CS 78 Computer Networks

Congestion Control

Andrew T. Campbell campbell@cs.dartmouth.edu What is congestion and why is it an important problem for Internet?

Principles of Congestion Control

Congestion:

- informally: "too many sources sending too much data too fast for *network* to handle"
- different from flow control!
- manifestations:
 - lost packets (buffer overflow at routers)
- long delays (queueing in router buffers)
- Can be a serious problem

Two approaches towards congestion control - what's the tradeoffs?

End-end congestion control

- no explicit feedback
- congestion inferred from end-system

observed loss, delay

• approach taken by TCP

- Network-assisted congestion control • routers provide feedback
 - to end systems - single bit indicating congestion (SNA,
 - congestion (SNA, DECbit, TCP/IP ECN, ATM)
 - explicit rate sender should send at

TCP Congestion Control

- When CongWin is below Threshold, sender in slow-start phase, window grows exponentially.
- When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly.
- When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold.
- When timeout occurs, **Threshold** set to CongWin/2 and CongWin is set to 1 MSS.

TCP sender congestion control

State	Event	TCP Sender Congestion-control Action	Commentary
Slow Start (SS)	ACK receipt for previously unacknowledged data	CongWin = CongWin + MSS, If (CongWin > Threshold) set state to "Congestion Avoidance"	Resulting in a doubling of CongWin every RTT
Congestion Avoidance (CA)	ACK receipt for previously unacknowledged data	CongWin = CongWin + MSS · (MSS/CongWin)	Additive increase, resulting in increasing of CongWin by 1 MSS every RTT
SS or CA	Loss event detected by triple duplicate ACK	Threshold = CongWin/2, CongWin = Threshold, set state to "Congestion Avoidance"	Fast recovery, implementing multiplicative decrease. CangWin will not drop below 1 MSS.
SS or CA	Timeout	Threshold = CongWin/2, CongWin = 1 MSS, set state to "Slow Start"	Enter slow stort.
SS or CA	Duplicote ACK	Increment duplicate ACK count for seament being ocknowledged	CongWin and Threshold not changed

- · Research area: TCP friendly
- - new app asks for 1 TCP, gets rate R/10
 - new app asks for 11 TCPs, gets R/2 !