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Routing Algorithms

Placing routing into context

Graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph abstraction

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs
• c(x,x’) = cost of link (x,x’)

   - e.g., c(w,z) = 5

• cost could always be 1, or 
inversely related to bandwidth,
or inversely related to 
congestion

Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)  

What’s the least-cost path between u and z ?

Routing algorithm: algorithm that finds least-cost path



2

Routing Algorithm classification
Global or decentralized

information?
Global:
• all routers have complete

topology, link cost info
• “link state” algorithms
Decentralized:
• router knows physically-

connected neighbors, link
costs to neighbors

• iterative process of
computation, exchange of
info with neighbors

• “distance vector” algorithms

Static or dynamic?
Static:
• routes change slowly over

time
Dynamic:
• routes change more quickly

– periodic update
– in response to link cost

changes

A Link-State Routing Algorithm

Dijkstra’s algorithm
• net topology, link costs

known to all nodes
– accomplished via “link

state broadcast”
– all nodes have same info

• computes least cost paths
from one node (‘source”) to
all other nodes
– gives forwarding table for

that node
• iterative: after k iterations,

know least cost path to k
dest.’s

Notation:
• c(x,y): link cost from node x

to y;  = ∞ if not direct
neighbors

• D(v): current value of cost
of path from source to dest.
v

• p(v): predecessor node
along path from source to v

• N': set of nodes whose least
cost path definitively known

Dijsktra’s Algorithm
1  Initialization: 
2    N' = {u} 
3    for all nodes v 
4      if v adjacent to u 
5          then D(v) = c(u,v) 
6      else D(v) = ∞ 
7 
8   Loop 
9     find w not in N' such that D(w) is a minimum 
10    add w to N' 
11    update D(v) for all v adjacent to w and not in N' : 
12       D(v) = min( D(v), D(w) + c(w,v) ) 
13    /* new cost to v is either old cost to v or known 
14     shortest path cost to w plus cost from w to v */ 
15  until all nodes in N' 

Dijkstra’s algorithm: example
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Dijkstra’s algorithm: an example
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Resulting shortest-path tree from u:
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Resulting forwarding table in u:

Distance Vector Algorithm
Bellman-Ford Equation
Define
dx(y) := cost of least-cost path from x to y

Then

dx(y) = min {c(x,v) + dv(y) }

where min is taken over all neighbors v of x

v

Bellman-Ford example

Clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),
                    c(u,x) + dx(z),
                    c(u,w) + dw(z) }
         = min {2 + 5,
                    1 + 3,
                    5 + 3}  = 4

Node that achieves minimum is next
hop in shortest path ➜ forwarding table

B-F equation says:

Distance Vector Algorithm

• Dx(y) = estimate of least cost from x to y
• Node x knows cost to each neighbor v: c(x,v)
• Node x maintains  distance vector Dx = [Dx(y):

y є N ]
• Node x also maintains its neighbors’ distance

vectors
– For each neighbor v, x maintains
Dv = [Dv(y): y є N ]
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Distance vector algorithm

• Each node periodically sends its own distance vector
estimate to neighbors

• When a node x receives new DV estimate from
neighbor, it updates its own DV using B-F equation:

Dx(y) ← minv{c(x,v) + Dv(y)}    for each node y ∊ N

• Estimate Dx(y) converge to the actual least
cost dx(y)

Distance Vector Algorithm
Iterative, asynchronous:

each local iteration caused
by:

• local link cost change
• DV update message from

neighbor

Distributed:
• each node notifies neighbors

only when its DV changes
– neighbors then notify their

neighbors if necessary

wait for (change in local link
cost or msg from neighbor)

recompute estimates

if DV to any dest has
changed, notify neighbors

Each node:
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Distance Vector: link cost changes
Link cost changes:
• node detects local link cost change
• updates routing info, recalculates

distance vector
• if DV changes, notify neighbors

“good
news 
travels
fast”
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At time t0, y detects the link-cost change, updates its DV, 
and informs its neighbors.

At time t1, z receives the update from y and updates its table. 
It computes a new least cost to x  and sends its neighbors its DV.

At time t2, y receives z’s update and updates its distance table. 
y’s least costs do not change and hence y  does not send any 
message to z. 

Distance Vector: link cost changes
Link cost changes:
• good news travels fast
• bad news travels slow -

“count to infinity” problem!
• 44 iterations before

algorithm stabilizes: see text

• Poisoned reverse:
• If Z routes through Y to get

to X :
– Z tells Y its (Z’s) distance to

X is infinite (so Y won’t
route to X via Z)

• will this completely solve
count to infinity problem?
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