)πi−θ ,(1+ ε)πi +θ] , for each i ∈ [n] , (10.1)
P{I = FAIL} ≤ δ , (10.2)

where πππ is the distribution corresponding to ℓp-sampling, then we say that the algorithm is an (ε,θ ,δ)-ℓp-sampler.

Monemizadeh and Woodruff [MW10] gave sampling algorithms that exploited this relaxation of producing the
distribution πππ only approximately. More recently, Jayaram and Woodruff [JW18] showed that space-efficient perfect
sampling—where there is no approximation, but a small failure probability is allowed—is possible.

47

D
RA

FT

UNIT 10. WEIGHT-BASED SAMPLING
Dartmouth: CS 35/135

Data Stream Algorithms

10.2 The ℓℓℓ000-Sampling Problem

Our task is to design an (ε,θ ,δ)-ℓ0-sampler as defined in eqs. (10.1) and (10.2), with πππ defined by

πi =
1
∥ fff∥0

, if i ∈ supp fff ,

πi = 0 , otherwise.

It is promised that fff ̸= 000, so that this problem is well-defined.

A key observation is that, thanks to the sparse recovery sketches designed in Unit 9, this problem becomes simple
if fff is promised to be s-sparse, for a small s. This leads to the following idea: choose a random subset S ⊆ [n] of
coordinates so that if we form a sub-vector of fff by zeroing out all coordinates outside S, the sub-vector is likely to be
very sparse. If we filter the input stream σ and only retain tokens that update items in S, we can simulate the stream that
builds up this sub-vector and feed this simulated stream to a sparse recovery data structure.

Let d := ∥ fff∥0. If S is formed by picking each coordinate in [n] with probability about 1/d, independently, then the
sub-vector described above has a good—i.e., Ω(1)—chance of being 1-sparse. Of course, we don’t know d in advance,
so we have to prepare for several possibilities by using several sets S, using several different coordinate retention
probabilities.

10.2.1 An Idealized Algorithm

It will be useful to assume, without loss of generality, that n is a power of 2.

We realize the idea outlined above by using hash functions to create the random sets: the set of items in [n] that are
hashed to a particular location form one of the sets S mentioned above. We begin with an idealized algorithm that uses
uniformly random hash functions on the domain [n]. Of course, storing such a hash function requires Ω(n) bits, so this
does not achieve sublinear storage. We can address this issue in one of the following ways.

• We can apply Nisan’s space-bounded PRG to generate these hashes pseudorandomly, in limited space.

• We can use k-universal hash families, for a suitable not-too-large k, which is more space efficient.

Either of these approaches will introduce a small additional error in the algorithm’s output.

The algorithm below uses several copies of a 1-sparse detection and recovery data structure, D . We can plug in the
data structure developed in Unit 9, which uses O(logn+ logM) space and has a false positive probability in O(1/n2).

Algorithm 16 Idealized ℓ0-sampling algorithm using full randomness
Initialize:

1: for ℓ← 0 to logn do
2: choose hℓ : [n]→{0,1}ℓ uniformly at random from all such functions
3: Dℓ← 0⃗ ▷ 1-sparse detection and recovery data structure

Process (token (j,c)) :
4: for ℓ← 0 to logn do
5: if hℓ(j) = 000 then ▷ happens with probability 2−ℓ

6: feed (j,c) to Dℓ

Output:
7: for ℓ← 0 to logn do
8: if Dℓ reports positive and outputs λeeei with λ ̸= 0 then
9: yield (i,λ) and stop

10: output FAIL

48

D
RA

FT

UNIT 10. WEIGHT-BASED SAMPLING
Dartmouth: CS 35/135

Data Stream Algorithms

10.2.2 The Quality of the Output

Let d = |supp(fff)|. Consider level ℓ such that 1
4d ≤

1
2ℓ <

1
2d .

P{vector fed to Dℓ is 1-sparse}= Pr

 ∨
j∈supp(fff)

(hℓ(j) = 000)∧
∧

i∈supp(fff):i̸= j

(hℓ(i) ̸= 000)

= ∑

j∈supp(fff)
Pr

(hℓ(j) = 000)∧
∧

i∈supp(fff):i̸= j

(hℓ(i) ̸= 000)

= ∑

j∈supp(fff)
P{hℓ(j) = 000}Pr

 ∧
i∈supp(fff):i̸= j

(hℓ(i) ̸= 000)

∣∣∣∣∣∣(hℓ(j) = 000)

= ∑

j∈supp(fff)

1
2ℓ

1−Pr

 ∨
i∈supp(fff):i ̸= j

(hℓ(i) = 000)

∣∣∣∣∣∣(hℓ(j) = 000)

≥ ∑

j∈supp(fff)

1
2ℓ

(
1− ∑

i∈supp(fff):i̸= j
P{(hℓ(i) = 000) | (hℓ(j) = 000)}

)

=
d
2ℓ

(
1− d−1

2ℓ

)
≥ d

2ℓ

(
1− d

2ℓ

)
≥ 1

4

(
1− 1

2

)
=

1
8
.

To achieve error probability of O(δ), the number of 1-sparse detection and recovery data structures to be used is
O(logn log 1

δ
), each of which fails with probability O(1

n). So

P{some data structure fails} ≤ O

(
logn log 1

δ

n

)
.

The rest of the notes for this unit are VERY rough and I am not yet decided on how much of
this material I will actually teach. When they have been polished/finalized, this notice will be
removed.

A practical algorithm.

Algorithm 17 ℓ0-sampling
Initialize:

1: hℓ : [n]→{0,1}ℓ for ℓ ∈ {0,1, . . . , logn} ▷ 2-universal, independent
2: D0,D1, . . . ,Dlogn ▷ 1-sparse detection and recovery data structures

Process (token (j,c)) :
3: for 0≤ ℓ≤ logn do
4: if hℓ(j) = 000 then
5: feed (j,c) to Dℓ

Output:
6: for 0≤ ℓ≤ logn do
7: if Dℓ reports positive and outputs λeeei then
8: yield (i,λ) and stop
9: output “FAIL”

To argue that the element returned by the algorithm is indeed uniformly random in the support of fff , we need to use
O(logn)-universal hash families in the algorithm. A O(logn)-universal hash family is also minwise independent.

49

D
RA

FT

UNIT 10. WEIGHT-BASED SAMPLING
Dartmouth: CS 35/135

Data Stream Algorithms

A hash family H of functions h : [n]→ [n] is minwise independent if ∀X ⊆ [n]∀x ∈ [n]\X we have

Pr
h∈R∈H

[
h(x)< min

y∈X
h(y)

]
=

1
|X |+1

.

10.3 ℓ2 Sampling

Given a turnstile stream σ generating a frequency vector fff = (f1, f2, . . . , fn), we seek to output (J, f̂ j
2
) such that

Pr[J = j] ≈ f 2
j

∥ fff∥2 and f̂ j
2

is an approximation for f 2
j . The algorithm that we discuss here is knows as “ precision

sampling algorithm”, which was introduced by Andoni, Krauthgamer, and Onak. In this algorithm we use count sketch
data structure to estimate the “modified” frequency of elements in [n]. For each element j ∈ [n], we define its “modified”
frequency g j =

f j√u j
where u j is a random number chosen uniformly from the interval [1

n2 ,1]. Assume ε > 0 be an
accuracy parameter for the algorithm (ε should be thought of as very small).

10.3.1 An ℓ2-sampling Algorithm

Algorithm 18 ℓ2-sampling or precision sampling
Initialize:

1: u1,u2, . . . ,un ∈R [1
n2 ,1] .

2: Count sketch data structure D for g = (g1,g2, . . . ,gn).
Process (j,c):

3: feed (j, c√u j
) into D.

Output:
4: for each j ∈ [n] do
5: ĝ j← estimate of g j from D.
6: f̂ j← ĝ j

√u j .
7:

X j←

1 if ĝ j
2 =

f̂ j
2

u j
≥ 4

ε
,

0 otherwise .

8: if ∃ unique j with X j = 1 then
9: output (j, f̂ j

2
) .

10: else
11: FAIL.

Remarks:

• As written we need to store u = {u1,u2, . . . ,un}.

• But in fact u is just random and input independent, and the procedure is space-bounded. So we can use Nisan’s
PRG to reduce random seed.

• As written Pr[FAIL]≈ 1− ε , but just repeat Θ(1
ε

log 1
δ
) times for Pr[Fail]≤ δ .

• As written, algorithm 18 will work as analysed, assuming 1≤ F2 ≤ 2.

10.3.2 Analysis:

Let F2 = ∑
n
i=1 f 2

j = ∥ f∥2
2 and F2(ggg) = ∑

n
i=1 g2

i .

50

D
RA

FT

UNIT 10. WEIGHT-BASED SAMPLING
Dartmouth: CS 35/135

Data Stream Algorithms

Claim 1. E F2(ggg)≤ 5logn .

Proof.

E F2(ggg) =
n

∑
j=1

E g j
2

=
n

∑
j=1

E
f j

2

u j

=
n

∑
j=1

f j
2E

1
u j

= F2

∫ 1

1/n2

1
u

du · 1
1−1/n2 since E ui = E u j∀i, j,

= F2
lnn2

1−1/n2

≤ (4+Θ(
1
n2)) · lnn

≤ 5logn .

Consider estimate ĝ j derived from a 1× k count sketch data structure: ĝ j = g j + Z j where Z j is the sum of
contribution from i ̸= j that collide with j. Recall that E Z j = 0, E Z2

j =
1
k ∑i ̸= j g2

I ≤
F2(ggg)

k . Hence, by applying Markov

inequality, we get Pr
[
Z2

j ≥
3F2(ggg)

k

]
≤ 1

3 . Now consider the following two cases:

• If |g j| ≥ 2
ε

, then ĝ j
2 = |g j +Z j|2 = e±ε g2

j .

• Else |g j|< 2
ε

. Then,

|ĝ j
2−g2

j | ≤ (|g j|+ |Z j|)2−|g j|2 ,

= |Z j|2 +2|g jZ j| ,

≤ Z2
j (1+

4
ε
) .

So with probability at least 2
3 ,

|ĝ j
2−g2

j | ≤
3F2(ggg)

k
· ε +4

ε
since Pr

[
Z2

j ≥
3F2(ggg)

k

]
≤ 1

3
,

≤ 13F2(ggg)
εk

.

We pick k = 650logn
ε

= Θ(logn
ε

). Using Claim 1, we get Pr [F2(ggg)≥ 50logn] ≤ 5logn
50logn = 1

10 . Hence with
probability 1− (1/3+1/10),

|ĝ j
2−g2

j | ≤ 1 .

So in both the cases, ĝ j
2 = e±ε g2

j ± 1, ⇒ f̂ j
2
= e±ε f 2

j ± u j. We observe that when X j = 1, u j ≤
ε f̂ j

2

4 . So f̂ j
2
=

e±ε f 2
j ±

ε f̂ j
2

4 = e±ε f 2
j ± ε f̂ j

2
. Using the fact that 1+ ε ≈ eε for ε ≈ 0, we get after rearranging, f̂ j

2
= e±2ε f 2

j .

51

D
RA

FT

UNIT 10. WEIGHT-BASED SAMPLING
Dartmouth: CS 35/135

Data Stream Algorithms

Now we are ready to lower bound the probability that algorithm 18 produces an output:

Pr [j is output] = Pr

[
X j = 1

∧(∧
i ̸= j

Xi = 0

)]
,

= Pr [X j = 1] ·

(
1−Pr

[∨
i ̸= j

(Xi = 1)

∣∣∣∣∣X j = 0

])
,

= Pr [X j = 1] ·

(
1−Pr

[∨
i ̸= j

(Xi = 1)

])
assuming Xis are pairwise independent ,

≥ Pr [X j = 1] ·

(
1−∑

i ̸= j
Pr [Xi = 1]

)
by union bound ,

= Pr

[
u j ≤

ε f̂ j
2

4

]
·

(
1−∑

i̸= j
Pr

[
ui ≤

ε f̂i
2

4

])
,

≈
ε f̂ j

2

4
·

(
1−∑

i ̸= j

ε f̂i
2

4

)
pretending u j ∈R [0,1] ,

≥
ε f̂ j

2

4
·

(
1−∑

i

ε f̂i
2

4

)
,

=
εe±2ε f 2

j

4
·

(
1−∑

i

εe2ε f 2
i

4

)
,

≥
εe−2ε f 2

j

4
·

(
1−∑

i

εe2ε f 2
i

4

)
,

=
εe−2ε f 2

j

4
·
(

1− εe2ε

2

)
using F2 ≤ 2 .

Now we upper bound the probability that algorithm 18 produces an output:

Pr[j is output]≤ P{X j = 1} ,

≈
ε f̂ j

2

4
pretending u j ∈R [0,1] ,

≤
εe2ε f 2

j

4
,

=
e2ε

4
· ε f 2

j .

Hence, P{ j is output}= 1
4 e±3ε · ε f 2

j . So success probability of algorithm 18 is given by:

P{¬FAIL}= ∑
j

Pr[j is output] =
1
4

e±3ε · εF2 .

Finally, the sampling probability of j is givem by:

P{sample j | ¬ FAIL}=
f 2

j · e±6ε

F2
.

52

D
RA

FT
Unit 11
Finding the Median

Finding the mean of a stream of numbers is trivial, requiring only logarithmic space. How about finding the median?
There is a deterministic linear-time algorithm for finding the median of an in-memory array of numbers—already a
nontrivial and beautiful result due to Blum et al. [BFP+73]—but it requires full access to the array and is not even close
to being implementable on streamed input.

The seminal paper of Munro and Paterson [MP80] provides a streaming, sublinear-space solution, provided at least
two passes are allowed. In fact, their solution smoothly trades off number of passes for space. Moreover, they prove
a restricted lower bound showing that their pass/space tradeoff is essentially optimal for algorithms that operate in a
certain way. More recent research has shown that this lower bound actually applies without restrictions, i.e. without
assumptions about the algorithm. In hindsight, the Munro–Paterson paper should be recognized as the first serious
paper on data stream algorithms.

11.1 The Problem

We consider a vanilla stream model. Our input is a stream of numbers σ = ⟨a1,a2, . . . ,am⟩, with each ai ∈ [n]. Our goal
is to output the median of these numbers. Recall that

median(σ) =

w⌈m/2⌉ , if m is odd,
wm/2 +wm/2+1

2
, if m is even,

where www = (w1, . . . ,wm) := sort(σ) is the result of sorting σ in nondecreasing order. Thus, finding the median is
essentially a special case of the more general goal of finding wr, the rth element of sort(σ), where r ∈ [m] is a given
rank. This generalization is called the SELECTION problem. We shall give a multi-pass streaming algorithm for
SELECTION.

To keep our presentation simple, we shall assume that the numbers in σ are distinct. Dealing with duplicates is
messy but not conceptually deep, so this assumption helps us focus on the main algorithmic insights.

11.2 Preliminaries for an Algorithm

In preparation for designing an algorithm for SELECTION, we now set up some terminology and prove a useful
combinatorial lemma.

Definition 11.2.1. Let T be a set of (necessarily distinct) elements from a totally ordered universe U and let x ∈U .
The rank of x with respect to T is defined as

rank(x;T) = |{w ∈ T : w≤ x}| .

53

D
RA

FT

UNIT 11. FINDING THE MEDIAN
Dartmouth: CS 35/135

Data Stream Algorithms

Notice that this definition does not require x ∈ T .

The algorithm is driven by an idea very close to that of a coreset, seen in many other data stream algorithms.1 In
computational geometry and adjacent fields, a set Q is called a coreset of set P if Q⊆ P, and Q is a good proxy for P
with respect to some cost measure. Often, elements of Q need to be given multiplicities or weights in order to preserve
the cost measure. The precise definition can depend on the intended application. For our purposes, we shall define a
notion of the “core” of a sequence, as follows.

For a sequence ρ = (a1, . . . ,am), define

evens(ρ) = {a2,a4, . . .}= {a2i : 1≤ i≤ m/2, i ∈ Z} ,
left(ρ) = (a1, . . . ,a⌈m/2⌉) ,

right(ρ) = (a⌈m/2⌉+1, . . . ,am) .

Recall that ρ ◦ τ denotes concatenation of sequences: ρ followed by τ .

Definition 11.2.2. The i-core Ci(τ) of a sequence τ of distinct integers is defined recursively, as follows.

C0(τ) = sort(τ) ;
Ci+1(τ) = sort(evens(Ci(left(τ))) ∪ evens(Ci(right(τ)))) , for each i≥ 0 .

The sequence Ci(τ) is typically not a subsequence of τ , though its elements do come from τ .

Notice that if m, the length of τ , is divisible by 2i+1, then the length of Ci(τ) is exactly m/2i. Suppose that τ is in
ascending order. Then the “sort” operations in Definition 11.2.2 have no effect and Ci(τ) is obtained by taking every
2ith element of τ . Thus, in this special case, if a appears in Ci(τ), we have

rank(a;τ) = 2i · rank(a;Ci(τ)) , (11.1)

where by rank(a;τ) we mean the rank of a with respect to the set of elements of τ .

The next (and crucial) lemma shows that an approximate version of eq. (11.1) holds in the general case.

Lemma 11.2.3. Let τ be a sequence of length 2is consisting of distinct integers. Suppose that Ci(τ) = (x1, . . . ,xs).
Then, for all j ∈ [s].

2i j ≤ rank(x j;τ)≤ 2i(i+ j−1)+1 .

Proof. We proceed by induction on i. The base case, i = 0, is immediate: C0(τ) and τ have the same set of elements.

Suppose the lemma has been proved for some i≥ 0. Consider a sequence τ1 ◦ τ2, of distinct integers, where each of
τ1, τ2 has length 2is. Suppose that Ci+1(τ1 ◦ τ2) = (x1, . . . ,xs). By definition,

(x1, . . . ,xs) = sort(evens(A)∪ evens(B)) ,

where A = Ci(τ1) and B = Ci(τ2). Consider a particular element x j. It must appear in either evens(A) or evens(B), but
not both. Suppose WLOG that it is the kth element of evens(A). Then the j− k elements of (x1, . . . ,x j) that are not in
evens(A) must instead appear in evens(B). Let y be the largest of these elements, i.e., the (j−k)th element of evens(B).
Let z be the (j− k+1)th element of evens(B). Then y < x j < z.

By the induction hypothesis,

2i ·2k ≤ rank(x j;τ1)≤ 2i(i+2k−1)+1;

2i(2 j−2k)≤ rank(y;τ2)≤ 2i(i+2 j−2k−1)+1;

2i(2 j−2k+2)≤ rank(z;τ2)≤ 2i(i+2 j−2k+1)+1 .

Therefore,

rank(x j;τ)≥ rank(x j;τ1)+ rank(y;τ2)≥ 2i(2k+2 j−2k) = 2i+1 j , and

rank(x j;τ)≤ rank(x j;τ1)+ rank(z;τ2)−1≤ 2i(i+2k−1+ i+2 j−2k+1)+2−1 = 2i+1(i+ j)+1 ,

which establishes the induction step.
1The original paper uses the term “sample,” which can be confusing because there is nothing random about the construction. The term “coreset” is

much more modern, originates in computational geometry and is often given a precise meaning that doesn’t quite fit the concept we are defining.
Nevertheless, the strong similarities with the coresets of computational geometry are important to note.

54

D
RA

FT

UNIT 11. FINDING THE MEDIAN
Dartmouth: CS 35/135

Data Stream Algorithms

11.3 The Munro–Paterson Algorithm

We are ready to describe an algorithm for SELECTION. This algorithm uses multiple passes (two or more) over the input
stream. The computation inside each pass is interesting and elegant, though it is not so easy to describe in pseudocode.
The post-processing logic after each pass is also nontrivial.

11.3.1 Computing a Core

Having introduced the important idea of a core, the next key insight is that Definition 11.2.2 actually allows for a
small-space streaming computation of a core in a single pass.

Theorem 11.3.1. There is a one-pass streaming algorithm that, given an input stream σ ′ of length m′ = 2ts (for integers
t and s) consisting of distinct tokens from [n], computes the t-core Ct(σ

′) using O(s log(m′/s) logn) bits of space.

Proof sketch. Buffer each contiguous chunk of s elements of σ ′. When the buffer fills up, send its contents up the
recursion tree and flush the buffer. We will have at most one buffer worth of elements per level of recursion and there
are t +1 = O(log(m′/s)) levels.

[* * * Insert picture of binary tree showing core computation recursion * * *]

11.3.2 Utilizing a Core

The Munro–Paterson algorithm uses p such passes and operates in space O(m1/p log2−2/p m logn). Each pass has a
corresponding active interval: a possibly infinite open interval (a−,a+). Tokens in the input stream that lie in the active
interval are the active tokens and they form a substream of the input stream σ called the active substream for this pass.
The pass computes a core sequence of this active substream τ , using the algorithm given by Theorem 11.3.1, and does
some post-processing to update the active interval, maintaining the invariant

a− < wr < a+ , (11.2)

where wr is the rank-r element of www := sort(σ) that we seek. Initially, we set a− = −∞ and a+ = +∞. During a
pass, we ignore inactive tokens except to compute q := rank(a−;σ); clearly, wr is the (r−q)th element of the active
substream τ . We compute the t-core of τ , for a suitable integer t. Then, based on the approximate ranks of elements in
this core (as given by Lemma 11.2.3), we compute a new active interval that is a subinterval of the one we started with.

The precise logic used in a pass and for determining when to stop making passes is given in pseudocode form in
Algorithm 19. This precision comes at the cost of simplicity, so for a full understanding of the pseudocode, it may be
necessary to study the analysis that follows.

Suppose that the invariant in eq. (11.2) indeed holds at the start of each pass. Examining Algorithm 19, it is clear that
when the algorithm returns a final answer, it does so having stored all elements of the active substream, and therefore
this answer is correct. Further, the logic of lines 18 and 20, together with the rank bounds in Lemma 11.2.3, goes to
show that the invariant is correctly maintained.

11.3.3 Analysis: Pass/Space Tradeoff

It remains to analyze the number of passes over σ made by Algorithm 19.

Consider the ith pass over the stream (i.e., the ith call to SELECTIONPASS) and suppose that this isn’t the final
pass (i.e., the condition tested in line 10 fails). Suppose this pass computes a ti-core of a stream consisting of the
active substream τi—which has length mi—padded up with some number of “+∞” tokens so that the core computation
happens on a stream of length 2tis. Let xxx = (x1, . . . ,xs) be the core. Suppose that the desired answer wr is the rith
element of the active substream, i.e., ri = r− rank(a−;σ). Notice that ri is computed as the value r−q in Algorithm 19.

55

D
RA

FT

UNIT 11. FINDING THE MEDIAN
Dartmouth: CS 35/135

Data Stream Algorithms

Algorithm 19 Munro–Paterson multi-pass algorithm for the SELECTION problem
1: function SELECTIONPASS(stream σ , rank r, space parameter s, active interval a−, a+)
2: initialize core computation data structure C with space parameter s
3: (m,m′,q)← (0,0,0) ▷ (stream-length, active-length, num-below-active)
4: foreach token j from σ do
5: m← m+1
6: if j ≤ a− then q← q+1 ▷ token too small: use it to update rank of a−

7: else if a− < j < a+ then ▷ active token
8: m′← m′+1
9: feed j to C

10: if m′ ≤ ⌈s logm⌉ then
11: ρ ← output of C ▷ the entire active substream, sorted
12: return ρ[r−q] ▷ answer found
13: else
14: t← ⌈log(m′/s)⌉ ▷ depth of core computed
15: feed (2ts−m′) copies of “+∞” to C ▷ pad stream so number of chunks is power of 2
16: ρ ← output of C

17: ℓ←max{ j ∈ [s] : 2t(t + j−1)+1 < r−q}
18: if ℓ is defined then a−← ρ[ℓ] ▷ largest element whose max possible rank is too low
19: h←min{ j ∈ [s] : 2t j > r−q}
20: if h is defined then a+← ρ[h] ▷ smallest element whose min possible rank is too high
21: return (a−, a+) ▷ new active interval (answer not found yet)

22: function SELECT(stream σ , rank r, space-bound s)
23: (a−, a+, w)← (−∞,+∞,⊥) ▷ (active interval, answer)
24: while w =⊥ do
25: z← SELECTIONPASS(σ , r, s, a−, a+)
26: if z is a pair then (a−,a+)← z else w← z
27: return w

Let ℓi = max{ j ∈ [s] : 2ti(ti + j−1)+1 < ri}. After the pass, we set a− to the ℓith element of the core ρ , i.e., to
xℓi . Suppose that we are in the typical case, when ℓi is defined and 1≤ ℓi < s. By the maximality of ℓi, the maximum
possible rank of xℓi+1 (as given by Lemma 11.2.3) is not too low, i.e.,

2ti(ti +(ℓi +1)−1)+1≥ ri .

Applying the lower bound in Lemma 11.2.3, we obtain

rank(xℓi ;σ)≥ 2tiℓi ≥ ri−2titi−1 .

Analogously, let hi = min{ j ∈ [s] : 2ti j > ri}. We set a+ = xhi after the pass. By the minimality of hi,

2ti(hi−1)≤ ri .

Applying the upper bound in Lemma 11.2.3, we obtain

rank(xhi ;σ)≤ 2ti(ti +hi−1)+1≤ ri +2titi +1 .

Putting these together, the length mi+1 of the active substream for the next pass satisfies

mi+1 ≤ rank(xhi ;σ)− rank(xℓi ;σ)

≤ 2(2titi +1)

= 2
(

2⌈log(mi/s)⌉
⌈

log
mi

s

⌉
+1
)

≤ 5mi logm
s

, (11.3)

56

D
RA

FT

UNIT 11. FINDING THE MEDIAN
Dartmouth: CS 35/135

Data Stream Algorithms

where the final step tacitly uses mi≫ s.

Initially, we have m1 = m active tokens. Iterating eq. (11.3), we obtain

mi = O

(
m
(

5logm
s

)i−1
)

.

By the logic of line 10, Algorithm 19 executes its final pass—the pth, say—when mp ≤ ⌈s logm⌉. For this value of p,
we must have m((5logm)/s)p−1 = Θ(s logm), i.e., s = Θ(m1/p log1−2/p m).

If we want to operate within a fixed number p of passes, we could give an alternative presentation of the Munro–
Paterson algorithm that computes the chunk size s from m := length(σ) and p. For such a presentation, we would need
to know m in advance. Suppose we then set s = Θ(m1/p log1−2/p m), as we just derived. The space used in each pass
is dominated by the space requirements of C , the core computation data structure. By Theorem 11.3.1, this space is
O(s log(m/s) logn) in every pass except the last. By the logic of line 10, the space is O(s logm logn) in the last pass.
Putting these observations together gives us the following theorem.

Theorem 11.3.2. For each fixed p≥ 1, the SELECTION problem, for a data stream consisting of m tokens from the
universe [n], admits a p-pass algorithm that uses O(m1/p log2−2/p m logn) = Õ(m1/p) bits of space.

Notice how this theorem trades off passes for space.

Strictly speaking, we have proved the above theorem only for streams whose tokens are distinct. If you wish to
achieve a thorough understanding, you may want to extend the above algorithm to the general case.

Exercises

11-1 Give a detailed proof of Theorem 11.3.1, complete with pseudocode for the recursive algorithm described in the
proof sketch.

11-2 We have stated Theorem 11.3.2 only for fixed p. Go through the analysis closely and show that if our goal is to
compute the exact median of a length-m data stream in Õ(1) space, we can do so in O(logm/ log logm) passes.

57

D
RA

FT
Unit 12
Geometric Streams and Coresets

The notes for this unit are in reasonable shape but I am not done vetting them. There may be
instances of slight errors or lack of clarity. I am continually polishing these notes and when
I’ve vetted them enough, I’ll remove this notice.

12.1 Extent Measures and Minimum Enclosing Ball

Up to this point, we have been interested in statistical computations. Our data streams have simply been “collections of
tokens.” We did not care about any structure amongst the tokens, because we were only concerned with functions of the
token frequencies. The median and selection problems introduced some slight structure: the tokens were assumed to
have a natural ordering.

Streams represent data sets. The data points in many data sets do have natural structure. In particular, many data
sets are naturally geometric: they can be thought of as points in Rd , for some dimension d. This motivates a host of
computational geometry problems on data streams. We shall now study a simple problem of this sort, which is in fact a
representative of a broader class of problems: namely, the estimation of extent measures of point sets.

Broadly speaking, an extent measure estimates the “spread” of a collection of data points, in terms of the size of the
smallest object of a particular shape that contains the collection. Here are some examples.

• Minimum bounding box (two variants: axis-parallel or not)

• Minimum enclosing ball, or MEB

• Minimum enclosing shell (a shell being the difference of two concentric balls)

• Minimum width (i.e., min distance between two parallel hyperplanes that sandwich the data)

For this lecture, we focus on the MEB problem. Our solution will introduce the key concept of a coreset, which
forms the basis of numerous approximation algorithms in computational geometry, including data stream algorithms for
all of the above problems.

12.2 Coresets and Their Properties

The idea of a coreset was first formulated in Agarwal, Har-Peled and Varadarajan [AHPV04]; the term “coreset” was
not used in that work, but became popular later. The same authors have a survey [AHPV05] that is a great reference on
the subject, with full historical context and a plethora of applications. Our exposition will be somewhat specialized to
target the problems we are interested in.

58

D
RA

FT

UNIT 12. GEOMETRIC STREAMS AND CORESETS
Dartmouth: CS 35/135

Data Stream Algorithms

We define a “cost function” C to be a family of functions {CP} parametrized by point sets P⊆ Rd . For each P, we
have a corresponding function CP : Rd → R+. We say that C is monotone if

∀Q⊆ P⊆ Rd ∀xxx ∈ Rd : CQ(xxx)≤CP(xxx) .

We are given a stream σ of points in Rd , and we wish to compute the minimum value of the corresponding cost function
Cσ . To be precise, we want to estimate infxxx∈Rd Cσ (xxx); this will be our extent measure for σ .

The minimum enclosing ball (or MEB) problem consists of finding the minimum of the cost function Cσ , where

Cσ (xxx) := max
yyy∈σ
∥xxx− yyy∥2 , (12.1)

i.e., the radius of the smallest ball centered at xxx that encloses the points in σ .

Definition 12.2.1. Fix a real number α ≥ 1, and a cost function C parametrized by point sets in Rd . We say Q is an
α-coreset for P⊆ Rd (with respect to C) if Q⊆ P, and

∀T ⊆ Rd ∀xxx ∈ Rd : CQ∪T (xxx)≤CP∪T (xxx)≤ αCQ∪T (xxx) . (12.2)

Clearly, if C is monotone, the left inequality always holds. The cost function for MEB, given by (12.1), is easily
seen to be monotone.

Our data stream algorithm for estimating MEB will work as follows. First we shall show that, for small ε > 0, under
the MEB cost function, every point set P⊆ Rd has a (1+ ε)-coreset of size O(1/ε(d−1)/2). The amazing thing is that
the bound is independent of |P|. Then we shall give a data stream algorithm to compute a (1+ ε)-coreset of the input
stream σ , using small space. Clearly, we can estimate the MEB of σ by computing the exact MEB of the coreset.

We now give names to three useful properties of coresets. The first two are universal: they hold for all coresets,
under all cost functions C. The third happens to hold for the specific coreset construction we shall see later (but is also
true for a large number of other coreset constructions).

Merge Property: If Q is an α-coreset for P and Q′ is a β -coreset for P′, then Q∪Q′ is an (αβ)-coreset for P∪P′.

Reduce Property: If Q is an α-coreset for P and R is a β -coreset for Q, then R is an (αβ)-coreset for P.

Disjoint Union Property: If Q,Q′ are α-coresets for P,P′ respectively, and P∩P′ =∅, then Q∪Q′ is an α-coreset
for P∪P′.

To repeat: every coreset satisfies the merge and reduce properties. The proof is left as an easy exercise.

12.3 A Coreset for MEB

For nonzero vectors uuu,vvv ∈ Rd , let ang(uuu,vvv) denote the angle between them, i.e.,

ang(uuu,vvv) := arccos
⟨uuu,vvv⟩
∥uuu∥2 ∥vvv∥2

,

where ⟨·, ·⟩ is the standard inner product. We shall call a collection of vectors {uuu1, . . . ,uuut} ⊆ Rd \{0} a θ -grid if, for
every nonzero vector xxx ∈ Rd , there is a j ∈ [t] such that ang(xxx,uuu j)≤ θ . We think of θ as being “close to zero.”

The following geometric theorem is well known; it is obvious for d = 2, but requires a careful proof for higher d.

Theorem 12.3.1. In Rd , there is a θ -grid consisting of O(1/θ d−1) vectors. In particular, for R2, this bound is O(1/θ).

Using this, we can construct a small coreset for MEB.

Theorem 12.3.2. In d ≥ 2 dimensions, the MEB cost function admits a (1+ ε)-coreset of size O(1/ε(d−1)/2).

59

D
RA

FT

UNIT 12. GEOMETRIC STREAMS AND CORESETS
Dartmouth: CS 35/135

Data Stream Algorithms

Proof. Let {uuu1, . . . ,uuut} be a θ -grid in Rd , for a parameter θ = θ(ε) to be chosen later. By Theorem 12.3.1, we may
take t = O(1/θ d−1). Our proposed coreset for a point set P⊆ Rd shall consist of the two extreme points of P along
each of the directions uuu1, . . . ,uuut . To be precise, let P be given. We then define

Q :=
t⋃

i=1

{argmax
xxx∈P

⟨xxx,uuui⟩, argmin
xxx∈P

⟨xxx,uuui⟩} . (12.3)

We claim that Q is a (1+ ε)-coreset of P, for a suitable choice of θ .

Since the MEB cost function is monotone, the left inequality in (12.2) always holds. We prove the right inequality
“by picture” (see below); making this rigorous is left as an exercise.

y
u

i
x

z’

z

Take an arbitrary xxx ∈ Rd and T ⊆ Rd , and let zzz be the farthest point from xxx in the set P∪T . If zzz ∈ T , then

CQ∪T (xxx)≥ ∥xxx− zzz∥2 =CP∪T (xxx) .

Otherwise, we have zzz ∈ P. By the grid property, there is a direction uuui that makes an angle of at most θ with #»xxxzzz. Let yyy
be the point such that #»xxxyyy is parallel to uuui and ∥xxx− yyy∥2 = ∥xxx− zzz∥2, and let zzz′ be the orthogonal projection of zzz onto #»xxxyyy.
Then, Q contains a point from P whose orthogonal projection on #»xxxyyy lies to the right of zzz′ (by construction of Q) and to
the left of yyy (because zzz is farthest). Therefore

CQ∪T (xxx)≥CQ(xxx)≥
∥∥xxx− zzz′

∥∥
2 ≥ ∥xxx− zzz∥cosθ =CP∪T (xxx)cosθ .

Using secθ ≤ 1+θ 2 (which holds for θ small enough), we obtain CP∪T (xxx)≤ (1+θ 2)CQ∪T (xxx). Since this holds for
all xxx ∈ Rd , the right inequality in (12.2) holds with α = 1+θ 2. Since we wanted Q to be a (1+ ε)-coreset, we may
take θ =

√
ε .

Finally, with this setting of θ , we have |Q| ≤ 2t = O(1/ε(d−1)/2), which completes the proof.

12.4 Data Stream Algorithm for Coreset Construction

We now turn to algorithms. Fix a monotone cost function C, for point sets in Rd , and consider the “C-minimization
problem,” i.e., the problem of estimating infxxx∈Rd Cσ (xxx).

Theorem 12.4.1. Suppose C admits (1+ ε)-coresets of size A(ε), and that these coresets have the disjoint union
property. Then the C-minimization problem has a data stream algorithm that uses space O(A(ε/ logm) · logm) and
returns a (1+ ε)-approximation.

Proof. Our algorithm builds up a coreset for the input stream σ recursively from coresets for smaller and smaller
substreams of σ in a way that is strongly reminiscent of the Munro-Paterson algorithm for finding the median.

60

D
RA

FT

UNIT 12. GEOMETRIC STREAMS AND CORESETS
Dartmouth: CS 35/135

Data Stream Algorithms

[the picture is not quite right]

Set δ = ε/ logm. We run a number of streaming algorithms in parallel, one at each “level”: we denote the level- j
algorithm by A j. By design, A j creates a virtual stream that is fed into A j+1. Algorithm A0 reads σ itself, placing
each incoming point into a buffer of large enough size B. When this buffer is full, it computes a (1+δ)-coreset of the
points in the buffer, sends this coreset to A1, and empties the buffer.

For j ≥ 1, A j receives a coreset at a time from A j−1. It maintains up to two such coresets. Whenever it has two of
them, say P and P′, it computes a (1+δ)-coreset of P∪P′, sends this coreset to A j+1, and discards both P and P′.

Thus, A0 uses space O(B) and, for each j ≥ 1, A j uses space O(A(δ)). The highest-numbered A j that we need is
at level ⌈log(m/B)⌉. This gives an overall space bound of O(B+A(ε/ logm)⌈log(m/B)⌉), by our choice of δ .

Finally, by repeatedly applying the reduce property and the disjoint union property, we see that the final coreset, Q,
computed at the highest (“root”) level is an α-coreset, where

α = (1+δ)1+⌈log(m/B)⌉ ≤ 1+δ logm = 1+ ε .

To estimate infxxx∈Rd Cσ (xxx), we simply output infxxx∈Rd CQ(xxx), which we can compute directly.

As a corollary, we see that we can estimate the radius of the minimum enclosing ball (MEB), in d dimensions, up to
a factor of 1+ ε , by a data stream algorithm that uses space

O

(
log(d+1)/2 m

ε(d−1)/2

)
.

In two dimensions, this amounts to O(ε−1/2 log3/2 m).

Exercises

12-1 In the proof of Theorem 12.3.2, the proof that the constructed set Q satisfies the right inequality in eq. (12.2) was
done “by picture.” Make this proof formal, i.e., do it using only algebraic or analytic steps, without appealing to
intuitive reasoning involving terms like “to the left/right of.”

12-2 Prove that the coreset for MEB constructed in the proof of Theorem 12.3.2 has the disjoint union property,
described in Section 12.2.

61

D
RA

FT
Unit 13
Metric Streams and Clustering

In Unit 12, we considered streams representing geometric data, and considered one class of computations on such data:
namely, estimating extent measures. The measure we studied in detail — minimum enclosing ball (MEB) — can be
thought of as follows. The center of the MEB is a crude summary of the data stream, and the radius of the MEB is the
cost of thus summarizing the stream.

Often, our data is best summarized not by a single point, but by k points (k≥ 1): one imagines that the data naturally
falls into k clusters, each of which can be summarized by a representative point. For the problem we study today, these
representatives will be required to come from the original data. In general, one can imagine relaxing this requirement.
At any rate, a particular clustering has an associated summarization cost which should be small if the clusters have
small extent (according to some extent measure) and large otherwise.

13.1 Metric Spaces

It turns out that clustering problems are best studied in a setting more general than the geometric one. The only aspect
of geometry that matters for this problem is that we have a notion of “distance” between two points. This is abstracted
out in the definition of a metric space, which we give below.

Definition 13.1.1. A metric space is a pair (M,d), where M is a nonempty set (of “points”) and d : M×M→ R+ is a
non-negative-valued “distance” function satisfying the following properties for all x,y,z ∈M.

1. d(x,y) = 0 ⇐⇒ x = y; (identity)
2. d(x,y) = d(y,x); (symmetry)
3. d(x,y)≤ d(x,z)+d(z,y). (triangle inequality)

Relaxing the first property to d(x,x) = 0 gives us a semi-metric space instead.

A familiar example of a metric space is Rn, under the distance function d(xxx,yyy) = ∥xxx− yyy∥p, where p > 0; the
case p = 2 (Euclidean distance) is especially familiar. Another example should be just about as familiar to computer
scientists: take an (undirected) graph G = (V,E), let M = V , and for u,v ∈ V , define d(u,v) to be the length of the
shortest path in G between u and v.

In this unit, the data stream consists of points in a metric space (M,d). The function d is made available to us
through an oracle which, when queried with two points x,y ∈M, returns the distance d(x,y) between them. To keep
things simple, we will not bother with the issues of representing, in working memory, points in M or distance values.
Instead we will measure our space usage as the number of points and/or distances our algorithms store.

62

D
RA

FT

UNIT 13. METRIC STREAMS AND CLUSTERING
Dartmouth: CS 35/135

Data Stream Algorithms

13.2 The Cost of a Clustering: Summarization Costs

Fix a metric space (M,d) and an integer k ≥ 1. Given a data set σ ⊆M, we wish to cluster it into at most k clusters,
and summarize it by choosing a representative from each cluster. Suppose our set of chosen representatives is R.

If we think of the elements of σ as being locations of “customers” seeking some service, and elements of R as
locations of “service stations,” then one reasonable objective to minimize is the maximum distance that a customer has
to travel to receive service. This is formalized as the k-center objective.

If we think of the elements of R as being locations of conference centers (for a multi-location video conference)
and elements of σ as being home locations for the participants at this conference, another reasonable objective to
minimize is the total fuel spent in getting all participants to the conference centers. This is formalized as the k-median
objective. There is also another natural objective called k-means which is even older, is motivated by statistics and
machine learning applications, and dates back to the 1960s.

To formally define these objectives, extend the function d by defining

d(x,S) := min
y∈S

d(x,y) ,

for x ∈M and S⊆M. Then, having chosen representatives R, the best way to cluster σ is to assign each point in σ to
its nearest representative in R. This then gives rise to (at least) the following three natural cost measures.

∆∞(σ ,R) := max
x∈σ

d(x,R) ; (k-center)

∆1(σ ,R) := ∑
x∈σ

d(x,R) ; (k-median)

∆2(σ ,R) := ∑
x∈σ

d(x,R)2 . (k-means)

Our goal is choose R⊆ σ with |R| ≤ k so as to minimize the cost ∆(σ ,R). For the rest of this unit we focus on the
first of these costs (i.e., the k-center problem).

We shall give an efficient data stream algorithm that reads σ as an input stream and produces a summary R whose
cost is at most some constant α times the cost of the best summary. Such an algorithm is called an α-approximation. In
fact, we shall give two such algorithms: the first will use just O(k) space and produce an 8-approximation. The second
will improve the approximation ratio from 8 to 2+ ε , blowing up the space usage by about O(1/ε).

As noted earlier, when we produce a set of representatives, R, we have in fact produced a clustering of the data
implicitly: to form the clusters, simply assign each data point to its nearest representative, breaking ties arbitrarily.

13.3 The Doubling Algorithm

We focus on the k-center problem. The following algorithm maintains a set R consisting of at most k representatives
from the input stream; these representatives will be our cluster centers. The algorithm also maintains a “threshold” τ

throughout; as we shall soon see, τ approximates the summarization cost ∆∞(σ ,R), which is the cost of the implied
clustering.

To analyze this algorithm, we first record a basic fact about metric spaces and the cost function ∆∞.

Lemma 13.3.1. Suppose x1, . . . ,xk+1 ∈ σ ⊆M satisfy d(xi,x j)≥ t for all distinct i, j ∈ [k+1]. Then, for all R⊆M
with |R| ≤ k, we have ∆∞(σ ,R)≥ t/2.

Proof. Suppose, to the contrary, that there exists R ⊆M with |R| ≤ k and ∆∞(σ ,R) < t/2. Then, by the pigeonhole
principle, there exist distinct i, j ∈ [k+1], such that rep(xi,R) = rep(x j,R) = r, say. Now

d(xi,x j)≤ d(xi,r)+d(x j,r)< t/2+ t/2 = t ,

where the first inequality is a triangle inequality and the second follows from ∆∞(σ ,R)< t/2. But this contradicts the
given property of {x1, . . . ,xk+1}.

63

D
RA

FT

UNIT 13. METRIC STREAMS AND CLUSTERING
Dartmouth: CS 35/135

Data Stream Algorithms

Algorithm 20 Doubling algorithm for metric k-median
Initialize:

1: R← first k+1 points in stream
2: (y,z)← closest pair of points in R
3: τ ← d(y,z) ▷ Initial threshold
4: R← R\{z} ▷ Culling step: we may have at most k representatives

Process (token x) :
5: if minr∈R d(x,r)> 2τ then
6: R← R∪{x}
7: while |R|> k do
8: τ ← 2τ ▷ Raise (double) the threshold
9: R← maximal R′ ⊆ R such that ∀r ̸= s ∈ R′ : d(r,s)≥ τ ▷ Culling step

Output: R

Next, we consider the algorithm’s workings and establish certain invariants that it maintains.

Lemma 13.3.2. Algorithm 20 maintains the following invariants at the start of each call to the processing section.

1. (Separation invariant) For all distinct r,s ∈ R, we have d(r,s)≥ τ .
2. (Cost invariant) We have ∆∞(σ ,R)≤ 2τ .

Proof. At the end of initialization, Invariant 1 holds by definition of y,z, and τ . We also have ∆∞(σ ,R) = τ at this point,
so Invariant 2 holds as well. Suppose the invariants hold after we have read an input stream σ , and are just about to
process a new point x. Let us show that they continue to hold after processing x.

Consider the case that the condition tested in line 5 does not hold. Then R and τ do not change, so Invariant 1
continues to hold. We do change σ by adding x to it. However, noting that d(x,R)≤ 2τ , we have

∆∞(σ ∪{x},R) = max{∆∞(σ ,R), d(x,R)} ≤ 2τ ,

and so, Invariant 2 also continues to hold.

Next, consider the case that the condition in line 5 holds. After line 6 executes, Invariant 1 continues to hold because
the point x newly added to R satisfies its conditions. Further, Invariant 2 continues to hold since x is added to both σ

and R, which means d(x,R) = 0 and d(y,R) does not increase for any y ∈ σ \{x}; therefore ∆∞(σ ,R) does not change.

We shall now show that the invariants are satisfied after each iteration of the loop at line 7. Invariant 1 may be
broken by line 8 but is explicitly restored in line 9. Immediately after line 8, with τ doubled, Invariant 2 is temporarily
strengthened to ∆∞(σ ,R)≤ τ . Now consider the set R′ computed in line 9. To prove that Invariant 2 holds after that
line, we need to prove that ∆∞(σ ,R′)≤ 2τ .

Let u ∈ σ be an arbitrary data point. Then d(u,R) ≤ ∆∞(σ ,R) ≤ τ . Let r′ = rep(u,R) = argminr∈R d(u,r). If
r′ ∈ R′, then d(u,R′)≤ d(u,r′) = d(u,R)≤ τ . Otherwise, by maximality of R′, there exists a representative s ∈ R′ such
that d(r′,s)< τ . Now

d(u,R′)≤ d(u,s)≤ d(u,r′)+d(r′,s)< d(u,R)+ τ ≤ 2τ .

Thus, for all x ∈ σ , we have d(x,R′)≤ 2τ . Therefore, ∆∞(σ ,R′)≤ 2τ , as required.

Having established the above properties, it is now simple to analyze the doubling algorithm.

Theorem 13.3.3. The doubling algorithm uses O(k) space and outputs a summary R whose cost is at most 8 times the
optimum.

Proof. The space bound is obvious. Let R∗ be an optimum summary of the input stream σ , i.e., one that minimizes
∆∞(σ ,R∗). Let R̂ and τ̂ be the final values of R and τ after processing σ . By Lemma 13.3.2 (Invariant 2), we have
∆∞(σ , R̂)≤ 2τ̂ .

64

D
RA

FT

UNIT 13. METRIC STREAMS AND CLUSTERING
Dartmouth: CS 35/135

Data Stream Algorithms

Let R̃ be the value of R just before the final culling step. Then |R̃|= k+1 and R̃⊇ R̂. Further, the value of τ before
it got doubled in that culling step was τ̂/2. By Lemma 13.3.2 (Invariant 1), every pair of distinct points in R̃ is at
distance at least τ̂/2. Therefore, by Lemma 13.3.1, we have ∆∞(σ ,R∗)≥ τ̂/4.

Putting these together, we have ∆∞(σ , R̂)≤ 8∆∞(σ ,R∗).

13.4 Metric Costs and Threshold Algorithms

The following two notions are key for our improvement to the above approximation factor.

Definition 13.4.1. A summarization cost function ∆ is said to be metric if for all streams σ ,π and summaries S,T , we
have

∆(σ [S]◦π,T)−∆(σ ,S)≤ ∆(σ ◦π,T)≤ ∆(σ [S]◦π,T)+∆(σ ,S) . (13.1)

Here, σ [S] is the stream obtained by replacing each token of σ with its best representative from S.

Importantly, if we define “best representative” to be the “nearest representative,” then the k-center cost function ∆∞

is metric (an easy exercise). Also, because of the nature of the k-center cost function, we may as well replace σ [S] by S
in (13.1).

Consider the following example of a stream, with ‘◦’ representing “normal” elements in the stream and ‘⊗’
representing elements that have been chosen as representatives. Suppose a clustering/summarization algorithm is
running on this stream, has currently processed σ and computed its summary S, and is about to process the rest of the
stream, π .

◦⊗◦◦⊗◦⊗◦◦◦︸ ︷︷ ︸
σ

| ◦ ◦◦◦◦◦︸ ︷︷ ︸
π

The definition of a metric cost function attempts to control the “damage” that would be done if the algorithm were to
forget everything about σ at this point, except for the computed summary S. We think of T as summarizing the whole
stream, σ ◦π .

Definition 13.4.2. Let ∆ be a summarization cost function and let α ≥ 1 be a real number. An α-threshold algorithm
for ∆ is one that takes as input a threshold t and a data stream σ , and does one of the following two things.

1. Produces a summary S; if so, we must have ∆(σ ,S)≤ αt.
2. Fails (producing no output); if so, we must have ∀T : ∆(σ ,T)> t.

The doubling algorithm contains the following simple idea for a 2-threshold algorithm for the k-center cost ∆∞.
Maintain a set S of representatives from σ that are pairwise 2t apart; if at any point we have |S|> k, then fail; otherwise,
output S. Lemma 13.3.1 guarantees that this is a 2-threshold algorithm.

13.5 Guha’s Cascading Algorithm

To describe Guha’s algorithm, we generalize the k-center problem as follows. Our task is to summarize an input stream
σ , minimizing a summarization cost given by ∆, which

• is a metric cost; and
• has an α-approximate threshold algorithm A , for some α ≥ 1.

As we have just seen, k-center has both these properties.

The idea behind Guha’s algorithm is to run multiple copies of A in parallel, with geometrically increasing thresholds.
Occasionally a copy of A will fail; when it does, we start a new copy of A with a much higher threshold to take over
from the failed copy, using the failed copy’s summary as its initial input stream.

Here is an outline of the algorithm, which computes an (α +O(ε))-approximation of an optimal summary, for
ε ≪ α . Let S∗ denote an optimal summary, i.e., one that minimizes ∆(σ ,S∗). It should be easy to flesh this out into
complete pseudocode; we leave this as an exercise.

65

D
RA

FT

UNIT 13. METRIC STREAMS AND CLUSTERING
Dartmouth: CS 35/135

Data Stream Algorithms

• Perform some initial processing to determine a lower bound, c, on ∆(σ ,S∗).
• Let p = ⌈log1+ε(α/ε)⌉. From now on, keep p instances of A running at all times, with thresholds increasing

geometrically by factors of (1+ ε). The lowest threshold is initially set to c(1+ ε).
• Whenever q≤ p of the instances fail, start up q new instances of A using the summaries from the failed instances

to “replay” the stream so far. When an instance fails, kill all other instances with a lower threshold. Alternatively,
we can pretend that when an instance with threshold c(1+ ε) j fails, its threshold is raised to c(1+ ε) j+p.

• Having processed all of σ , output the summary from the instance of A that has the lowest threshold.

13.5.1 Space Bounds

In the above algorithm, let s0 denote the space required to determine the initial lower bound, c. Also, let sA denote the
space required by an instance of A ; we assume that this quantity is independent of the threshold with which A is run.
Then the space required by the above algorithm is

max{s0, psA }= O
(

s0 +
sA

ε
log

α

ε

)
.

In the case of k-center, using the initialization section of the Doubling Algorithm to determine c gives us s0 = O(k).
Furthermore, using the 2-threshold algorithm given at the end of Section 13.4, we get sA = O(k) and α = 2. Therefore,
for k-center, we have an algorithm running in space O((k/ε) log(1/ε)).

13.5.2 The Quality of the Summary

Consider a run of Guha’s algorithm on an input stream σ . Consider the instance of A that had the smallest threshold
(among the non-failed instances) when the input ended. Let t be the final threshold being used by this instance. Suppose
this instance had its threshold raised j times overall. Let σi denote portion of the stream σ between the (i−1)th and ith
raising of the threshold, and let σ j+1 denote the portion after the last raising of the threshold. Then

σ = σ1 ◦σ2 ◦ · · · ◦σ j+1 ,

Let Si denote the summary computed by this instance of A after processing σi; then S j+1 is the final summary.
During the processing of σi, the instance was using threshold ti = t/(1+ ε)p(j−i+1). Since p = ⌈log1+ε(α/ε)⌉, we
have (1+ ε)p ≥ α/ε , which gives ti ≤ (ε/α) j−i+1t. Now, by Property 1 of an α-threshold algorithm, we have

∆(Si−1 ◦σi,Si)≤ α(ε/α) j−i+1t , for 1≤ i≤ j+1 , (13.2)

where we put S0 =∅. Since ∆ is metric, by (13.1), after the simplification σ [S] = S, we have

∆(σ1 ◦ · · · ◦σi,Si) ≤ ∆(Si−1 ◦σi,Si)+∆(σ1 ◦ · · · ◦σi−1,Si−1) . (13.3)

Using (13.3) repeatedly, we can bound the cost of the algorithm’s final summary as follows.

∆(σ ,S j+1) = ∆(σ1 ◦ · · · ◦σ j+1,S j+1)≤
j+1

∑
i=1

∆(Si−1 ◦σi,Si)

≤
j+1

∑
i=1

α(ε/α) j−i+1t (by (13.2))

≤ αt
∞

∑
i=0

(
ε

α

)i
= (α +O(ε))t .

Meanwhile, since t was the smallest threshold for a non-failed instance of A , we know that A fails when run with
threshold t/(1+ ε). By Property 2 of an α-threshold algorithm, we have

∆(σ ,S∗)≥ t
1+ ε

.

66

D
RA

FT

UNIT 13. METRIC STREAMS AND CLUSTERING
Dartmouth: CS 35/135

Data Stream Algorithms

Strictly speaking, the above reasoning assumed that at least one instance of A failed while processing σ . But notice
that, by our choice of c in Guha’s algorithm, the above inequality holds even if this isn’t true, because in that case, we
would have t = c(1+ ε).

Putting the last two inequalities together, we see that ∆(σ ,S j+1) approximates the optimal cost ∆(σ ,S∗) within a
factor of (1+ ε)(α +O(ε)) = α +O(ε).

For k-center, since we have a 2-threshold algorithm, we get an overall approximation ratio of 2+O(ε).

Exercises

13-1 Give a rigorous proof that the summarization cost function ∆∞ (corresponding to the k-center objective) is metric,
in the sense of Definition 13.4.1.
Write out the steps of reasoning explicitly, using algebra. Your proof should explain how each nontrivial step
was derived. At least one of the steps will use the triangle inequality in the underlying metric space.

67

D
RA

FT
Unit 14
Graph Streams: Basic Algorithms

14.1 Streams that Describe Graphs

We have been considering streams that describe data with some kind of structure, such as geometric structure, or more
generally, metric structure. Another very important class of structured large data sets is large graphs. In this and the
next few units, we shall study several streaming graph algorithms: in each case, the input is a stream that describes a
graph.

Since the terminology of graph theory is not totally uniform in the computer science and mathematics literature, it
is useful to clearly define our terms.
Definition 14.1.1. A graph (respectively, digraph) is a pair (V,E) where V is a nonempty finite set of vertices and E is
a set of edges. Each edge is an unordered (respectively, ordered) pair of distinct vertices. If G is a graph or digraph, we
denote its vertex set by V (G) and its edge set by E(G).

Most streaming algorithms in the literature handle only undirected graphs (which, as our definition suggests, will
simply be called “graphs”), although it makes sense to study algorithms that handle directed graphs (digraphs) too.
Notice that our definition forbids parallel edges and loops in a graph.

Several interesting algorithmic questions involve graphs where each edge has a real-valued weight or an integer-
valued multiplicity.

In all graph algorithmic problems we study, the vertex set V (G) of the input graph G is known in advance, so
we assume that V (G) = [n], for some (large) integer n. The stream’s tokens describe the edge set E(G) in one of the
following ways.

• In a vanilla or insertion-only graph stream, each token is an ordered pair (u,v)∈ [n]× [n], such that the corresponding
unordered pair {u,v} ∈ E(G). We assume that each edge of G appears exactly once in the stream. There is no easy
way to check that this holds, so we have to take this as a promise. While n is known beforehand, the stream length
m, which also equals |E(G)|, is not.

• In a vanilla weighted graph stream, with weights lying in some set S, each token is a triple (u,v,w) ∈ [n]× [n]×S
and indicates that {u,v} is an edge of G with weight w.

• A dynamic graph stream represents an evolving graph, where edges can come and go. Each token is a triple
(u,v,b) ∈ [n]× [n]×{−1,1} and indicates that an edge {u,v} is being inserted into the graph if b = 1 and deleted
from the graph if b =−1. It is promised that an edge being inserted isn’t already in the graph and an edge being
deleted is definitely in the graph.

• A turnstile graph stream represents an evolving multigraph. Each token is a triple (u,v,∆) ∈ [n]× [n]×Z and
indicates that ∆ is being added to the multiplicity of edge {u,v}. Edges that end up with a negative multiplicity
usually don’t make graph-theoretic sense, so it may be convenient to assume a promise that that doesn’t happen.

68

D
RA

FT

UNIT 14. GRAPH STREAMS: BASIC ALGORITHMS
Dartmouth: CS 35/135

Data Stream Algorithms

In this unit, we will only study algorithms in a vanilla (i.e., insertion-only) streaming setting.

14.1.1 Semi-Streaming Space Bounds

Unfortunately, most of the interesting things we may want to compute for a graph provably require Ω(n) space in a
streaming model, even allowing multiple passes over the input stream. These include such basic questions as “Is G
connected?” and even “Is there a path from u to v in G?” where the vertices u and v are known beforehand. We shall
prove such results when we study lower bounds, in later units.

Therefore, we have to reset our goal. Where (logn)O(1) space used to be the holy grail for basic data stream
algorithms, for several graph problems, the quest for a good space bound has to stop at O(npolylogn) space. Algorithms
achieving such a space bound have come to be known as “semi-streaming” algorithms. Alternatively, we say that such
an algorithm run in “semi-streaming space.” Note that an algorithm that guarantees a space bound of O(nα) for any
constant α < 2 is already achieving sublinear space, when the input graph is dense enough, because m could be as high
as Ω(n2).

14.2 The Connectedness Problem

Our first problem is CONNECTEDNESS: decide whether or not the input graph G, which is given by a stream of edges,
is connected. This is a Boolean problem—the answer is either 0 (meaning “no”) or 1 (meaning “yes”)—and so we
require an exact answer. We could consider randomized algorithms, but we won’t need to.

For this problem, as well as all others in this unit, the algorithm will consist of maintaining a subgraph of G
satisfying certain conditions. For CONNECTEDNESS, the idea is to maintain a spanning forest, F . As G gets updated, F
might or might not become a tree at some point. Clearly G is connected iff it does.

The algorithm below maintains F as a set of edges. The vertex set is always [n].

Algorithm 21 Graph connectivity
Initialize:

1: F ←∅, flag← 0

Process (token {u,v}) :
2: if ¬flag and F ∪{{u,v}} does not contain a cycle then
3: F ← F ∪{{u,v}}
4: if |F |= n−1 then flag← 1

Output: flag

We have already argued the algorithm’s correctness. Its space usage is easily seen to be O(n logn), since we always
have |F | ≤ n−1, and each edge of F requires at most 2⌈logn⌉= O(logn) bits to describe.

The well known UNION-FIND data structure can be used to do the work in the processing section quickly. To test
acyclicity of F ∪{{u,v}}, we simply check if root(u) and root(v) are distinct in the data structure.

14.3 The Bipartiteness Problem

A bipartite graph is one whose vertices can be partitioned into two disjoint sets—L and R, say—so that every edge is
between a vertex in L and a vertex in R. Equivalently, a bipartite graph is one whose vertices can be properly colored
using two colors.1 Our next problem is BIPARTITENESS: determine whether or not the input graph G is bipartite.

1A coloring is proper if, for every edge e, the endpoints of e receive distinct colors.

69

D
RA

FT

UNIT 14. GRAPH STREAMS: BASIC ALGORITHMS
Dartmouth: CS 35/135

Data Stream Algorithms

Note that being bipartite is a monotone property (just as connectedness is): that is, given a non-bipartite graph,
adding edges to it cannot make it bipartite. Therefore, once a streaming algorithm detects that the edges seen so far
make the graph non-bipartite, it can stop doing more work. Here is our proposed algorithm.

Algorithm 22 Bipartiteness testing
Initialize:

1: F ←∅, flag← 1

Process (token {u,v}) :
2: if flag then
3: if F ∪{{u,v}} does not contain a cycle then
4: F ← F ∪{{u,v}}
5: else if F ∪{{u,v}} contains an odd cycle then
6: flag← 0

Output: flag

Just like our CONNECTEDNESS algorithm before, this one also maintains the invariant that F is a subgraph of G and
is a forest. Therefore it uses O(n logn) space. Its correctness is guaranteed by the following theorem.
Theorem 14.3.1. Algorithm 22 outputs 1 (meaning “yes”) iff the input graph G is bipartite.

Proof. Suppose the algorithm outputs 0. Then G must contain an odd cycle. This odd cycle does not have a proper
2-coloring, so neither does G. Therefore G is not bipartite.

Next, suppose the algorithm outputs 1. Let χ : [n]→{0,1} be a proper 2-coloring of the final forest F (such a χ

clearly exists, since forests are bipartite). We claim that χ is also a proper 2-coloring of G, which would imply that G is
bipartite and complete the proof.

To prove the claim, consider an edge e = {u,v} of G. If e ∈ F , then we already have χ(u) ̸= χ(v). Otherwise,
F ∪{e} must contain an even cycle. Let π be the path in F obtained by deleting e from this cycle. Then π runs between
u and v and has odd length. Since every edge on π is properly colored by χ , we again get χ(u) ̸= χ(v).

The above algorithm description and analysis focuses on space complexity (for a reason: it is the main issue here)
and does not address the time required to process each token. It is a good exercise to figure out how to make this
processing time efficient as well.

14.4 Shortest Paths and Distance Estimation via Spanners

Now consider the problem of estimating distances in G. Recall that every graph naturally induces a metric on its vertex
set: given two vertices x,y ∈V (G), the distance dG(x,y) between them is the length of the shortest x-to-y path in G.

dG(x,y) := min{length(π) : π is a path in G from x to y} , (14.1)

where the minimum of an empty set defaults to ∞ (i.e., dG(x,y) = ∞ if there is no x-to-y path). In a streaming setting,
our problem is to process an input (vanilla) graph stream describing G and build a data structure using which we can
then answer distance queries of the form “what is the distance between x and y?”

The following algorithm computes an estimate d̂(x,y) for the distance dG(x,y). It maintains a suitable subgraph H
of G which, as we shall see, satisfies the following property.

∀x,y ∈ [n] : dG(x,y)≤ dH(x,y)≤ t ·dG(x,y) , (14.2)

where t ≥ 1 is an integer constant. The algorithm can then report d̂(x,y) = dH(x,y) and this answer will be correct up to
an approximation factor of t. A subgraph H satisfying eq. (14.2) is called a t-spanner of G. Note that the left inequality
trivially holds for every subgraph H of G.

70

D
RA

FT

UNIT 14. GRAPH STREAMS: BASIC ALGORITHMS
Dartmouth: CS 35/135

Data Stream Algorithms

Algorithm 23 Distance estimation using a t-spanner
Initialize:

1: H←∅

Process (token {u,v}) :
2: if dH(u,v)≥ t +1 then
3: H← H ∪{{u,v}}

Output (query (x,y)) :
4: report d̂(x,y) = dH(x,y)

14.4.1 The Quality of the Estimate

Theorem 14.4.1. The final graph H constructed by Algorithm 23 is a t-spanner of G. Therefore, the estimate d̂(x,y) is
a t-approximation to the actual distance dG(x,y): more precisely, it lies in the interval [dG(x,y), t ·dG(x,y)].

Proof. Pick any two distinct vertices x,y ∈ [n]. We shall show that eq. (14.2) holds. If dG(x,y) = ∞, then G has no
x-to-y path, so neither does its subgraph H, whence dH(x,y) = ∞ as well. Otherwise, let π be the shortest x-to-y path in
G and let x = v0,v1,v2, . . . ,vk = y be the vertices on π , in order. Then dG(x,y) = k.

Pick an arbitrary i ∈ [k], and let e = {vi−1,vi}. If e ∈ H, then dH(vi−1,vi) = 1. Otherwise, e /∈ H, which means that
at the time when e appeared in the input stream, we had dH ′(vi−1,vi) ≤ t, where H ′ was the value of H at that time.
Since H ′ is a subgraph of the final H, we have dH(vi−1,vi)≤ t. Thus, in both cases, we have dH(vi−1,vi)≤ t. By the
triangle inequality, it now follows that

dH(x,y)≤
k

∑
i=1

dH(vi−1,vi)≤ tk = t ·dG(x,y) ,

which completes the proof, and hence implies the claimed quality guarantee for the algorithm.

14.4.2 Space Complexity: High-Girth Graphs and the Size of a Spanner

How much space does Algorithm 23 use? Clearly, the answer is O(|H| logn), for the final graph H constructed by it. To
estimate |H|, we note that, by construction, the shortest cycle in H has length at least t +2. We can then appeal to a
result in extremal graph theory to upper bound |H|, the number of edges in H.

The girth γ(G) of a graph G is defined to be the length of its shortest cycle; we set γ(G) = ∞ if G is acyclic. As
noted above, the graph H constructed by our algorithm has γ(H)≥ t +2. The next theorem places an upper bound on
the size of a graph with high girth.
Theorem 14.4.2. For sufficiently large n, if the n-vertex graph G has m edges and γ(G)≥ k, for an integer k, then

m ≤ n+n1+1/⌊(k−1)/2⌋ .

Proof. Let d := 2m/n be the average degree of G. If d ≤ 3, then m≤ 3n/2 and we are done. Otherwise, let F be the
subgraph of G obtained by repeatedly deleting from G all vertices of degree less than d/2. Then F has minimum degree
at least d/2, and F is nonempty, because the total number of edges deleted is less than n ·d/2 = m.

Put ℓ= ⌊(k−1)/2⌋. Clearly, γ(F)≥ γ(G)≥ k. Therefore, for any vertex v of F , the ball in F centered at v and of
radius ℓ is a tree (if not, F would contain a cycle of length at most 2ℓ≤ k−1). By the minimum degree property of
F , when we root this tree at v, its branching factor is at least d/2−1≥ 1. Therefore, the tree has at least (d/2−1)ℓ

vertices. It follows that

n≥
(

d
2
−1
)ℓ

=
(m

n
−1
)ℓ

,

which implies m≤ n+n1+1/ℓ, as required.

71

D
RA

FT

UNIT 14. GRAPH STREAMS: BASIC ALGORITHMS
Dartmouth: CS 35/135

Data Stream Algorithms

Using ⌊(k−1)/2⌋ ≥ (k−2)/2, we can weaken the above bound to

m = O
(

n1+2/(k−2)
)
.

Plugging in k = t + 2, we see that the t-spanner H constructed by Algorithm 23 has |H| = O(n1+2/t). Therefore,
the space used by the algorithm is O(n1+2/t logn). In particular, we can 3-approximate all distances in a graph by a
streaming algorithm in space Õ(n5/3).

Incidentally, more precise bounds on the size of a high-girth graph are known, though they do not lead to any
asymptotic improvement in this space complexity analysis. See the paper by Alon, Hoory and Linial [AHL02] and the
references therein.

Exercises

14-1 Suppose that we have a vanilla weighted graph stream, where each token is a triple (u,v,wuv), specifying an
edge {u,v} and its weight wuv ∈ [W]. This number W is an integer parameter. Distances in G are defined using
weighted shortest paths, i.e.,

dG,w(x,y) := min

{
∑
e∈π

we : π is a path from x to y

}

Give an algorithm that processes G using space Õ(n1+2/t logW) so that, given x,y ∈V (G), we can then return a
(2t)-approximation of dG,w(x,y). Give careful proofs of the quality and space guarantees of your algorithm.

72

D
RA

FT
Unit 15
Finding Maximum Matchings

In Unit 14, we considered graph problems that admitted especially simple streaming algorithms. Now we turn to
maximum matching, where we will see a more sophisticated solution. Matchings are well-studied in the classical theory
of algorithm design, and Edmonds’s polynomial-time algorithm for the problem [Edm65] remains one of the greatest
achievements in the field. For graphs described by streams, we cannot afford computations of the type performed by
Edmonds’s algorithm, but it turns out that we can achieve low (semi-streaming) space if we settle for approximation.

15.1 Preliminaries

Let G = (V,E) be a graph. A matching in G is a set M ⊆ E such that no two edges in M touch, i.e., e∩ f =∅ for all
e ̸= f ∈M. If G is weighted, with weight function wt : E→R giving a weight to each edge, then the weight of a subset
S⊆ E of edges is defined by

wt(S) = ∑
e∈S

wt(e) .

In particular, this defines the weight of every matching.

In the maximum-cardinality matching (MCM) problem, the goal is to find a matching in the input graph G that has
maximum possible cardinality. In the maximum-weight matching (MWM) problem, the goal is to find a matching in the
weighted input graph G that has maximum possible weight: we assume, without loss of generality, that edge weights
are positive. Clearly, MCM is a special case of MWM where every edge has weight 1.

A particular matching M of G is said be an A-approximate MWM, where A > 0 is a real number, if

wt(M∗)
A

≤ wt(M)≤ wt(M∗) ,

where M∗ is an MWM of G. This also defines A-approximate MCMs. The right inequality is trivial, of course; it’s all
about the left inequality.

In this unit, the input graph will be given as a vanilla stream or a vanilla weighted stream (as defined in Section 14.1),
depending on the problem at hand.

15.2 Maximum Cardinality Matching

Let us briefly consider the MCM problem, before moving on to the more interesting weighted case. It should be said that
in traditional (non-streaming) algorithms, MCM is already a rich problem calling for deep algorithmic ideas. However,
in a one-pass semi-streaming setting, essentially the only algorithm we know is the following extremely simple one.

73

D
RA

FT

UNIT 15. FINDING MAXIMUM MATCHINGS
Dartmouth: CS 35/135

Data Stream Algorithms

Algorithm 24 Greedy algorithm for maximum-cardinality matching (MCM)
Initialize:

1: M←∅ ▷ invariant: M will always be a matching

Process (token (u,v)) :
2: if M∪{{u,v}} is a matching then
3: M←M∪{u,v}

Output: M

A matching M of G is said to be maximal if no edge of G can be added to M to produce a larger matching. Note that
this is not the same as saying that M is an MCM. For instance, if G is path of length 3, then the singleton set consisting
of the middle edge is a maximal matching but obviously not an MCM.

It is easy to see that Algorithm 24 maintains a maximal matching of the input graph. This immediately implies that
it uses at most O(n logn) space, since we have |M| ≤ n/2 at all times. The quality analysis is not much harder.
Theorem 15.2.1. The output of Algorithm 24 is a 2-approximate MCM.

Proof. Let M∗ be an MCM. Suppose |M| < |M∗|/2. Each edge in M “blocks” (prevents from being added to M) at
most two edges in M∗. Therefore, there exists an unblocked edge in M∗ that could have been added to M, contradicting
the maximality of M.

We won’t discuss MCM any further, but we note that if we are prepared to use more passes over the stream, it is
possible to improve the approximation factor. There are various ways to do so and they all use more sophisticated ideas.
Of these, one set of algorithms [McG05, KT17] uses the standard combinatorial idea of improving a matching M by
finding an augmenting path, which is a path whose edges are alternately in M and not in M, beginning and ending in
unmatched vertices. A different set of algorithms [AG13] uses linear programming duality.

A key takeaway is that for each ε > 0, we can produce a (1+ ε)-approximate MCM using pε passes, where pε is a
parameter depending only on ε . It remains open whether pε can be made to be at most poly(ε−1).

15.3 Maximum Weight Matching

We now turn to weighted graphs, where the goal is to produce a matching of high weight, specifically, an A-approximate
MWM. Although it will be useful to think of an ideal model where edge weights can are positive reals, for space
analysis purposes, we think of edge weights as lying in [W], for some positive integer W . This is reasonable, because
we can approximate real numbers using rationals and the clear denominators.

The algorithm uses a strategy of eviction: it maintains a current matching, based on edges seen so far. A newly
seen edge might be in conflict with some edges (at most two) from the current matching. This is undesirable if the new
edge is significantly better than the ones it’s in conflict with, so in such a case, we take in the new edge and evict those
conflicting edges from the current matching. The full logic is given in Algorithm 25.

Algorithm 25 Eviction algorithm for maximum-weight matching (MWM)
Initialize:

1: M←∅ ▷ invariant: M will always be a matching

Process (token (u,v,w)) :
2: C←{e ∈M : e∩{u,v} ̸=∅} ▷ current edge conflicts with C; note that |C| ∈ {1,2}
3: if w > (1+α)wt(C) then
4: M←M∪{u,v}\C ▷ current edge is too good; take it and evict C

Output: M

74

D
RA

FT

UNIT 15. FINDING MAXIMUM MATCHINGS
Dartmouth: CS 35/135

Data Stream Algorithms

The logic of Algorithm 25 makes it clear that M is always a matching. In particular, |M| ≤ n/2. Therefore, the
algorithm stores at most O(n) edges and their weights, leading to a space usage in O(n(logn+ logW)) = Õ(n), which
makes it a semi-streaming algorithm.
Theorem 15.3.1. Let ŵ be the weight of the matching output by Algorithm 25 and let M∗ be a maximum-weight
matching of the input graph G. Then,

wt(M∗)
cα

≤ ŵ≤ wt(M∗) ,

where cα is a constant, depending only on α . Thus, the algorithm outputs a cα -approximate MWM.

Proof. As the algorithm processes tokens, we say that an edge e is born when it is added to M; we say that e is killed by
the edge f when it is removed from M upon processing f ; we say that e survives if it is born and never killed; we say
that e is unborn if, when it is processed, it is not added to M.

We can define a parent-child relation among the born edges in E(G) by defining an edge’s killer (if it has one) to be
its parent. This organizes the born edges into a collection of rooted trees that we call killing trees: each survivor is the
root of such a tree, killed edges are non-root nodes in the trees, and unborn edges simply do not appear in the trees. Let
S be the set of all survivors. Let T (e) be the set of all strict descendants of e in its killing tree and let T (S) =

⋃
e∈S T (e).

The proof of the theorem is based on two key claims about these trees.

Claim 2. The total weight of killed edges is bounded as follows: wt(T (S))≤ wt(S)/α .

Proof. By the logic of line 3 in Algorithm 25, for each edge e that is born,

wt(e)> (1+α) ∑
f child of e

wt(f) .

Let Di(e) := { f : f is a level-i descendant of e}. Applying the above fact repeatedly,

wt(Di(e))<
wt(e)

(1+α)i .

Therefore,

wt(T (S))≤∑
e∈S

∞

∑
i=1

wt(Di(e))< ∑
e∈S

∞

∑
i=1

wt(e)
(1+α)i = ∑

e∈S
wt(e) · 1

α
=

wt(S)
α

.

Claim 3. Let M∗ be an MWM of G. Then, wt(M∗)≤ (1+α)(wt(T (S))+2wt(S)).

Proof. The idea is to charge the weight of each edge in M∗ to certain slots associated with the killing trees and then
bound the amount of charge left in each slot at the end of the stream. A slot is indexed by a pair ⟨e,x⟩, where e ∈ E(G)
and x is an end-point of e. The charging scheme that we shall now describe will maintain the following invariants.

[CS1] For each vertex x ∈V (G), at most one slot of the form ⟨e,x⟩ holds a charge.
[CS2] For each slot ⟨e,x⟩, the charge allocated to it is at most (1+α)wt(e).

Each edge z = {u,v} ∈M∗ creates wt(z) amount of charge when it arrives in the stream. This charge is distributed
among slots associated with u and v as follows.

• If z is born, a charge of wt(z)/2 is allocated to each of ⟨z,u⟩ and ⟨z,v⟩.
• If z is not born because exactly one edge e ∈M touches z at u (say), then a charge of wt(z) is allocated to ⟨e,u⟩.
• If z is not born because exactly two edges e, f ∈M touch z at u,v (respectively), then charges of

wt(z)wt(e)
wt(e)+wt(f)

and
wt(z)wt(f)

wt(e)+wt(f)

are allocated to ⟨e,u⟩ and ⟨ f ,v⟩ respectively.

Notice that, so far, invariant [CS1] is maintained because M∗ is a matching. Further, [CS2] is maintained because of the
logic of line 3 in Algorithm 25. Continuing with the description of the charging scheme, when an edge e = {u,v} /∈M∗

arrives in the stream, it may cause a reallocation of charges, as follows.

75

D
RA

FT

UNIT 15. FINDING MAXIMUM MATCHINGS
Dartmouth: CS 35/135

Data Stream Algorithms

• If e is not born, nothing happens.
• If e is born, any charge allocated to a slot associated with u is transferred to slot ⟨e,u⟩, and similarly for v.

Obviously, this reallocation continues to maintain [CS1]. More importantly, when a charge allocated to some slot ⟨ f ,u⟩
is transferred to a slot ⟨e,u⟩, it must be the case that e kills f , implying that wt(e)≥ wt(f), which maintains [CS2].

The total charge created during the course of the stream is wt(M∗). Notice that a slot that is allocated a charge
must be associated with an edge that was born and is therefore in a killing tree. Each edge has exactly two slots. For
an edge that was killed (i.e., an edge in T (S)), the charge in one of its two slots would have got transferred to a slot
associated with its killer. Therefore, by invariant [CS2], the total charge allocated to the slots associated with e is at
most (1+α)wt(e) if e ∈ T (S) and at most 2(1+α)wt(e) if e ∈ S. The claim follows.

Using the above two claims,

wt(M∗)≤ (1+α)(wt(T (S))+2wt(S))

≤ (1+α)

(
wt(S)

α
+2wt(S)

)
=

(
1
α
+3+2α

)
wt(S) . (15.1)

Since S is the matching output by Algorithm 25, Theorem 15.3.1 is proved with cα = α−1 +3+2α .

The best choice for α , which minimizes the expression (15.1), is 1/
√

2. This gives us bound of cα = 3+2
√

2 on
the approximation factor.

The above MWM algorithm and analysis are a fresh presentation of ideas in Feigenbaum et al. [FKM+05] and
McGregor [McG05]. Since the publication of those early works, there has been a long line of further algorithms for
MWM [Zel08, ELMS11, CS14], leading to improvements in the approximation factor, culminating in the algorithm
of Paz and Schwartzman [PS19], which achieved a (2+ ε)-approximation. There has also been work on multi-pass
semi-streaming algorithms [AG13], where a (1+ ε)-approximation is possible.

Exercises

15-1 Let us call Algorithm 25 an α-improving algorithm. As our analysis shows, setting α = 1/
√

2 gives us a
one-pass (3+2

√
2)-approximation to the MWM.

Now suppose we are given ε > 0, and we run additional passes of an α-improving algorithm with the setting
α = ε/3 (the first pass still uses α = 1/

√
2), using the output of the ith pass as the initial M for the (i+1)th

pass. Let Mi denote the output of the ith pass. We stop after the (i+1)th pass when

wt(Mi+1)

wt(Mi)
≤ 1+

α3

1+2α +α2−α3 , where α =
ε

3
.

Prove that this multi-pass algorithm makes O(ε−3) passes and outputs a (2+ ε)-approximation to the MWM.

76

D
RA

FT
Unit 16
Graph Sketching

The graph algorithms in Unit 14 used especially simple logic: each edge was either retained or discarded, based on
some easy-to-check criterion. This simplicity came at the cost of not being able to handle edge deletions. In this unit,
we consider graph problems in a turnstile stream setting, so a token can either insert or delete an edge or, more generally,
increase or decrease its multiplicity.

Algorithms that can handle such streams use the basic observation, made back in Unit 5, that linear sketches
naturally admit turnstile updates. The cleverness in these algorithms lies in constructing the right linear sketch. Such
algorithms were first developed in the influential paper of Ahn, Guha, and McGregor [AGM12] and their underlying
sketching technique has come to be known as the “AGM sketch.” The sketch then allows us to solve CONNECTEDNESS
and BIPARTITENESS (plus many other problems) in turnstile graph streams, using only semi-streaming space.

16.1 The Value of Boundary Edges

Our algorithms for CONNECTEDNESS and BIPARTITENESS will be based on the primitive of sampling an edge from the
boundary of a given set of vertices. Later, we shall introduce a stream-friendly data structure—which will be a linear
sketch—that implements this primitive.
Definition 16.1.1. Let G = (V,E) be a graph. For each S⊆V , the boundary of S is defined to be

∂S := {e ∈ E : |e∩S|= 1} ,

i.e., the set of edges that have exactly one endpoint in S. If G′ is a multigraph, we define boundaries based on the
underlying simple graph consisting of the edges of G′ that have nonzero multiplicity.

In the trivial cases S = ∅ and S = V , we have ∂S = ∅. We shall say that S is a nontrivial subset of vertices if
∅ ̸= S ̸=V . Here is a simple lemma about such subsets that you can prove yourself.
Lemma 16.1.2. Let S be a nontrivial subset of vertices of G. Then ∂S =∅ iff S is a union of some, but not all, connected
components of G. In particular if G is connected, then ∂S ̸=∅.

Assume, now, that we have somehow processed our turnstile graph stream to produce a data structure B that can
be queried for boundary edges. Specifically, when B is queried with parameter S, it either returns some edge in ∂S
(possibly a random edge, according to some distribution) or declares that ∂S =∅. We shall call B a boundary sampler
for G. Let us see how we can use B to solve our graph problems.

16.1.1 Testing Connectivity Using Boundary Edges

To gain some intuition for why finding boundary edges is useful, let us consider an input graph G = (V,E) that is
connected.

77

D
RA

FT

UNIT 16. GRAPH SKETCHING
Dartmouth: CS 35/135

Data Stream Algorithms

Suppose we have a partition of V into k≥ 2 nonempty subsets C1, . . . ,Ck, which we shall call clusters. Lemma 16.1.2
says that every one of these clusters must have nonempty boundary. Suppose we query B with parameter C1, . . . ,Ck
(one by one) and collect the returned edges e1, . . . ,ek. Each of these edges must necessarily be inter-cluster and we can
use these edges to merge clusters that are connected to one another. If (the subgraph induced by) each Ci happened to
be connected to begin with, then after these mergers we again have a partition into connected clusters.

By starting with a partition into singleton clusters—which is trivially a partition into connected clusters—and
iterating the above boundary query and merge procedure, we will eventually merge everything into one single cluster.
At this point, we have convinced ourselves that G is indeed connected. In fact, we can say more: the edges we obtained
by querying B suffice to connect up all the vertices in G and therefore contain a spanning tree of G.

We formalize the above intuition in Algorithm 26, which computes a spanning forest of a general (possibly
disconnected) graph, given access to a boundary sampler B as described above. Note that this is not a streaming
algorithm! It is to be called after the graph stream has been processed and B has been created. As usual, the vertex set
of the input graph is assumed to be [n].

Algorithm 26 Compute edges of spanning forest using boundary sampler
1: function SPANNINGFOREST(vertex set V , boundary sampler B)
2: F ←∅
3: C ←{{v} : v ∈V} ▷ initial partition into singletons
4: repeat
5: query B(C) for each C ∈ C and collect returned edges in H ▷ B(C) yields an arbitrary edge in ∂C
6: F ← spanning forest of graph (V,F ∪H)
7: C ←{V (T) : T is a connected component of (V,F)} ▷ new partition after merging clusters
8: until H =∅ ▷ stop when no new boundary edges found
9: return F

Consider how Algorithm 26 handles a connected input graph G. Let Fi and Ci denote the values of F and C at
the start of the ith iteration of the loop at line 4. Let Hi denote the set H collected in the ith iteration. Let ki = |Ci|.
Equivalently, ki is the number of connected components of the forest (V,Fi). Then, ki+1 is exactly the number of
connected components of the graph (Ci,Hi) that treats each cluster as a “supervertex.” If ki > 1, by Lemma 16.1.2,
this ki-vertex graph has no isolated vertices, so ki+1 ≤ ki/2. (It is instructive to spell out when exactly we would have
ki+1 = ki/2.)

Since k1 = n, it follows that ki reaches 1 after at most ⌊logn⌋ iterations of the loop at line 4. Further, when ki
becomes 1, the graph (V,Fi) becomes connected, and so, Fi is a spanner tree of G.

Finally, consider how Algorithm 26 handles a general input graph G whose connected components are G1, . . . ,Gℓ.
Applying the above argument to each component separately, we see that the algorithm terminates in O(maxi∈[ℓ] log |V (Gi)|)=
O(logn) iterations and returns a spanning forest of G.

16.1.2 Testing Bipartiteness

A neat idea now allows us to solve BIPARTITENESS as well. The key observation is that the problem reduces to
CONNECTEDNESS.

The bipartite double cover of a graph G = (V,E) is defined to be the graph (V ×{1,2},E ′), where

E ′ = {{(u,1),(v,2)} : {u,v} ∈ E} .

It is important to note that |E ′|= 2|E|, since each {u,v} ∈E in fact gives rise to both {{(u,1),(v,2)} and {{(v,1),(u,2)}.
More succinctly, the double cover is the tensor product G×K2. An example is shown in Figure 16.1.

Below is the important lemma we need about this construction. We skip the proof, which is a nice exercise in
elementary graph theory.
Lemma 16.1.3. A connected graph G is bipartite iff G×K2 is disconnected. More generally, for a graph G that has k
connected components:

78

D
RA

FT

UNIT 16. GRAPH SKETCHING
Dartmouth: CS 35/135

Data Stream Algorithms

× = =

G

K2

Figure 16.1: An example of a bipartite double cover. This graph G is connected and bipartite, so its double cover is
disconnected. Source: Wikimedia, Miym / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0).

• if G is bipartite, then G×K2 has exactly 2k connected components;
• else, G×K2 has fewer than 2k connected components.

The lemma, combined with Algorithm 26, immediately gives us the following algorithm for bipartiteness testing,
once we have a boundary sampler sketch, B. As the stream is read, we maintain two copies of B: one for the input
graph G and one for G×K2. At the end of the stream, we call SPANNINGFOREST on each of the copies of B to
determine the number of connected components of G and of G×K2. Lemma 16.1.3 gives us our answer.

16.2 The AGM Sketch: Producing a Boundary Edge

We have arrived at the heart of the algorithm. We must implement the primitive on which the algorithms of Section 16.1.1
rest. We need to design a linear sketch of a turnstile edge stream that allows us to sample boundary edges.

As a start, consider the special-case problem of producing an edge from ∂{v}, where v is a vertex. In other words,
we seek an edge incident to v. Let AAA be the adjacency matrix of G, i.e., the matrix whose entry Auv is the multiplicity of
edge {u,v}. Sampling an edge incident to u is the same as sampling an entry from the support of the uth row of A. We
do know an efficient linear sketch for this: the ℓ0-sampling sketch, described in Unit 10.

Therefore, if we maintain an ℓ0-sampling sketch per row of AAA—i.e., per vertex of G—then we use only Õ(n) space
and can produce, on demand, an edge incident to any given vertex. There is a small probability that a query will fail,
but this probability can be kept below O(1/nc) for any constant c.

This idea does not, however, generalize to sampling from ∂S where |S| > 1. We would like to sample from the
support of a vector obtained by “combining the rows indexed by S” in such a way that entries corresponding to edges
within S are zeroed out. The clever trick that allows such a combination is to replace the adjacency matrix AAA with the
signed incidence matrix BBB defined as follows. Let P =

(V
2

)
be the set of unordered pairs of vertices, i.e., the set of all

potential edges of G. Then BBB ∈ ZV×P is the matrix whose entries are

Bue =

Auv , if e = {u,v} and u < v ,
−Auv , if e = {u,v} and u > v ,
0 , if u /∈ e .

[[*** Insert example here ***]]

Consider the column of BBB corresponding to a pair e = {x,y}. If e is not an edge of G (equivalently, e has multiplicity
zero), then the column is all-zero. Otherwise, if e appears with multiplicity c, then the column has exactly two nonzero
entries—in rows x and y—and these two entries sum to zero. This immediately gives us the following.
Observation 16.2.1. Let bbbu denote the u-th row of the signed incidence matrix BBB of a graph G. For all S⊆V (G),

supp ∑
u∈S

bbbu = ∂S .

79

D
RA

FT

UNIT 16. GRAPH SKETCHING
Dartmouth: CS 35/135

Data Stream Algorithms

Let LLL be a (random) ℓ0-sampling sketch matrix, as constructed in Unit 10. Then, by querying the sketch LLL∑u∈S bbbu,
we can (with high probability) produce a random edge from ∂S or detect that ∂S =∅.1 By linearity,

LLL ∑
u∈S

bbbu = ∑
u∈S

LLLbbbu ,

so it suffices to maintain a sketch LLLbbbu corresponding to each vertex u. The construction in Unit 10 guarantees that each
ℓ0-sampling sketch uses O(log2 n logδ−1) space to achieve a failure probability of δ , leading to an overall space usage
of Õ(n) if we use one such sketch per vertex.

We almost have a complete algorithm now, but we need to address two issues.

1. In executing a “recovery procedure” such as Algorithm 26, we need to query ℓ0-samplers multiple times. Consider-
ing this, how many independent samplers must we construct?

2. In Section 16.1.1, we assumed that the boundary samplers always work, but our ℓ0-samplers have a certain failure
probability. How do we account for this?

[[*** Wrap up analysis and provide pseudocode ***]]

1Moreover, the random edge we produce is nearly uniformly distributed in ∂S. The algorithms in this unit do not make use of this property.

80

D
RA

FT
Unit 17
Counting Triangles

When analyzing a large graph, an important class of algorithmic problems is to count how frequently some particular
pattern occurs in the graph. Perhaps the most important such pattern is a triangle, i.e., a triple of vertices {u,v,w} such
that {u,v}, {v,w} and {u,w} are all edges in the graph. Counting (or estimating) the number of triangles gives us a
useful summary of the “community forming” tendency of the graph: especially relevant when the graph is a social
network, for instance.

We shall consider the problem of counting (or estimating) the number of triangles in a graph. It turns out that this
estimation problem is a rare example of a natural graph problem where a truly low-space (as opposed semi-streaming)
solution is possible. Moreover, a sketching algorithm is possible, which means that we can solve the problem even in a
turnstile model.

17.1 A Sampling-Based Algorithm

Given a vanilla graph stream describing a graph G = (V,E), where V = [n], we want to estimate T (G), the number of
triangles in G.

Unfortunately, we cannot estimate T (G) efficiently, in the sense of multiplicative approximation, no matter how
loose the factor. The reason is that using a single pass, we require Ω(n2) simply to distinguish the cases T (G) = 0 and
T (G)≥ 1. Later in the course, we shall see how to prove such a lower bound.

In light of the above, we will need to relax our goal. One way to do so is to aim for additive error in our estimate,
instead of multiplicative error. Another way—the one that has become standard in the literature and that we shall use
here—is to multiplicatively approximate T (G) under a promise that T (G) ≥ T , for some lower bound T ≥ 1. The
higher this lower bound, the more restricted our space of valid inputs. Accordingly, we will aim for algorithms whose
space complexity is a decreasing function of T .

Here is an algorithm (in outline form) that uses the simple primitive of reservoir sampling that we had seen in
Section 6.2.

1. Pick an edge {u,v} uniformly at random from the stream, using reservoir sampling.

2. Based on the above, pick a vertex w uniformly at random from V \{u,v}.

3. Then, if {u,w} and {v,w} appear after {u,v} in the stream, then output m(n−2) else output 0.

A little thought shows that a single pass suffices to carry out all of the above steps. One can show that the above
algorithm, after suitable parallel repetition, provides an (ε,δ)-estimate for T (G) using space O(ε−2 logδ−1 logn ·
mn/T), under the promise that T (G)≥ T . The outline is as follows. First, one shows that the algorithm’s output is
an unbiased estimator for T (G). Next, one computes a variance bound and uses Chebyshev’s inequality to obtain the
claimed space bound. The details are fairly straightforward given what has come before in the course.

81

D
RA

FT

UNIT 17. COUNTING TRIANGLES
Dartmouth: CS 35/135

Data Stream Algorithms

17.2 A Sketch-Based Algorithm

The following algorithm is due to Bar-Yossef, Kumar, and Sivakumar [BKS02]. It uses space

Õ
(

1
ε2 log

1
δ
·
(mn

T

)2
)
, (17.1)

to produce an (ε,δ)-estimate of T (G). This is greater than the space used by the algorithm outlined in Section 17.1.
However, this new algorithm has the advantage of being based on linear sketches. What it computes is not exactly a
linear transformation of the stream, but nevertheless we can compose “sketches” computed by this algorithm for two
different edge streams and we can handle edge deletions.

The high-level idea in the algorithm is to take the given (actual) stream σ of edges and transform it on the fly into a
“virtual stream” τ of triples {u,v,w}, where u,v,w ∈V . Specifically, upon seeing a single actual token, we pretend that
we have seen n−2 virtual tokens as indicated below:

actual token virtual tokens
{u,v} −→ {u,v,w1},{u,v,w2}, . . . ,{u,v,wn−2}

where {w1,w2, . . . ,wn−2} = V \ {u,v}. Thus, if σ consists of m edge updates, then τ consists of the corresponding
m(n−2) virtual tokens.

Here comes the ingenious idea: consider the frequency moments Fk(τ) of this virtual stream! Let us define

Tj = Tj(G) :=
∣∣{{u,v,w} : u,v,w ∈V distinct and induce exactly j edges of G between themselves

}∣∣ .
Then note that

T0 +T1 +T2 +T3 =

(
n
3

)
.

If we knew the frequency moments Fk(τ), we could derive further linear equations involving these Tj values. For
example,

F2(τ) = ∑
u,v,w

(number of occurrences of {u,v,w} in τ)2

= 12 ·T1 +22 ·T2 +32 ·T3

= T1 +4T2 +9T3 (17.2)

We can derive another two linear equations using F1(τ) and F0(τ). It is a good exercise to derive them and then check
that all four linear equations for the Tj values are linearly independent, so we can solve for the Tj values. Finally, note
that T3 = T (G), the number of triangles in G.

As we know from earlier in the course, we can compute good estimates for F0(τ),F1(τ), and F2(τ), all using linear
sketches. By carefully managing the accuracy guarantees for these sketches and analyzing how they impact the accuracy
of the computed value of T (G), we can arrive at the space bound given in eq. (17.1).

Exercises

17-1 Formally analyze the algorithm outlined in Section 17.1 and prove the claimed space bound.

17-2 Consider the operation of the algorithm outlined in Section 17.2 on a stream consisting of m edge insertions
and no deletions, producing an n-vertex graph G that is promised to contain at least T triangles, i.e., T (G)≥ T .
Prove that, for the derived stream τ , we have the following relations, analogous to eq. (17.2).

F1(τ) = T1 +2T2 +3T3 ;
F0(τ) = T1 +T2 +T3 .

Based on these, work out an exact formula for T (G) in terms of n, m, F0(τ), and F2(τ). Then work out what
guarantees you need on estimates for F0(τ) and F2(τ) so that your formula gives you a (1± ε)-approximation to
T (G). Finally, based on these required guarantees, prove that the space upper bound given in eq. (17.1) holds.

82

D
RA

FT
Unit 18
Communication Complexity and a First Look at
Lower Bounds

We have been making occasional references to impossibility results saying that such-and-such in not doable in a
data streaming model. Such results are called lower bounds: formally, one shows that in order to accomplish some
well-defined task in a streaming model, at least a certain number of bits of space is required.

The standard approach to proving such lower bounds results goes through communication complexity, itself a rich
and sometimes deep area of computer science that we will only scratch the surface of. In these notes, our focus is to
develop just enough of the subject to be able to apply it to many basic lower bound problems in data streaming. Readers
interested in delving deeply into communication complexity are referred to a textbook on the subject [KN97, RY20].

For now, we shall develop just enough of communication complexity to be able to prove certain space lower bounds
for the MAJORITY and FREQUENCY-ESTIMATION problems, encountered in Unit 1.

18.1 Communication Games, Protocols, Complexity

A communication game is a cooperative game between two or more players where each player holds some portion of an
overall input and their joint goal is to evaluate some function of this input. Most of the time we shall only care about
two-player games, where the players—named Alice and Bob—seek to compute a function f : X ×Y →Z , with
Alice starting out with an input fragment x ∈X and Bob with an input fragment y ∈ Y .

Obviously, in order to carry out their computation, Alice will have to tell Bob something about x, and/or Bob will
have to tell Alice something about y. How they do so is given by a predetermined protocol, which instructs players
to send message bits by evaluating appropriate “message functions.” For instance, a one-round or one-way protocol
would involve a single message from Alice to Bob (say), given by a function msgA : X →{0,1}∗, following which
Bob would produce an output based on his own input fragment and the message received from Alice. A three-round
protocol where each message is ℓ bits long would be specified by four functions

msgA,1 : X →{0,1}ℓ ,

msgB,1 : Y ×{0,1}ℓ→{0,1}ℓ ,

msgA,2 : X ×{0,1}ℓ→{0,1}ℓ ,

outB : Y ×{0,1}ℓ×{0,1}ℓ→Z .

On input (x,y), the above protocol would cause Alice to send w1 := msgA,1(x), then Bob to send w2 := msgB,1(y,w1),
then Alice to send w3 := msgA,2(x,w2), and finally Bob to output z := outB(y,w1,w3). Naming the above protocol Π,
we would define outΠ(x,y) to be this z. We say that Π computes f if outΠ(x,y) = f (x,y) for all (x,y) ∈X ×Y .

83

D
RA

FT

UNIT 18. COMMUNICATION COMPLEXITY AND A FIRST LOOK AT LOWER BOUNDS
Dartmouth: CS 35/135

Data Stream Algorithms

A fully formal definition that handles two-player protocols in general can be given by visualizing the protocol’s
execution as descent down a binary decision tree, with each node (a) belonging to the player who is supposed to send
the next bit and (b) being labeled with an appropriate message function that produces the bit to be sent, thereby directing
the descent either to the left or the right child. We do not need this general treatment in these notes, so we shall not give
more details. The interested reader can find these details in either of the aforementioned textbooks.

The cost of a protocol Π is the worst-case (over all inputs) number of bits communicated in an execution of Π. The
deterministic communication complexity D(f) of a function f is defined to be the minimum cost of a protocol that
correctly computes f on every input.

Thus far, we have been describing deterministic communication protocols. More generally, we can consider
private-coin randomized protocols, where players may compute their messages based on random coin tosses. That is,
each message function takes a random bit string as an additional input (besides the usual inputs: the sending player’s
fragment and the history of received messages). Thus, each player generates random bits as needed by tossing a virtual
coin private to them. Still more generally, we have public-coin randomized protocols, where a sufficiently long random
string is made available to all players at the start and the players may refer to its bits at any time. In these notes, when
we say “randomized protocol” without qualification, we mean this stronger, public-coin, variant.

For a randomized protocol Π, we define its cost to be the worst-case (over all inputs and all settings of the random
string) number of bits communicated in an execution. For each input (x,y), the output outΠ(x,y;R) is a random variable,
depending on the random string R. We say that Π computes f with error δ if

∀(x,y) ∈X ×Y : P
{

outΠ(x,y;R) ̸= f (x,y)
}
≤ δ . (18.1)

The δ -error randomized communication complexity Rδ (f) is defined to be the minimum cost of a protocol that satisfies
eq. (18.1). For a Boolean function f , it will be convenient to define R(f) := R1/3(f). By a standard parallel repetition
argument via Chernoff bound (analogous to the “median trick” in Section 2.4), for any positive constant δ ≤ 1/3,

Rδ (f) = Θ(R(f)) . (18.2)

We shall use the notations D→(f) and R→(f) for deterministic and randomized communication complexities
(respectively) restricted to one-way protocols where the only message goes from Alice to Bob. Similarly, we shall use
the notations Dk(f) and Rk(f) when restricting to k-round protocols, where the first round sender is Alice. We shall use
the notation Rpriv(f) when restricting to private-coin protocols.

Trivially, every two-player communication problem can be solved by having one player sending their input to the
other. Keep in mind that computation time and space do not count towards the cost, only communication does. Further,
extra rounds of communication or removing a restriction on the number of rounds can only help. We record the result
of these observations below.
Observation 18.1.1. For every two-player communication game given by a function f and integers k > ℓ > 0, the
following inequalities hold:

• R(f)≤ D(f)≤min{log |X |, log |Y |};
• D(f)≤ Dk(f)≤ Dℓ(f);
• R(f)≤ Rk(f)≤ Rℓ(f).

Typically, we will be interested in the asymptotic behavior of D(f) or R(f) for functions f whose inputs can be
expressed in “about N bits.” By Observation 18.1.1, an upper bound of O(N) would be trivial, so sublinear upper
bounds would be interesting and, from a lower-bounds perspective, a bound of Ω(N) would be the strongest possible,
asymptotically.

18.2 Specific Two-Player Communication Games

18.2.1 Definitions

We shall now define a few two-player communication games that are canonical and often used in data stream lower
bounds. Each of these is defined by a Boolean function. When an input to such a Boolean function is an N-bit string,
we shall notate it like an N-dimensional vector: xxx for the whole string (vector) and x1, . . . ,xN for its bits (entries).

84

D
RA

FT

UNIT 18. COMMUNICATION COMPLEXITY AND A FIRST LOOK AT LOWER BOUNDS
Dartmouth: CS 35/135

Data Stream Algorithms

The N-bit EQUALITY game asks the players to compute the function EQN : {0,1}N×{0,1}N →{0,1}, defined by

EQN(xxx,yyy) =

{
1 , if xxx = yyy ,
0 , otherwise.

Equivalently, using “⊕” to denote the XOR operation,

EQN(xxx,yyy) = ¬
N∨

i=1

xi⊕ yi . (18.3)

For the N-bit INDEX game, Alice has an N-bit string while Bob has an integer in [N] that indexes into this string. Their
task is to compute the function IDXN : {0,1}N× [N]→{0,1}, defined by

IDXN(xxx,y) = xy . (18.4)

The N-bit SET-DISJOINTNESS game treats the two input fragments as characteristic vectors of subsets of [N] and asks
the players to decide whether these sets are disjoint. The corresponding function is DISJN : {0,1}N×{0,1}N →{0,1},
defined by

DISJN(xxx,yyy) =

{
1 , if xxx∩ yyy =∅ ,

0 , otherwise.

Equivalently,

DISJN(xxx,yyy) = ¬
N∨

i=1

xi∧ yi . (18.5)

18.2.2 Results and Some Proofs: Deterministic Case

We summarize several key results about the communication complexity of the above games. We will encounter some
more canonical communication games later.

Game Model Complexity bound Notes

EQN deterministic D(EQN) ≥ N Theorem 18.2.4
EQN one-way randomized Rpriv,→(EQN) = O(logN) Theorem 18.2.5
IDXN one-way deterministic D→(IDXN) ≥ N Theorem 18.2.1
IDXN one-way randomized R→(IDXN) = Ω(N) Theorem 18.2.7
IDXN deterministic D2(IDXN) ≤ ⌈logN⌉ trivial
DISJN randomized R(DISJN) = Ω(N)

Let’s see a few things that we can prove easily.
Theorem 18.2.1. D→(IDXN)≥ N.

Proof. Let Π be a one-way deterministic protocol for IDXN in which M is the set of all possible messages from
Alice, msg: {0,1}N →M is Alice’s message function, and out : [N]×M →{0,1} is Bob’s output function. By the
correctness of Π, for all (xxx,y) ∈ {0,1}N× [N], we have

out(y,msg(xxx)) = IDXN(xxx,y) = xy .

Given a message string m ∈M from Alice, Bob can use it N times, pretending that his input is 1, then 2, and so on, to
recover all the bits of xxx. Formally, the function rec : M →{0,1}N defined by

rec(m) = (out(1,m),out(2,m), . . . ,out(N,m)) (18.6)

85

D
RA

FT

UNIT 18. COMMUNICATION COMPLEXITY AND A FIRST LOOK AT LOWER BOUNDS
Dartmouth: CS 35/135

Data Stream Algorithms

satisfies rec(msg(xxx)) = xxx, for all xxx∈ {0,1}N . Thus, rec is the inverse function of msg, which means that msg is bijective,
implying |M |= |{0,1}N |= 2N .

Suppose that the cost of Π is ℓ≤ N−1. Then every message in M is at most N−1 bits long, implying

|M | ≤ 21 +22 + · · ·+2N−1 ≤ 2N−2 ,

a contradiction.
Theorem 18.2.2. D→(EQN)≥ N and D→(DISJN)≥ N.

Proof sketch. Similarly to the proof of Theorem 18.2.1, Bob can use Alice’s message in a correct protocol Π to recover
her input entirely. As before, this implies that the cost of Π is at least N.

To generalize the above result to non-round-restricted protocols, we need a key combinatorial fact called the
rectangle property of deterministic communication protocols. First, let’s define the transcript Π(x,y) of a protocol Π

on a particular input (x,y) to be the sequence of bits communicated when the protocol executes, followed by the output
bits. By definition, protocols have to be self-punctuating, in the sense that any prefix of the transcript should determine
which player speaks next. Thus, the cost of a protocol is the maximum length of a transcript, not counting the output
bits.
Theorem 18.2.3 (Rectangle property). Let τ be a possible transcript of a deterministic two-player protocol Π on input
domain X ×Y . Then the set {(x,y) ∈X ×Y : Π(x,y) = τ} is of the form A×B, where A⊆X and B⊆ Y .

Thus, if Π(x,y) = Π(x′,y′) = τ , then also Π(x′,y) = Π(x,y′) = τ . In particular, if Π computes a function f and
Π(x,y) = Π(x′,y′) then f (x,y) = f (x′,y′) = f (x′,y) = f (x,y′).

Proof sketch. Given any prefix of a possible transcript, the set of inputs consistent with that prefix is a rectangle (i.e., of
the form A×B), as can be proved by an easy induction on the length of the prefix.
Theorem 18.2.4. D(EQN)≥ N and D(DISJN)≥ N.

Proof. We’ll prove this part way, leaving the rest as an exercise.

Consider a protocol Π for EQN . An input of the form (xxx,xxx), where xxx ∈ {0,1}N , is called a positive input. Suppose
www ̸= xxx. Then EQN(www,xxx) ̸= EQN(xxx,xxx), so by Theorem 18.2.3, Π(www,www) ̸= Π(xxx,xxx). It follows that Π has at least 2N

different possible transcripts corresponding to the 2N positive inputs. Then, reasoning as in the proof of Theorem 18.2.1,
at least one of these transcripts must be N bits long. Subtracting off the one output bit leaves us with a communication
cost of at least N−1. Therefore, D(EQN)≥ N−1.

The proof of DISJN is similar, using a well-chosen subset of positive inputs.

18.2.3 More Proofs: Randomized Case

The most remarkable thing about the EQUALITY game is that it is maximally expensive for a deterministic protocol
whereas, for randomized protocols, it admits a rather cheap and one-way protocol. There are a few different ways to
see this, but in the context of data stream algorithms, the most natural way to obtain the upper bound is to use the
fingerprinting idea we encountered in Section 9.2, when studying 1-sparse recovery.
Theorem 18.2.5. Rpriv,→(EQN) = O(logN).

Proof. The players agree on a finite field F with |F| = Θ(N2) and Alice picks a uniformly random element r ∈R F.
Given an input xxx, Alice computes the fingerprint

p := φ(xxx;r) :=
n

∑
i=1

xiri ,

which is an evaluation of the polynomial φ(xxx;Z) at Z = r. She sends (r, p) to Bob, spending 2⌈log |F|⌉= O(logN) bits.
Bob outputs 1 if φ(yyy;r) = p and 0 otherwise.

If xxx = yyy, Bob always correctly outputs 1. If xxx ̸= yyy, Bob may output 1 wrongly, but this happens only if φ(xxx;r) =
φ(yyy;r), i.e., r is a root of the nonzero polynomial φ(xxx− yyy;Z). Since this latter polynomial has degree at most N, by
Theorem 9.3.1, it has at most N roots. So the probability of an error is at most N/|F|= O(1/N).

86

D
RA

FT

UNIT 18. COMMUNICATION COMPLEXITY AND A FIRST LOOK AT LOWER BOUNDS
Dartmouth: CS 35/135

Data Stream Algorithms

To obtain randomized communication lower bounds, we need a fundamental reasoning tool for randomized
algorithms, known as Yao’s minimax principle. To set this up, we need to consider a different mode of computation,
where the goal is not to get a correctness guarantee on every input, but only on an “average” input. In the context of
communication games, consider a distribution µ on the domain of a function f . A deterministic protocol Π computes f
up to error δ with respect to µ if

P(X ,Y)∼µ

{
outΠ(X ,Y) ̸= f (X ,Y)

}
≤ δ . (18.7)

Even though we’re considering random inputs when talking of Π’s correctness, when it comes to cost, it will be
convenient to continue to use the worst-case number of bits communicated. The δ -error µ-distributional communication
complexity Dµ

δ
(f) is defined to be the minimum cost of a protocol satisfying eq. (18.7). Incidentally, the restriction to

deterministic protocols above is without loss of generality, since if a randomized protocol were to achieve a guarantee
analogous to eq. (18.7), we could pick the setting of its random string that minimizes the left-hand side and produce a
deterministic protocol satisfying eq. (18.7).
Theorem 18.2.6 (Yao’s minimax principle for communication complexity). Rδ (f) = maxµ Dµ

δ
(f), where the maximum

is over all probability distributions µ on the domain of f .

Proof. Given a randomized protocol Π with cost C satisfying eq. (18.1) and an input distribution µ , Π also satisfies the
analog of eq. (18.7). As observed above, by suitably fixing Π’s random string, we obtain a deterministic protocol Π′

with cost C satisfying eq. (18.7). This proves that Rδ (f)≥ Dµ

δ
(f) for every µ . Therefore, LHS ≥ RHS.

The proof that LHS ≤ RHS is more complicated and we won’t go into it here. The standard argument, available in
a textbook, goes through the von Neumann minimax principle for zero-sum games, which itself is a consequence of
the linear programming duality theorem. Fortunately, the weaker statement that LHS ≥ RHS is often all we need for
proving lower bounds.

Armed with this simple yet powerful tool, we prove our first randomized communication lower bound.
Theorem 18.2.7. R→(IDXN) = Ω(N).

Proof. Let µ be the uniform distribution on {0,1}N× [N]. Thanks to eq. (18.2) and Theorem 18.2.6, we can prove our
lower bound for Dµ,→

1/10(IDXN) instead. To this end, let (XXX ,Y) ∼ µ and let Π be a deterministic protocol with cost C
such that

P
{

outΠ(XXX ,Y) ̸= XY
}
≤ 1

10
.

By two applications of Markov’s inequality, there exist sets X ′ ⊆ {0,1}N and Y ′ ⊆ [N] such that

|X ′| ≥ 2N

2
, |Y ′| ≥ 8N

10
, and ∀(xxx,y) ∈X ′×Y ′ : outΠ(xxx,y) = xy . (18.8)

Let the set M and the functions msg: {0,1}N →M and rec : M →{0,1}N be as in the proof of Theorem 18.2.1;
recall that rec the input recovery function defined in eq. (18.6). By eq. (18.8),

∀xxx ∈X ′ : ∥rec(msg(xxx))− xxx∥1 ≤
2N
10

.

It follows that if www,xxx ∈X ′ are such that rec(msg(www)) = rec(msg(xxx)), then by a triangle inequality,

∥www− xxx∥1 ≤ ∥www− rec(msg(www))∥1 +∥rec(msg(www))− rec(msg(xxx))∥1 +∥rec(msg(xxx))− xxx∥1 ≤
4N
10

.

An elementary fact in coding theory, readily proved by estimating the volume of a Hamming ball, is that a set with
cardinality as large as that of X ′ contains a subset X ′′ with |X ′′|= 2Ω(N) that is a code with distance greater than
4N/10, i.e., for all distinct www,xxx ∈X ′′, we have ∥www− xxx∥1 > 4N/10.

By the above reasoning, the function rec◦msg is injective on such a code X ′′. In particular, msg is injective on
X ′′. Therefore, |M | ≥ |X ′′|= 2Ω(N) and so, one of the messages in M must have length Ω(N).

We did not try to optimize constants in the above proof, but it should be clear that by a careful accounting, one can
obtain R→

δ
(IDXN)≥ cδ N, for some specific constant cδ . The optimal constant turns out to be cδ = 1−H2(δ), where

H2(x) =−x logx− (1− x) log(1− x) is the binary entropy function.

87

D
RA

FT

UNIT 18. COMMUNICATION COMPLEXITY AND A FIRST LOOK AT LOWER BOUNDS
Dartmouth: CS 35/135

Data Stream Algorithms

18.3 Data Streaming Lower Bounds

It is time to connect all of the above with the data streaming model. The starting point is the following easy observation
that a streaming algorithm gives rise to some natural communication protocols.

Let A be a streaming algorithm that processes an input stream σ using S bits of space and p passes, producing
some possibly random output A (σ). If we cut σ into t contiguous pieces σ1, . . . ,σt , not necessarily of equal lengths,
and give each piece to a distinct player (player i gets σi), this sets up a t-player communication game: the common goal
of the players is to evaluate A (σ).

There is a natural protocol for this game that simply simulates A . Player 1 begins by processing the tokens in σ1 as
in A , keeping track of A ’s memory contents. When she gets to the end of her input, she sends these memory contents
as a message to player 2 who continues the simulation by processing the tokens in σ2, and so on. After player t is done,
we have reached the end of the stream σ . If there are more passes to be executed, player t sends A ’s memory contents
to player 1 so she can begin the next pass. Eventually, after p such passes, player t is able to produce the output A (σ).
This construction is illustrated in fig. 18.1 using three players.

Alice Bob Charlie

Pass 1:

Pass 2:

Pass 3:

Output

σ1 σ2 σ3

σ1 σ2 σ3

σ1 σ2 σ3

Figure 18.1: Communication protocol that simulates a streaming algorithm

Notice that this protocol causes t p−1 messages to be communicated and has a total cost of (t p−1)S. In particular,
if t = 2 and p = 1 (the most common case), the protocol is one-way.

We instantiate these abstract observations using two familiar data streaming problems.

18.3.1 Lower Bound for Majority

Recall our standard notation for data stream problems. The input σ is a stream of m tokens, each from the universe [n].
Theorem 18.3.1. A one-pass algorithm for MAJORITY requires Ω(min{m,n}) space.

Proof. We shall prove the (stronger) result that even the simpler problem MAJ-DETECT, which asks whether the input
vanilla stream contains a token of frequency greater than m/2, already requires this much space.

Let A be a one-pass S-space algorithm for MAJ-DETECT. We use the construction above to reduce from the
two-player IDXN problem.

Given an input (xxx,y) for IDXN , Alice creates the stream σ1 = (a1, . . . ,aN), where ai = 2i−xi, while Bob creates the
stream (b,b, . . . ,b) of length N where b = 2y−1. Clearly, the only possible majority element in the combined stream
σ := σ1 ◦σ2 is b. Observe that b is in fact a majority iff ay = 2y−1, i.e., IDXN(xxx,y) = xy = 1. Therefore, simulating
A enables Alice and Bob to solve IDXN using one S-bit message from Alice to Bob.

By Theorem 18.2.7, S = Ω(N). By construction, the stream σ has m = n = 2N. Therefore, we have proven a lower
bound of Ω(N) for all settings where m≥ 2N and n≥ 2N. In particular, we have shown that S = Ω(min{m,n}).

88

D
RA

FT

UNIT 18. COMMUNICATION COMPLEXITY AND A FIRST LOOK AT LOWER BOUNDS
Dartmouth: CS 35/135

Data Stream Algorithms

18.3.2 Lower Bound for Frequency Estimation

Recall that the FREQUENCY-ESTIMATION problem with parameter ε asks us to process an input stream σ and answer
point queries to the frequency vector fff = fff (σ): given a query j ∈ [n], we should output an estimate f̂ j that lies in the
interval [f j− ε ∥ fff∥1 , f j + ε ∥ fff∥1] with probability at least 2/3. The Misra-Gries algorithm from Unit 1 solves this for
vanilla and cash register streams, while the Count/Median algorithm from Unit 5 solves it for turnstile streams. In each
case, the space usage is Õ(ε−1).

Two natural question arise. First, must we estimate in order to achieve sublinear space? Can’t we get exact answers?
Second, if we wanted an accuracy of ε in the above sense, can the space usage be any better than O(ε−1)? We have the
tools to answer these questions.
Theorem 18.3.2. A one-pass algorithm for FREQUENCY-ESTIMATION that achieves an accuracy parameter ε must use
Ω(min{m,n,ε−1}) space. In particular, in order to get exact answers—i.e., ε = 0—it must use Ω(min{m,n}) space.

Proof sketch. An idea similar to the above, reducing from IDXN for an appropriate N, works. The details are left to the
reader as an instructive exercise.

Exercises

18-1 Write out a formal proof of Theorem 18.2.2 analogous to the above proof of Theorem 18.2.1.

18-2 Complete the proof of Theorem 18.2.4.

18-3 Formally prove Theorem 18.3.2.

89

D
RA

FT
Unit 19
Further Reductions and Lower Bounds

We have seen how space lower bounds on data streaming algorithms follow from lower bounds on communication
complexity. In Section 18.3, we gave two basic streaming lower bounds, each using a reduction from the INDEX
problem.

We shall now give several additional data streaming lower bounds, almost all of which are based on the communica-
tion games introduced in Unit 18.

19.1 The Importance of Randomization

Quite a large number of the data streaming algorithms we have studied are randomized. In fact, randomization is usually
crucial and we can prove that no deterministic algorithm can achieve similar space savings. The most common way to
prove such a result is by reduction from the EQUALITY communication game: recall, from Section 18.3, that this game
has high deterministic communication complexity but much lower randomized communication complexity.

The most basic result of this sort is for the DISTINCT-ELEMENTS problem, i.e., F0. It holds even in a vanilla
streaming model and even if we are allowed multiple passes over the input stream.
Theorem 19.1.1. A deterministic p-pass streaming algorithm that solves the DISTINCT-ELEMENTS problem exactly
must use space Ω(min{m,n}/p).

Proof. Given an input (xxx,yyy) for EQN , Alice creates the stream σ = (a1, . . . ,aN), where ai = 2i− xi, while Bob creates
the stream τ = (b1, . . . ,bN), where bi = 2i− yi. Observe that

F0(σ ◦ τ) = N +∥xxx− yyy∥1 = N +d (say) .

If xxx = yyy, then d = 0, else d ≥ 1. Thus, by computing F0(σ ◦ τ) exactly, the players can solve EQN . Notice that the
stream σ ◦ τ is of length m = 2N and its tokens come from a universe of size n = 2N.

By the reasoning in Section 18.3, two players simulating a deterministic p-pass algorithm that uses S bits of space
would use (2p−1)S bits of communication. Thus, by Theorem 18.2.4, if DISTINCT-ELEMENTS had such an algorithm,
then (2p−1)S≥ N, i.e., S = Ω(N/p) = Ω(min{m,n}/p).

There is something unsatisfactory about the above result. When we designed algorithms for DISTINCT-ELEMENTS
in Units 2 and 3, our solutions were randomized and they provided approximate answers. The above lower bound does
not show that both relaxations are necessary. However, we can strengthen the result by a simple application of error
correcting codes.
Theorem 19.1.2. There is a positive constant ε∗ such that every deterministic p-pass streaming algorithm that
(ε∗,0)-estimates DISTINCT-ELEMENTS requires Ω(min{m,n}/p) space.

90

D
RA

FT

UNIT 19. FURTHER REDUCTIONS AND LOWER BOUNDS
Dartmouth: CS 35/135

Data Stream Algorithms

Proof. We reuse the elementary fact in coding theory that we encountered in the proof of Theorem 18.2.7. This time,
we use it in the following form: for all large enough integers M, there exists a code C ⊆ {0,1}M with distance greater
than 3M/10 and cardinality |C | ≥ 2M/10. This enables us to solve EQN as follows.

Take M = 10N and let C be the above code. Fix an injective function enc : {0,1}N → C ; it must exist, thanks
to the lower bound on |C |. Given an instance (xxx,yyy) of EQN , Alice and Bob apply the construction in the proof of
Theorem 19.1.1 to vectors enc(xxx) and enc(yyy), obtaining streams σ and τ , respectively. As above,

F0(σ ◦ τ) = M+∥enc(xxx)− enc(yyy)∥1 =

= M , if xxx = yyy ,

≥M+
3M
10

, if xxx ̸= yyy .

Given an (ε∗,0)-estimate for F0(σ ◦ τ), where (1+ ε∗)/(1− ε∗) < 13/10 (in particular, ε∗ = 1/8 works), Alice and
Bob can distinguish which of the two cases above has occurred and can therefore determine EQN(xxx,yyy). As before, we
conclude a space lower bound of Ω(N/p)=Ω(M/p)=Ω(min{m,n}/p), where m and n have their usual meanings.

In fact, a still further strengthening is possible. Chakrabarti and Kale [CK16] showed that Ω(min{m,n}/(Ap))
space is required to estimate DISTINCT-ELEMENTS within a multiplicative factor of A, even for A≫ 1. This result is
considerably harder to prove and necessarily so, for reasons explored in the exercises.

19.2 Multi-Pass Lower Bounds for Randomized Algorithms

Thus far, we have obtained data streaming lower bounds via reduction from either the INDEX problem (which
becomes easy with two rounds of communication allowed) or the EQUALITY problem (which becomes easy with
randomized communication allowed). To prove randomized and multi-pass lower bounds, we need a more powerful
communication complexity result. The following celebrated result about the SET-DISJOINTNES game, which we defined
in Section 18.2.1, is the source of most such lower bounds.
Theorem 19.2.1. R(DISJN) = Ω(N).

Theorem 19.2.1 is one of the most important results in communication complexity, with far reaching applications
(well beyond data streaming). It was first proved by Kalyanasundaram and Schnitger [KS92]. Their proof was
conceptually simplified by Razborov [Raz92] and by Bar-Yossef et al. [BJKS04]. Nevertheless, even the simpler proofs
of this result are much too elaborate for us to cover in these notes, so we refer the interested reader to textbooks
instead [KN97, RY20].

19.2.1 Graph Problems

As a first application of Theorem 19.2.1, let us show that for the basic graph problem CONNECTEDNESS, Ω(n/p)
space is required to handle n-vertex graphs using p passes, even under vanilla streaming. This shows that aiming for
semi-streaming space, as we did in Unit 14, was the right thing to do.
Theorem 19.2.2. Every (possibly randomized) p-pass streaming algorithm that solves CONNECTEDNESS on n-vertex
graphs in the vanilla streaming model must use Ω(n/p) space.

Proof. We reduce from DISJN . Given an instance (xxx,yyy), Alice and Bob construct edge sets A and B for a graph on
vertex set V = {s, t,v1, . . . ,vN}, as follows.

A = {{s,vi} : xi = 0, i ∈ [N]} ,
B = {{vi, t} : yi = 0, i ∈ [N]}∪{{s, t}} .

Let G = (V,A∪B). It is easy to check that if xxx∩ yyy =∅, then G is connected. On the other hand, if there is an element
j ∈ xxx∩ yyy, i.e., x j = y j = 1, then v j is an isolated vertex and so G is disconnected.

It follows that Alice and Bob can simulate a streaming algorithm for CONNECTEDNESS to solve DISJN . Graph G
has n = N +2 vertices. Thus, as before, we derive a space lower bound of Ω(N/p) = Ω(n/p).

The exercises explore some other lower bounds that are proved along similar lines.

91

D
RA

FT

UNIT 19. FURTHER REDUCTIONS AND LOWER BOUNDS
Dartmouth: CS 35/135

Data Stream Algorithms

19.2.2 The Importance of Approximation

Theorems such as theorem 19.1.2 convey the important message that randomization is crucial to certain data stream
computations. Equally importantly, approximation is also crucial. We can prove this by a reduction from DISJ to the
exact-computation version of the problem at hand. Here is a classic example, from the classic paper of Alon, Matias,
and Szegedy [AMS99].
Theorem 19.2.3. Every (possibly randomized) p-pass streaming algorithm that solves DISTINCT-ELEMENTS exactly
requires Ω(min{m,n}/p) space.

Proof. Given an instance (xxx,yyy) of DISJN , Alice and Bob construct streams σ = (a1, . . . ,aN) and τ = (b1, . . . ,bN),
respectively, where, for each i ∈ [N]:

ai = 3i+ xi−1;
bi = 3i+2yi−2 .

This construction has the following easily checked property.

F0(σ ◦ τ) = 2N−|xxx∩ yyy| .

Thus, an algorithm that computes F0(σ ◦ τ) exactly solve DISJN . The combined stream has length m = 2N and its
tokens come from a universe of size n = 3N. The theorem now follows along the usual lines.

Arguing along similar lines, one can show that approximation is necessary in order to compute any frequency
moment Fk in sublinear space, with the exception of F1, which is just a count of the stream’s length. It is an instructive
exercise to work out the details of the proof and observe where it breaks when k = 1.

19.3 Space versus Approximation Quality

[*** Lower bounds via GHD, to be inserted here ***]

Exercises

19-1 Consider a graph stream describing an unweighted, undirected n-vertex graph G. Prove that Ω(n2) space is
required to determine, in one pass, whether or not G contains a triangle, even with randomization allowed.

19-2 A lower bound argument based on splitting a stream into two pieces and assigning each piece to a player in
a communication game can never prove a result of the sort mentioned just after the proof of Theorem 19.1.2.
Show that using such an argument, when A≥

√
2, we cannot rule out sublinear-space solutions for producing an

estimate d̂ ∈ [A−1d, Ad], where d is the number of distinct elements in the input stream.

19-3 Prove that computing F2 exactly, in p streaming passes with randomization allowed, requires Ω(min{m,n}/p)
space. Generalize the result to the exact computation of Fk for any real constant k > 0 except k = 1.

19-4 The diameter of a graph G = (V,E) is defined as diam(G) = max{dG(x,y) : x,y ∈V}, i.e., the largest vertex-to-
vertex distance in the graph. A real number d̂ satisfying diam(G)≤ d̂ ≤ α diam(G) is called an α-approximation
to the diameter.

Suppose that 1≤ α < 1.5. Prove that, in the vanilla graph streaming model, a 1-pass randomized algorithm that
α-approximates the diameter of a connected graph must use Ω(n) space. How does the result generalize to p
passes?

92

D
RA

FT

Bibliography

[AG13] Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with application to the
maximum matching problem. Inf. Comput., 222:59–79, 2013.

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear measurements.
In Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 459–467, 2012.

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The moore bound for irregular graphs. Graphs and
Combinatorics, 18(1):53–57, 2002.

[AHPV04] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent measures of
points. J. ACM, 51(4):606–635, 2004.

[AHPV05] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric approximation via core-
sets. Available online at http://valis.cs.uiuc.edu/˜sariel/research/papers/04/
survey/survey.pdf, 2005.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. Preliminary version in Proc. 28th Annual ACM
Symposium on the Theory of Computing, pages 20–29, 1996.

[BFP+73] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre Tarjan. Time
bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.

[BJK+02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct elements
in a data stream. In Proc. 6th International Workshop on Randomization and Approximation Techniques in
Computer Science, pages 128–137, 2002.

[BJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to data
stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732, 2004.

[BKS02] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an application to
counting triangles in graphs. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
623–632, 2002.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. Theor.
Comput. Sci., 312(1):3–15, 2004.

[CK16] Amit Chakrabarti and Sagar Kale. Strong fooling sets for multi-player communication with applications to
deterministic estimation of stream statistics. In Proc. 57th Annual IEEE Symposium on Foundations of
Computer Science, pages 41–50, 2016.

[CM05] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and
its applications. J. Alg., 55(1):58–75, 2005. Preliminary version in Proc. 6th Latin American Theoretical
Informatics Symposium, pages 29–38, 2004.

93

http://valis.cs.uiuc.edu/~sariel/research/papers/04/survey/survey.pdf
http://valis.cs.uiuc.edu/~sariel/research/papers/04/survey/survey.pdf

D
RA

FT

BIBLIOGRAPHY
Dartmouth: CS 35/135

Data Stream Algorithms

[CMS76] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable random variables. J.
Amer. Stat. Assoc., 71(354):340–344, 1976.

[CS14] Michael Crouch and Daniel Stubbs. Improved streaming algorithms for weighted matching, via un-
weighted matching. In Proc. 17th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, pages 96–104, 2014.

[CW79] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci., 18(2):143–
154, 1979.

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of randomized
algorithms. Cambridge University Press, New York, NY, USA, 2009.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

[ELMS11] L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees for weighted matching
in the semi-streaming model. SIAM Journal on Discrete Mathematics, 25(3):1251–1265, 2011.

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph
problems in a semi-streaming model. Theor. Comput. Sci., 348(2–3):207–216, 2005. Preliminary version
in Proc. 31st International Colloquium on Automata, Languages and Programming, pages 531–543, 2004.

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. J.
Comput. Syst. Sci., 31(2):182–209, 1985.

[FM88] Péter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss lemma and the sphericity of some graphs.
J. Combin. Theory Ser. B, 44(3):355–362, 1988.

[GI10] Anna C. Gilbert and Piotr Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE,
98(6):937–947, 2010.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. J.
ACM, 53(3):307–323, 2006.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mapping into Hilbert space. Contemp. Math.,
26:189–206, 1984.

[JW18] Rajesh Jayaram and David P. Woodruff. Perfect lp sampling in a data stream. In Proc. 59th Annual IEEE
Symposium on Foundations of Computer Science, pages 544–555, 2018.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, Cambridge,
1997.

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct elements
problem. In Proc. 29th ACM Symposium on Principles of Database Systems, pages 41–52, 2010.

[KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of set intersec-
tion. SIAM J. Disc. Math., 5(4):547–557, 1992.

[KT17] Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more passes over
graph streams. In Proc. 20th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, volume 81 of LIPIcs, pages 15:1–15:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

[Lév54] Paul Lévy. Théorie de l’addition des variables aléatoires. Jacques Gabay, 2e edition, 1954.

[McG05] Andrew McGregor. Finding graph matchings in data streams. In Proc. 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, pages 170–181, 2005.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program., 2(2):143–152, 1982.

94

D
RA

FT

BIBLIOGRAPHY
Dartmouth: CS 35/135

Data Stream Algorithms

[MP80] J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. TCS, 12:315–323, 1980.
Preliminary version in Proc. 19th Annual IEEE Symposium on Foundations of Computer Science, pages
253–258, 1978.

[MW10] Morteza Monemizadeh and David P. Woodruff. 1-Pass relative-error lp-sampling with applications. In
Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1143–1160, 2010.

[Nis90] Noam Nisan. Pseudorandom generators for space-bounded computation. In Proc. 22nd Annual ACM
Symposium on the Theory of Computing, pages 204–212, 1990.

[PS19] Ami Paz and Gregory Schwartzman. A (2+ε)-approximation for maximum weight matching in the semi-
streaming model. ACM Trans. Alg., 15(2):18:1–18:15, 2019. Preliminary version in Proc. 28th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2153–2161, 2017.

[Raz92] Alexander Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci., 106(2):385–
390, 1992. Preliminary version in Proc. 17th International Colloquium on Automata, Languages and
Programming, pages 249–253, 1990.

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge University
Press, 2020.

[Sr.78] Robert H. Morris Sr. Counting large numbers of events in small registers. Commun. ACM, 21(10):840–842,
1978.

[WC79] Mark N. Wegman and Larry Carter. New classes and applications of hash functions. In Proc. 20th Annual
IEEE Symposium on Foundations of Computer Science, pages 175–182, 1979.

[Zel08] Mariano Zelke. Weighted matching in the semi-streaming model. In Proc. 25th International Symposium
on Theoretical Aspects of Computer Science, pages 669–680, 2008.

95

	Preliminaries: The Data Stream Model
	The Basic Setup
	The Quality of an Algorithm's Answer
	Variations of the Basic Setup
	Randomization and Hashing

	Finding Frequent Items Deterministically
	The Problem
	Frequency Estimation: The Misra–Gries Algorithm
	Analysis of the Algorithm
	Finding the Frequent Items
	Exercises

	Estimating the Number of Distinct Elements
	The Problem
	The Tidemark Algorithm
	The Quality of the Algorithm's Estimate
	The Median Trick
	Exercises

	A Better Estimate for Distinct Elements
	The Problem
	The BJKST Algorithm
	Analysis: Space Complexity
	Analysis: The Quality of the Estimate
	Optimality
	Exercises

	Approximate Counting
	The Problem
	The Algorithm
	The Quality of the Estimate
	The Median-of-Means Improvement
	Exercises

	Finding Frequent Items via (Linear) Sketching
	The Problem
	Sketches and Linear Sketches
	CountSketch
	The Quality of the Basic Sketch's Estimate
	The Final Sketch

	The Count-Min Sketch
	The Quality of the Algorithm's Estimate

	Comparison of Frequency Estimation Methods
	Exercises

	Estimating Frequency Moments
	Background and Motivation
	The (Basic) AMS Estimator for Fk
	Analysis of the Basic Estimator
	The Final Estimator and Space Bound
	The Soft-O Notation

	The Tug-of-War Sketch
	The Basic Sketch
	The Quality of the Estimate

	The Final Sketch
	A Geometric Interpretation

	Exercises

	Estimating Norms Using Stable Distributions
	A Different 2 Algorithm
	Stable Distributions
	The Median of a Distribution and its Estimation
	The Accuracy of the Estimate
	Annoying Technical Details

	Sparse Recovery
	The Problem
	Special case: 1-sparse recovery
	Analysis: Correctness, Space, and Time
	General Case: s-sparse Recovery
	Exercises

	Weight-Based Sampling
	The Problem
	The 0-Sampling Problem
	An Idealized Algorithm
	The Quality of the Output

	2 Sampling
	An 2-sampling Algorithm
	Analysis:

	Finding the Median
	The Problem
	Preliminaries for an Algorithm
	The Munro–Paterson Algorithm
	Computing a Core
	Utilizing a Core
	Analysis: Pass/Space Tradeoff

	Exercises

	Geometric Streams and Coresets
	Extent Measures and Minimum Enclosing Ball
	Coresets and Their Properties
	A Coreset for MEB
	Data Stream Algorithm for Coreset Construction
	Exercises

	Metric Streams and Clustering
	Metric Spaces
	The Cost of a Clustering: Summarization Costs
	The Doubling Algorithm
	Metric Costs and Threshold Algorithms
	Guha's Cascading Algorithm
	Space Bounds
	The Quality of the Summary

	Exercises

	Graph Streams: Basic Algorithms
	Streams that Describe Graphs
	Semi-Streaming Space Bounds

	The Connectedness Problem
	The Bipartiteness Problem
	Shortest Paths and Distance Estimation via Spanners
	The Quality of the Estimate
	Space Complexity: High-Girth Graphs and the Size of a Spanner

	Exercises

	Finding Maximum Matchings
	Preliminaries
	Maximum Cardinality Matching
	Maximum Weight Matching
	Exercises

	Graph Sketching
	The Value of Boundary Edges
	Testing Connectivity Using Boundary Edges
	Testing Bipartiteness

	The AGM Sketch: Producing a Boundary Edge

	Counting Triangles
	A Sampling-Based Algorithm
	A Sketch-Based Algorithm
	Exercises

	Communication Complexity and a First Look at Lower Bounds
	Communication Games, Protocols, Complexity
	Specific Two-Player Communication Games
	Definitions
	Results and Some Proofs: Deterministic Case
	More Proofs: Randomized Case

	Data Streaming Lower Bounds
	Lower Bound for Majority
	Lower Bound for Frequency Estimation

	Exercises

	Further Reductions and Lower Bounds
	The Importance of Randomization
	Multi-Pass Lower Bounds for Randomized Algorithms
	Graph Problems
	The Importance of Approximation

	Space versus Approximation Quality
	Exercises

