Routing Algorithms

Placing routing into context
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Graph: G = (N,E)
N =set of routers ={u, v, w, X, y,z}

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (X,y), (W,y), (W,2), (y,Z) }

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

* ¢(x,x') = cost of link (x,x")
-eg.,c(wz)=5

+ cost could always be 1, or
inversely related to bandwidth,
or inversely related to
congestion

Cost of path (xy, X,, X3,..., Xp) = C(Xp %) + C(Xp X3) + .+ C(Xpr]lxp)

| What's the least-cost path between uand z ? |

| Routing algorithm: algorithm that finds least-cost path




Routing Algorithm classification

Global or decentralized
information?

Global:

« all routers have complete
topology, link cost info

« ‘link state” algorithms

Decentralized:

« router knows physically-
connected neighbors, link
costs to neighbors

Static or dynamic?
Static:

« routes change slowly over
time

Dynamic:
« routes change more quickly
— periodic update
— in response to link cost
changes

A Link-State Routing Algorithm

Dijkstra’s algorithm
* net topology, link costs
known to all nodes
— accomplished via “link
state broadcast”
— all nodes have same info
« computes least cost paths
from one node (‘source”) to
all other nodes

Notation:

* ¢(X,y): link cost from node x
toy; = oo if not direct
neighbors

* D(V): current value of cost
of path from source to dest.
v

* p(V): predecessor node

« iterative process of
computation, exchange of
info with neighbors

« ‘“distance vector” algorithms

5 . along path from source to v
— gives forwarding table for X
that node * N': set of nodes whose least

« iterative: after k iterations, cost path definitively known

know least cost path to k
dest.’s

Dijsktra’s Algorithm

1 Initialization:

2 N'={u}

3 forall nodes v

4 if vadjacenttou
5 then D(v) = ¢c(u,v)
6

7

8

else D(v) = «
Loop
9 find w not in N' such that D(w) is a minimum
10 addwtoN'

11 update D(v) for all v adjacent to w and not in N' :

12 D(v) = min( D(v), D(w) + c(w,v) )

13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N’

Dijkstra’s algorithm: example

Step N D(v).p(v) D(w),p(w) D(x).p(x) D(y).p(y) D(z),p(z)
0 u 2,u 5u  —1u o =3
1 ux<«—— 2,u_ 4.x . 2X ol
2 uxye ———2,u_____ 3y 4y
3 uxyve —3y 4y
4 UXYVW<— . 4y
5  uxyvwz<+ -




Dijkstra’s algorithm: an example

Resulting shortest-path tree from u:

Resulting forwarding table in u:
destination | |ink

Distance Vector Algorithm

Bellman-Ford Equation
Define
d,(y) := cost of least-cost path from x to y

Then

dy(y) = min {c(x,v) + d,(y) }

where min is taken over all neighbors v of x

Bellman-Ford example

Clearly, d,(2) = 5, d(2) = 3, d,(2) = 3
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B-F equation says:

j>,fj dy(2) = min { ¢(uv) + d(2),
"

[N

c(ux) + dy(2),

c(uw) +d,(2)}
=min{2+5,

1+3,

5+3} =4
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Node that achieves minimum is next
hop in shortest path = forwarding table

Distance Vector Algorithm

D,(y) = estimate of least cost from x to y

* Node x knows cost to each neighbor v: c(x,v)

* Node x maintains distance vector D, = [D,(y):
yeN]

» Node x also maintains its neighbors’ distance

vectors

— For each neighbor v, x maintains
D, =[Dy(y):yeN]




Distance vector algorithm

» Each node periodically sends its own distance vector
estimate to neighbors

* When a node x receives new DV estimate from
neighbor, it updates its own DV using B-F equation:

D.(y) — min{c(x,v) + D(y)} for each nodeyeN

» Estimate D,(y) converge to the actual least
cost d,(y)

Distance Vector Algorithm

Iterative, asynchronous:
each local iteration caused
by:

« local link cost change

« DV update message from
neighbor

Distributed:

« each node notifies neighbors
only when its DV changes

— neighbors then notify their
neighbors if necessary

Each node:

wait for (change in local link
cost or msg from neighbor)

recompute estimates

if DV to any dest has
changed, notify neighbors

D (z) min{c(x,y) +

Dx(z) min{c(x,y) +

D(y) = min{c(x.y) + D,(y), C(x z) + D,(y)}

D,(2), c(x,z) + D,(z)}

D(y) = min{c(xy) + Dl (\g) ¢(x,z) + D,(y)}

D,(2), ¢(x,z) + D,(z)}
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Distance Vector: link cost changes

Link cost changes:

1
« node detects local link cost change 1
« updates routing info, recalculates

distance vector 20

o if

DV changes, notify neighbors
At time t,, y detects the link-cost change, updates its DV,

"good and informs its neighbors.

news At fime t;, z receives the update from y and updates its table.
travels It computes a new least cost to x and sends its neighbors its D'
fast” At time 1, y receives Zs update and updates its distance table.

y's least costs do not change and hence y does not send any
message to z.

Distance Vector: link cost changes

Link cost changes:
« good news travels fast
* bad news travels slow -
“count to infinity” problem!
+ 44 iterations before
algorithm stabilizes: see text
» Poisoned reverse:
« If Z routes through Y to get
to X:
— Ztells Y its (Z's) distance to
X is infinite (so Y won'’t
route to X via Z)
« will this completely solve
count to infinity problem?
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