
1

CS 78 Computer Networks

Congestion Control

Andrew T. Campbell
campbell@cs.dartmouth.edu

What is congestion and why is
it an important problem for
Internet?

Principles of Congestion Control

Congestion:
• informally: “too many sources sending too

much data too fast for network to handle”
• different from flow control!
• manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

• Can be a serious problem

How does the source
determine congestion?

Two approaches towards congestion
control - what’s the tradeoffs?

End-end congestion
control

• no explicit feedback
from network

• congestion inferred
from end-system
observed loss, delay

• approach taken by TCP

Network-assisted congestion
control

• routers provide feedback
to end systems
– single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

– explicit rate sender
should send at

Congestion Scenarios

Another “cost” of congestion:
• when packet dropped, any “upstream

transmission capacity used for that packet
was wasted!

H
o
s
t
A

H
o
s
t
B

λ
o
u
t

2

TCP’s end-to-end approach
AIMD (Additive Increase, Multiplicative

Decrease) Algorithm

TCP congestion control: additive
increase, multiplicative decrease

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion

window

• Approach: increase transmission rate (window
size), probing for usable bandwidth, until loss
occurs
– additive increase: increase CongWin by 1

MSS every RTT until loss detected
– multiplicative decrease: cut CongWin in half

after loss

time

Saw tooth
behavior: probing

for bandwidth

TCP Congestion Control
• Sender limits transmission:
 LastByteSent-LastByteAcked
 ≤ CongWin

• Roughly,

• CongWin is dynamic, function of
perceived network congestion

How does sender
perceive congestion?

• loss event = timeout or
3 duplicate acks

• TCP sender reduces
rate (CongWin) after
loss event

Three mechanisms:
– AIMD
– slow start
– conservative after

timeout events

rate =
CongWin

RTT
Bytes/sec

TCP Slow Start
• When connection

begins, CongWin = 1
MSS
– Example: MSS = 500

bytes & RTT = 200
msec

– initial rate = 20 kbps
• available bandwidth

may be >> MSS/RTT
– desirable to quickly

ramp up to
respectable rate

• When connection
begins, increase rate
exponentially fast until
first loss event

TCP Slow Start (more)
• When connection

begins, increase rate
exponentially until first
loss event:
– double CongWin every

RTT
– done by incrementing
CongWin for every ACK
received

• Summary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments

TCP timing during slow start

3

Refinement
Q: When should the

exponential
increase switch to
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout.

Implementation:
• Variable Threshold
• At loss event, Threshold is

set to 1/2 of CongWin just
before loss event

Inferring loss
• After 3 dup ACKs:

– CongWin is cut in half
– window then grows linearly

• But after timeout event:
– CongWin instead set to 1 Max

Seg Size (MSS);
– window then grows

exponentially
– to a threshold, then grows

linearly

• 3 dup ACKs indicates
network capable of
delivering some segments

•timeout indicates a “more
alarming” congestion
scenario

TCP Congestion Control

• When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

• When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

• When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set to Threshold.

• When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

TCP sender congestion control

Congestion control’s evolution TCP throughput

• What’s the average throughout of TCP as a
function of window size and RTT?
– Ignore slow start

• Let W be the window size when loss occurs.
• When window is W, throughput is W/RTT
• Just after loss, window drops to W/2,

throughput to W/2RTT.
• Average throughout: .75 W/RTT

4

 if K TCP sessions share same bottleneck link
of bandwidth R, each should have average
rate of R/K

TCP: The fairness issue Why is TCP fair?
Two competing sessions:
• Additive increase gives

slope of 1, as throughout
increases

• Multiplicative decrease
decreases throughput
proportionally

Fairness
Fairness and UDP
• Multimedia apps often

do not use TCP
– do not want rate throttled

by congestion control
• Instead use UDP:

– pump audio/video at
constant rate, tolerate
packet loss

• Research area: TCP
friendly

Fairness and parallel TCP
connections

• nothing prevents app from
opening parallel
connections between 2
hosts.

• Web browsers do this
• Example: link of rate R

supporting 9 cnctions;
– new app asks for 1 TCP, gets

rate R/10
– new app asks for 11 TCPs,

gets R/2 !

