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Abstract

Many important science and engineering applications, such as regulating the tem-
perature distribution over a semiconductor wafer and controlling the noise from a
photocopy machine, require interpreting distributed data and designing decentral-
ized controllers for spatially distributed systems. Developing effective computational
techniques for representing and reasoning about these systems, which are usually
modeled with partial differential equations (PDEs), is one of the major challenge
problems for qualitative and spatial reasoning research.

This paper introduces a novel approach to decentralized control design, influence-
based model decomposition, and applies it in the context of thermal regulation.
Influence-based model decomposition uses a decentralized model, called an influence
graph, as a key data abstraction representing influences of controls on distributed
physical fields. It serves as the basis for novel algorithms for control placement and
parameter design for distributed systems with large numbers of coupled variables.
These algorithms exploit physical knowledge of locality, linear superposability, and
continuity, encapsulated in influence graphs representing dependencies of field nodes
on control nodes. The control placement design algorithms utilize influence graphs
to decompose a problem domain so as to decouple the resulting regions. The de-
centralized control parameter optimization algorithms utilize influence graphs to
efficiently evaluate thermal fields and to explicitly trade off computation, commu-
nication, and control quality. By leveraging the physical knowledge encapsulated in
influence graphs, these control design algorithms are more efficient than standard
techniques, and produce designs explainable in terms of problem structures.
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1 Introduction

Many important science and engineering applications require interpreting data
and designing decentralized controllers for spatially distributed systems. For
example, recent advances in the fabrication of low-cost, large-scale arrays of
microelectromechanical systems (MEMS) have enabled the construction of
“smart matter” systems that integrate sensing, computation, and actuation
at a fine grain. Recent MEMS applications include manipulation of parts with
distributed arrays of cilia-like actuators [1] and stabilization of beams with
piezoelectric materials that sense and counteract buckling [2].

Interpretation and control tasks for distributed physical systems encounter
a number of challenges. In lumped parameter systems, i.e., systems modeled
as ordinary differential equations, or ODEs, such as circuits, topology is the
most important spatial property (e.g. in the device ontology commonly used
in Qualitative Reasoning). However, in distributed parameter systems, i.e.,
systems modeled as partial differential equations, or PDEs, additional spatial
properties are also relevant. For example, temperature fields are influenced
by the geometry of the domain, spatial variations in material property, and
boundary conditions. The additional complexity makes it much harder to ap-
ply analytic methods to determine closed-form solutions; instead, simulation
and search on large-scale discretizations are often required. This presents both
a challenge as well as opportunities for AI reasoning systems for analyzing and
synthesizing distributed parameter systems. In fact, reasoning about spatially
distributed systems has been proposed as one of the major challenge problems
for the qualitative and spatial reasoning research community [3].

Data interpretation and control applications for distributed physical systems
are limited by physical laws and physical hardware constraints. Sensors and
actuators interact predominantly only with local regions of space. As a result,
global interpretations must be extracted from collections of locally measured
data, and global control laws must be enforced by local actuation rules. The
difficulty of constructing local to global mappings and back is compounded

∗ Corresponding author.
Email addresses: cbk@cs.dartmouth.edu (Chris Bailey-Kellogg),

fz@alum.mit.edu (Feng Zhao).
URLs: http://www.cs.dartmouth.edu/~cbk (Chris Bailey-Kellogg),

http://www.parc.xerox.com/zhao (Feng Zhao).

2



by nonlocal coupling between local nodes. In addition to strong interactions
with local areas of space, sensors and actuators have weaker interactions with
other areas of space. For example, the effect of a heating lamp controlling the
temperature over a local region of a semiconductor wafer may diffuse to other
regions and interfere with efforts to regulate temperature in those regions.
Sensing and control designs must account for such coupling.

Data interpretation applications for spatially distributed systems are often
challenged by the massive amount of data, either collected from arrays of
sensors or produced by simulations running on fine-grained discretizations of
models. Global analysis methods manipulating entire data sets quickly reach
computational limitations as the size of the data sets increases. Instead, ap-
plications must rely on local methods that manipulate separate subsets of the
data relatively independently. For example, domain decomposition methods [4]
for solving partial differential equations form subregions of a discretization and
iteratively combine and refine independent solutions for the subregions. Ap-
plications can also use data reduction and approximations to reason about a
problem at multiple levels of abstraction. For example, multigrid methods [5]
iterate between fine-grained and coarse-grained solutions to PDEs. Meteorol-
ogists use abstract structures such as isobars, pressure troughs, and pressure
cells to reason about the underlying pressure data at a higher level of abstrac-
tion.

What makes it possible to overcome these challenges and design data inter-
pretation and control applications for distributed physical systems? Physical
properties such as continuity and locality give rise to regions of uniformity
in spatially distributed data. Spatial Aggregation theory [6] proposes a uni-
form mechanism utilizing explicit representations of such knowledge, expressed
as metrics, adjacency relations, and equivalence predicates, to uncover and
exploit structures in physical data. Spatial Aggregation follows an imagistic
reasoning [7] style, applying vision-like routines to manipulate multi-layer geo-
metric and topological structures in spatially distributed data. Control design
applications use similar techniques to navigate through imagistic representa-
tions of the effects of control actions [8].

This paper extends these ideas to capture a key abstraction, the influence
graph, representing effects of decentralized controllers on distributed physical
fields. The influence graph mechanism utilizes physical knowledge of local-
ity, linear superposability, and continuity to manipulate structural descrip-
tions of influences for a class of problems such as heat transfer, electrostatics,
gravity, and incompressible fluid flow. The influence graph supports novel al-
gorithms for control placement and parameter design for systems with large
numbers of coupled variables [9–11]. The control placement design algorithms
use structural knowledge to decompose a domain into regions so that controls
in separate regions are maximally decoupled. The control parameter design
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algorithms use structural knowledge to efficiently evaluate temperature fields
and to explicitly trade off computation, communication, and control quality
during optimization. By leveraging physical knowledge, these control design
algorithms are more efficient than standard techniques and produce designs
explainable in terms of problem structures. While we present it in terms of
an application to decentralized thermal regulation, the influence graph mech-
anism provides a generic vocabulary for designing decentralized controls, in
terms of effects of controls on a field and similarities in control effects. These
techniques are appropriate for other control design problems requiring place-
ment and parametric optimization of decentralized controls for distributed
physical fields.

1.1 Problem Description

This paper considers a control design problem as a mapping from a spatial
domain S 1 , a behavioral model M , and a set of design constraints Σ to a set
of control nodes C and their control parameters U . Formally, control design
solves

S ×M × Σ→ C × U (1)

We illustrate the design problem using a generic problem of temperature regu-
lation for a piece of material [12], as shown in Figure 1. The design problem is
to regulate the temperature distribution over the material to a desired profile,
using a small number of point heat sources.

Definition 1 (Control Design for Thermal Regulation)

• S specifies the geometry of the material, with its boundary denoted by ∂S.
• M describes how heat diffuses in S and what happens at ∂S.
• Σ = (T, ε) where T is a desired temperature profile and ε an error tolerance,

both defined over the domain S. The design should minimize deviation from
T and not allow it to exceed ε.
• C = {c1, ..., cn} ⊂ S are point heat source locations.
• U = {u1(t), ..., un(t)} are heat outputs from the corresponding heat sources

as functions of time.

The design depends on the geometry S, the thermal process in the material
(specified by M), and the constraints Σ. There are two important components
to the design: structure design (e.g. the number and location of heat sources)

1 Later in the paper, S interchangeably refers to either the domain or a discretiza-
tion of the domain, in slight abuse of notation.
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Fig. 1. Industrial heat treatment of a piece of material. The control objective is to
achieve a specified temperature profile over the material by applying heat at a small
number of locations, shown as dark circles.

that determines C and parametric design (e.g. heat source values) that de-
termines U . Rather than addressing both design components simultaneously,
which would yield a very large and complex design space, our approach is
to design the structure first and then design the parameters. The structure
is designed in a manner that actually aids the parametric design, by placing
controls so that they minimally interfere with each other. This approach is
particularly appropriate for applications where the structure design is per-
formed once (to place controls), and the parametric design is performed re-
peatedly (e.g. for various desired profiles). In general, a design could iterate
through the structure design and parametric design until satisfactory results
are obtained. Most existing constrained optimization methods focus on para-
metric optimization. In contrast, our method uses structural information of
a spatial physical field to guide both control placement as well as parametric
design. While control placement design is performed at design time, paramet-
ric optimization can be performed off-line as well as online when tracking a
time-varying temperature profile or when the system parameter drifts.

Our abstract problem statement describes a class of practical problems. Many
such applications require decentralized control in order to ensure adaptivity,
robustness, and scalability. Consider two different thermal regulation systems,
represented in Figures 2 [13] and 3 [14]. Doumanidis developed the system in
Figure 2 for rapid prototyping in thermal fabrication (i.e. welding). It includes
a servodriven X-Y positioning table, upon which the parts to be joined are
placed, a plasma-arc heat source, and an infrared camera providing temper-
ature data. Doumanidis applies feedback control to a linearized model of the
system whose parameters are estimated at run-time from temperature distri-
butions [13]. Groups at Stanford and Texas Instruments developed the system
in Figure 3 for rapid thermal processing for semiconductor curing, where a
uniform temperature profile must be maintained to avoid defects. The control
strategy is somewhat decentralized, providing separate power zones for three
separate rings of heat lamps [14].

As another example, design of a “smart building” deploys networks of sensors
and actuators to regulate temperature and other environmental parameters.
Using a decentralized design is appealing since it allows the network to over-
come failures in individual control elements and to scale up without incurring
the complexity that increases exponentially with the number of controls. Op-
timal placement and control of these sensors and actuators can save energy
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Torch

IR Camera

X-Y table

Part

Fig. 2. Rapid thermal processing system welds by moving a part on a positioning
table based on feedback from an infrared camera.

Wafer

Lamps

Rings of Lamps
(viewed from the wafer looking up)

Fig. 3. Rapid thermal processing for semiconductor manufacturing maintains a uni-
form temperature distribution by independent control to separate rings of heat
lamps.

as well as maximizing occupant comfort. The design challenge is to achieve
the global control objective through appropriate combinations of local control
actions.

In this paper, we only consider the control problem, assuming that the sys-
tem is fully observable (e.g. obtaining sufficient temperature data from an
infrared camera). The observability problem can be addressed similarly to the
controllability problem; see Section 6.2 for further discussion.

1.2 Overview of the Approach

This paper presents influence-based model decomposition and applies it to a
case study application to the design of decentralized controls for thermal regu-
lation. Structures uncovered in physical fields serve as the basis for algorithms
that design control placements and control actions. Influence graph-based de-
sign mechanisms support explicit trade-offs between factors such as amount of
computation, amount of communication, and resulting control quality. Influ-
ence graphs allow explanation of and meta-level reasoning about the resulting
designs, in terms of the physical knowledge they represent. While the case
study is firmly grounded in the thermal regulation domain, the influence graph
abstracts a generic set of reasoning mechanisms for control design problems
requiring placement and parametric optimization of decentralized controls for
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distributed physical fields.

Our approach stems from work by Abelson et al. [15] underlining the impor-
tance of incorporating intelligence into scientific computing. Intelligent simu-
lation uses a mixture of symbolic, numeric, and geometric techniques to au-
tomatically prepare, perform, and interpret simulations. Yip et al. [7] further
refined this idea to specify a class of imagistic reasoning systems, in which the
input is an image-like representation of spatially distributed physical data,
the output is a high-level description of the data, and perception-like routines
are used to perform the mapping. Yip and Zhao [6] then introduced Spatial
Aggregation (SA) as a realization of imagistic reasoning unifying the mecha-
nisms underlying a number of successful imagistic problem solvers, including
KAM [16], which interprets the behaviors of Hamiltonian systems, MAPS [17],
which designs control laws based on a geometric analysis of the state equa-
tions of a dynamical system, and HIPAIR [18], which analyzes the kinematics
of fixed-axis mechanisms.

Figures 4 and 5 overview our approach. The first task is to determine the
effects of controllers on a field — in this case study, point heat sources yield-
ing heat flow in a piece of material (Figure 4) — and encapsulate the con-
trol effects in an influence graph. Analysis of the structures in an influence
graph drives control placement design and parametric optimization as follows
(depicted in Figure 5). Control probes yield a sampled influence graph rep-
resentation. These control probes are clustered based on similarities of their
effects as represented in the influence graph. In the example, the geometric
constraint imposed by the narrow channel in the dumbbell-shaped piece of
material results in similar field responses to the two probes in the left half of
the dumbbell and similar responses to the two probes in the right half of the
dumbbell. Based on the resulting equivalence classes, the field is decomposed
into regions to be separately controlled. In this case, the left half of the dumb-
bell is decomposed from the right half. Controls are placed in the regions and
optimized by adjusting their outputs in response to their effects on the field.

The rest of the paper is organized as follows. Section 2 describes models of
distributed heat flow and their computational representation in the Spatial
Aggregation Language. Section 3 presents the construction of influence graphs
for decentralized control problems. Influence graph-based control design algo-
rithms are elaborated in two separate sections: Section 4 presents algorithms
for determining control placements, while Section 5 presents algorithms for de-
termining control actions. Finally, Section 6 discusses the broader applicability
of the approaches described here.
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Fig. 4. Graphical representation of the effects of a single controller (point heat
source) on a two-dimensional field (the vertical axis represents temperature). The
influence graph mechanism encapsulates, analyzes, and manipulates the effects of
many such individual controllers.

Probes

Controls

Probe classes

Field

Fig. 5. Overview of decentralized control design by influence-based model decom-
position. Control probes form a sampled influence graph which is analyzed for sim-
ilarities in effects (e.g. the flows due to the probes in the left half of the dumbbell
are similar). Clustering probes yields a decomposition of the field into regions to
be separately controlled. Individual controls are parametrically optimized based on
their influences on the field.

2 Spatially-Distributed Models

The physical process of heat diffusion is modeled by partial differential equa-
tions (PDEs). In particular, this case study focuses on steady-state (asymp-
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totic) temperature distributions, modeled by the Laplace equation:

∇ · ∇kφ+ Q̇ = 0, (2)

subject to boundary conditions specifying heat flow characteristics at the
boundary of the domain. Here ∇ is the spatial derivative (e.g. ∂

∂x
ı̂ + ∂

∂y
̂

for a 2-D Euclidean space), φ is the temperature, k is the material conduction
coefficient, and Q̇ is the source value representing heat per unit time and vol-
ume. Intuitively, this equation models heat diffusion as a smoothing process,
reducing sharp spatial variations in temperature.

Given the description of a piece of material (geometry, boundary conditions,
and material properties), solving the heat equation yields the resulting tem-
perature profile over the material. However, for non-trivial descriptions, it is
often infeasible to find a closed-form solution to the equation. Thus scien-
tists and engineers turn to solving equations for discretized representations in
order to extract the behavior of a system. For example, the finite difference
method (Figure 6(a)) approximates the spatial derivatives in the heat equa-
tion by comparing temperatures among points in a grid, and the finite element
method [19] (Figure 6(b)) minimizes an error term derived from conservation
of energy over the elements in a mesh. Both methods lead to systems of the
following form:

A~φ = ~u (3)

A is the capacitance matrix formed from the discretization, ~φ is a vector whose
elements represent the resulting temperature distribution at the nodes in the
discretization, and ~u is the contribution from heat sources and boundary con-
ditions. In terms of our control design terminology (Eq. 1), S specifies the

locations for the discretization of ~φ, M the capacitance matrix A, C the po-
sitions of the heat sources with respect to the indexing of ~φ, and U the heat
source outputs ~u over time.

An important point about the discretization of the heat equation by finite dif-
ferences or finite elements is that it yields a set of equations relating tempera-
ture ~φ to a linear combination of heat source outputs ~u, via their contributions
in A−1. This is not to say that there is no nonlinearity in spatial variables.
In fact, the heat conduction coefficient k can vary nonlinearly in the spatial
domain.

Furthermore, note that the effects of boundary conditions (what happens at
the edges of the domain) are wrapped up into the system and treated the
same as heat sources. For example, if the boundary conditions specify a non-
zero constant value (i.e. the temperature in the domain has little impact on
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the temperature outside, which remains constant), the impact can be treated
similarly to a heat source/sink, and added in as a separate entry in ~u. If

the boundary conditions have a term involving ~φ (e.g. an insulated domain
with gradient boundary conditions), the impact is factored directly into the
capacitance matrix A.

The capacitance matrix is sparse: entry (i, j) in A is non-zero if and only if
i and j are neighbors in the discretization. This property makes the system
amenable to solution by relaxation methods, which start with a guess at the
resulting temperature profile and iteratively improve the guess until the pro-
cess converges. The original system (3) is rewritten into a form with ~φ on both
sides of the equation:

~φ = B~φ+ ~v (4)

For example, one possible rewriting (Jacobi) sets B = D−1(L + U) and ~v =
D−1~u, where A has been separated into A = D − L − U , with D a diagonal
matrix, L a lower-triangular matrix, and U and upper-triangular matrix [5].
Then successive approximations to the solution are formed by using the current
value of ~φ on the right-hand side of (4) to compute a new value of ~φ on the
left-hand side:

~φ(1) = B~φ(0) + ~v
~φ(2) = B~φ(1) + ~v

. . .
~φ(n) = B~φ(n−1) + ~v

The convergence rate of this technique depends on the form of the rewriting
from (3) to (4); common approaches include the Jacobi method, which simul-

taneously updates all members of ~φ, the Gauss-Seidel method, which progres-
sively updates elements of ~φ, and successive overrelaxation, which extends this
approach to mix in differing proportions of old and new ~φ values [12].

The Spatial Aggregation Language (SAL) [20,6], summarized in Table 1, pro-
vides a concise set of data types and operators at a level of abstraction appro-
priate for computing with distributed physical fields. The algorithms in this
paper utilize SAL vocabulary and extend it with influence graph operations. In
the heat control domain, a piece of material is discretized and represented by a
set of point objects (sensor locations or points for which the heat equation is to
be solved). Temperatures are represented by a scalar field mapping points to
temperatures; heat flows are represented by the corresponding gradient vector
field. Points are related in neighborhood graphs (ngraphs) encoding an appro-
priate adjacency relationship (e.g. 4-adjacency for the finite difference grid of
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(a) (b)

Fig. 6. Discretized distributed representations support numerical solution of the
heat equation by solving systems of equations for (a) diffusion in a regular finite
difference grid or (b) conservation properties in a finite element mesh.

Figure 6(a) or a triangulated neighborhood in the finite element mesh of Fig-
ure 6(b)). The heat equation can be solved by local relaxation rules on such
neighborhood graphs. Structures in fields are extracted as equivalence classes
of neighboring objects according to some similarity measure (e.g. similarity in
temperature value or gradient vector direction). These equivalence classes are
abstracted to primitive objects at a higher level of abstraction (e.g. isother-
mal regions or curves from groups of points with similar temperature value or
gradient flow curves from groups of points with similar vector directions).

To emphasize the distributed nature of the algorithms in this paper, many of
them are presented graphically, depicting data flow among processing elements
(e.g. field nodes connected by ngraph edges). More traditional pseudocode also
helps illustrate the high-level computational structure of the algorithms.

3 Influence Graph

In order to design decentralized controls for a physical field, it is necessary to
reason about the effects of the controls on the field. This section introduces the
influence graph mechanism to represent and manipulate such dependencies.
By explicitly representing the dependencies of field nodes on control nodes,
influence graphs support the control design techniques discussed in the rest of
this paper.

3.1 Thermal Hill

A heat source influences the temperature distribution in a field through heat
propagation. Figure 7(a) shows that the steady-state influence of a source on
a field forms a “thermal hill”: the temperature decays away from the source.
When multiple sources affect a thermal field, their thermal hills interact,
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• Primitive Objects represent locations and structures in spatial data.

Example:
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• Compound Objects combine primitive objects.

· Spaces group objects.

Example (points and curves):

· Fields associate objects and features.
Example (points and temperatures):
· Ngraphs relate nearby objects.

Example (Delaunay triangulation):

· Equivalence classes group similar objects.

Example (points with similar vector directions):

• Means of Abstraction connect compound objects at one level of abstraction
and primitive objects at the next.

Example (points to region bounded by convex hull):
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Table 1
Components of the Spatial Aggregation Language.

(a) (b) (c)

Fig. 7. Steady-state thermal hills around sources. The vertical axis represents tem-
perature value which peaks at source location(s). (a) A single source. (b) Two fairly
independent sources. (c) Two tightly coupled sources.

jointly affecting the temperature distribution (Figures 7(b) and Figure 7(c)).
Figure 4 shows a hill in a more complex domain.

The structure of these thermal hills exposes quite a bit about the influence
of a heat source on the temperature field. Temperature decays away from the
source at different rates in different directions, due to different constraints from
geometry, boundary conditions, and material properties. Similarly, thermal
hills from heat sources at different locations have different shapes. Thermal
hills expose the locality of the effects of a heat source: a heat source strongly
affects nearby field nodes and only weakly affects further away field nodes,
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depending on the conduction properties of the material.

In order to take advantage of these and other properties at a high level of
abstraction, influence graphs serve as an abstract, domain-independent repre-
sentation encoding this knowledge. As discussed in Section 6, influence graphs
can represent controls and fields other than from the thermal regulation do-
main.

3.2 Influence Graph Construction

An influence graph records the dependencies between control nodes and spatial
objects in a field as edge weights in a graph.

Definition 2 (Influence Graph) An influence graph I = (S, C,E,w) where

• S is a set of field nodes.
• C ⊂ S is a set of control nodes.
• E = C × S is a set of edges from control nodes to field nodes.
• w : E → R is an edge weight function with w(e) for e = (c, s) the field value

at s given a unit control value at c.

We use the following notational shortcuts:

• I : C × S → R such that I(c, s) 7→ w(e) when e = (c, s) ∈ E.
• I : C → (S → R) such that I(c) 7→ {(s, I(c, s)) | s ∈ S} when c ∈ C.

Hence, the graph edges record a normalized influence from each control node
to each field node. The thermal hills in the last subsection (e.g. Figure 7(a))
are pictorial representations of the edge weights for an influence graph from
one heat source to the nodes of a temperature field.

An influence graph is constructed by placing a control with unit value at each
control location of interest, one at a time, and evaluating the field at field
node locations of interest. The method of evaluation is problem-specific. For
example, it could be found by numerical simulation (e.g. using the relaxation
mechanism discussed in the previous section), experiment, or even explicit in-
version of a capacitance matrix. In the case of solving for an influence graph
by relaxation, the computation requires O(mn) work where m is the number
of probes and n the number of field nodes; the constant in big O depends on
the relaxation method. This work can be distributed, computing influence sep-
arately for each probe. An influence graph then serves as a high-level interface
caching important information about spatially distributed physical systems; in
this case, the information indicates dependencies of field values upon controls.
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Near field

Far field

Fig. 8. An influence hill partitions a field into near and far fields — the near field
is strongly influenced by the control and the far field isn’t.

3.3 Influence Graph Properties

Why is an influence graph useful? As Figures 7 and 4 showed for thermal hills,
influence strengths vary in different directions and from different locations, de-
pending on geometry and field properties. Influence graphs encapsulate these
variations in dependence for use by other reasoning mechanisms. For example,
control placement design will exploit the constraints on heat flow indicated by
directions of flow.

Influence graphs also encapsulate locality of control effects. Locality can be
used to distinguish between a near field and far field relative to the amount
of influence exerted by a control. For example, Figure 8 shows the near and
far fields based on the thermal hill from a heat source.

Definition 3 (Near and Far Field) For an influence graph I = (S, C,E,w),
the near field of a control c ∈ C is the set Nc = {s ∈ S | I(c, s) > εc}; the far
field is S −Nc.

The required amount of influence εc (which can depend on the control location
c) is specified for example by a fixed influence threshold, a threshold propor-
tional to the peak value, or a threshold based on the “knee” of the influence
hill for the control. Our implementation of the algorithm presented below uses
a proportional threshold. Control parameter design will leverage the locality
encapsulated in influence graphs, and extracted in terms of near/far fields, to
support more independent reasoning about control actions taken by decen-
tralized controls.

In many distributed physical phenomena, despite nonlinearities in the spatial
variables (e.g. non-uniform conduction characteristics or irregular geometry),
solutions can be linearly superposed as discussed near Eq. 3.

Definition 4 (Linear Superposability in the Heat Equation) Heat equa-

tion solutions are linear superposable: if ~φ1 and ~φ2 are solutions to the heat
equation (Eq. 3) with ~u1 and ~u2 respectively, and c is a constant, then

• (Scalability): c~φ1 is a solution to the heat equation with c~u1.
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10 ∗ =

(source = 1) (source = 10)

(a)

+ =

(source 1 on) (source 2 on) (both sources on)

(b)

Fig. 9. Linear superposability of thermal hills. (a) Scalability: scaled thermal hill is
equivalent to thermal hill with source value scaled. (b) Additivity: sum of thermal
hills is equivalent to thermal hill with both sources active.

• (Additivity): ~φ1 + ~φ2 is a solution to the heat equation with ~u1 + ~u2.

Since influence graphs represent solutions to the heat equation at unit con-
trol values, this property means that the effects of controls can be combined
through a superposition of influences. 2 For example (see Figure 9), given the
thermal hill for a heat source at one control value, the temperature field re-
sulting from a different control value is simply an appropriately scaled version
of the original thermal hill. Similarly, given the thermal hills for two sepa-
rate heat sources, the temperature field resulting from both heat sources is
simply the sum of the two thermal hills. Influence graphs encode the crucial
dependency information, while hiding other possibly nonlinear effects. Con-
trol parameter design will exploit linear superposability to efficiently evaluate
fields through addition and subtraction of appropriately scaled hills.

3.4 Simple Structures in Influence Graphs

A common representation of the structure of a field is with iso-contours, or
curves of equal field value. For example, Figure 10 shows some iso-contours
for the hill of Figure 4. The contours are essentially loops around the hill at
the same “altitude” (influence value). The steepness of the hill can be judged
by examining the distance between adjacent contours at various points. This
in turn indicates the rate of influence decay in different directions. The iso-
contours can be computed from the influence field I(c) due to a given control
c by well-established techniques such as the marching squares algorithm.

Gradient vectors are a dual representation to iso-contours: while iso-contours

2 Recall that non-zero boundary conditions are to be treated as separate influences.
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Fig. 10. Iso-influence contours for material and heat source. The contours are loops
around an influence hill at equal value.

loop around a hill, gradient vectors point up it. For example, Figure 11 shows
the gradient vector directions for the hill in Figure 4. The lengths of these
vectors, not shown here, indicate the local steepness of the hill. The directions
of the vectors indicate the directions of steepest ascent up the hill. Local
operations on fields and neighborhood graphs (refer again to Table 1) support
local estimation of gradient vectors by approximating the spatial derivatives.
For example the centered differences approach estimates a second derivative
by the difference between two adjacent estimates of the first derivative:

∂φ

∂x
≈ (

~φi+1 − ~φi
xi+1 − xi

−
~φi − ~φi−1

xi − xi−1

)/(
xi+1 − xi

2
+
xi − xi−1

2
) (5)

where i − 1, i, i + 1 are horizontally-adjacent points (a similar equation ap-
proximates the derivative with respect to y).

4 Control Placement Design

The first design task considered here is that of designing a control placement.
For the thermal domain, control placement design uses a description of a
material’s geometry, conduction properties, boundary conditions, and design
constraints, in order to place heat sources. The placement of the heat sources
affects their ability to achieve a desired temperature distribution by paramet-
ric adjustment. For example, if all the heat sources are clumped at one end of
the material, they cannot adequately control the area at the other end of the
material. Similarly, such a clumping makes it hard to individually determine
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Fig. 11. Gradient vector directions for material and heat source. The vectors point
up an influence hill. Vector magnitudes are normalized to 1.0 here, in order for the
directions to be apparent.

control actions, since the actions taken by one control strongly affect the nec-
essary actions of another (e.g. heat from one source affects the area another
source is trying to control). Furthermore, as discussed in the introduction, in
order to scale up to massive sets of distributed controls, it is necessary to
reason about controls as independently as possible.

Based on this insight, the design objective considered here is that of plac-
ing controls so that they minimally interfere with each other. The approach
to achieving this objective is to decompose a problem domain S into a set
P = {R1, R2, . . . Rn} of decoupled, atomic subregions Ri, and then indepen-
dently design controls (placement and parameters) for the separate subregions.
Intuitively, regions are considered decoupled if the exact control design in one
region is fairly independent of the exact control design in another, and a region
is considered atomic if it needs no further decomposition — control design for
the region yields adequate control of the region.

More specifically, we seek a decomposition maximizing a quality score utilized
by Shi and Malik [21] for image segmentation. Compare the total influence
from each control location on locations in other regions (decomposed), and
the amount of influence from that location on locations in its own region
(atomic). To be more specific, define the decomposition quality q (0 ≤ q ≤ 1)
for a partition P of a set of nodes S as follows:

q =
∏
R∈P

∑
c∈R

∑
r∈R I(c, r)∑
s∈S I(c, s)

(6)

For each control node in a region, divide its influence on nodes in its own region
by its total influence. Summing that over each region yields an estimate of the
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Fig. 12. Temperature fields exhibit structures in response to heat source probes.
The narrow channel in the dumbbell constrains the heat flows from the two probes.

fraction of control output of any control location in the region that is used to
control the other locations in that region. The quality measure is combined
over all regions by taking the product of each region’s quality.

Definition 5 (Control Placement Design) Control placement design for
spatial domain S, behavioral model M , and design constraints Σ (Eq. 1) yields
a number n and set of control locations C = {c1, c2, . . . , cn} maximizing de-
composition quality (Eq. 6).

Influence graphs are used to perform this decomposition; refer again to Fig-
ure 5 for an overview. We now step through the key ideas necessary for the
decomposition algorithm, to be given in Table 2.

4.1 Control Probes

For a temperature field to exhibit structures, heat sources must be applied;
then an influence graph can be constructed. For example, Figure 12 shows
the iso-influences resulting from two different heat source placements; in both
cases, the structure of the contours indicates the constraint on heat flow due to
the narrow channel. The control placement design algorithms in the following
subsections are based on the response of temperature fields to such control
probes.

Definition 6 (Control Probe) A control probe is a sample control placed
in a domain in order to estimate effects of other potential controls. This yields
an influence graph I = (S, C,E,w) for probes C in a domain S.

The number and placement of control probes affect the structures uncovered in
temperature fields, and thus the quality of the resulting control design. Probe
locations can be chosen either statically or dynamically. For example, static
probe locations can be chosen at random or based on the size of the field
discretization (e.g. every 10 units). Dynamic probe locations can be chosen
in order to gather more information about inadequately explored regions or
to disambiguate inconsistent interpretations. This allows potentially better
results at the expense of more implementation complexity and run-time cost.

Probes serve as representatives for the effects of arbitrarily-placed controls.
That is, we assume that a control at some un-probed location will have similar
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effects to controls at “nearby” probed locations, where nearness is measured
in terms of amount of influence, rather than only geometry.

Definition 7 (Primary Controls) For an influence graph I = (S, C,E,w),
the primary controls for a location s ∈ S is the set of controls {c ∈ C | I(c, s) >
εs}.

While we used a fixed threshold for εs in our implementation, other possible
implementations could be based on the near field or on a standard devia-
tion above the average influence from all controls. Note that nodes can have
multiple primary controls.

The quality of the approximation of controls at arbitrary locations by rep-
resentative primary controls depends on geometry and material properties.
Since the influence graph encapsulates the effects of geometry and material
conditions, it provides a natural mechanism for reasoning about approxima-
tion quality. In particular, experimental results presented later in this section
show the trade-off between number of probes (and thus approximation quality,
assuming that the quality of an approximation for a location improves with
more, closer probes) and resulting quality of control design.

By taking control probes as representatives of control placement effects on a
field, the problem of decomposing the domain into regions can be reformulated
into one of partitioning probes into equivalence classes. Each equivalence class
of probes serves as a representative for the effects of its controlled region, the
set of nodes for which the probes are primary controls. A good decomposi-
tion produces probe classes whose controlled regions are decoupled from the
controlled regions of other classes, and which have no acceptable subclasses.

4.2 Evaluating Control Decoupling

The first criterion for evaluating a decomposition is that each region be de-
coupled from other regions. In terms of control probe equivalence classes, de-
coupling will be evaluated by considering independence of control placement
and independence of control parameters.

To evaluate independence of control placement, consider the influence gradi-
ent vectors induced by a set of probes; Figure 13 shows an example for two
probes. While the flows are different in direction near the locations of the two
probes, they are quite similar in direction far away from the probe locations.
This similarity is due to constraints imposed by geometry and material prop-
erties; in this case, the narrow channel of the material effectively decouples the
left and right halves. A numerical measure for the similarity is implemented,
for example, by comparing the angular difference between gradient vectors
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Fig. 13. Similarity of flows in the far fields of control probes suggests indistinguisha-
bility of control placement. Vector directions in the right half of the dumbbell are
very similar for both probe locations.

produced by different probes:

place sim(c1, c2) =
∑
s∈S
∇I(c1, s) · ∇I(c2, s), (7)

where∇I(c, s) is the gradient vector field for the influence from c, evaluated at
s (see Section 3.4), and · represents dot-product of the vectors. This measure,
for which larger values indicate more similar vector fields, evaluates the indis-
tinguishability of exact control placement within the set of probe locations,
and thus is correlated with a good decomposition into decoupled regions.

To evaluate independence of control parameters, recall the distinction between
a probe’s near field and its far field: the far field is only weakly influenced by
the probe, and thus can be effectively decomposed from it. Alternatively, it
makes sense to group together probes that have significant overlap in their
near fields. This overlap can be measured by element-wise comparing influence
value differences and summing the results.

param sim(c1, c2) = m12 −
∑
s∈S
|I(c1, s)− I(c2, s)|, (8)

where m12 =
∑
s∈S |I(c1, s)| +

∑
s∈S |I(c2, s)| inverts the metric so that more

similar influence yields a larger number.

Definition 8 (Decoupling) Two sets of controls Pi and Pj of a partition are
decoupled if ∀c1 ∈ Pi, c2 ∈ Pj : (place sim(c1, c2) < εplace)∧(param sim(c1, c2) <

εparam).
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Fig. 14. Control probe placement with potential non-atomic partition
{{A,B,C,D}, {E,F,G}} and atomic decomposition {{A,B}, {C,D}, {E,F,G}}.

(a) (b)

Fig. 15. Overlapping near fields indicate probe class atomicity. (a) Non-atomic class
(the probes are decoupled). (b) Atomic class (the probes are not decoupled).

4.3 Evaluating Region Atomicity

Each region in a partition must be decomposed far enough. For example,
in Figure 14 a partition {{A,B,C,D}, {E,F,G}} achieves good decoupling,
since the probes in the first class are relatively independent from those in
the second class. However, it is not atomic, since {A,B,C,D} can be further
decomposed into {{A,B}, {C,D}}.

Definition 9 (Atomic Decomposition) A set P ⊂ S in a partition is
atomic if for all P1, P2 ⊂ P with P1 ∩ P2 = ∅, P1 and P2 are not decoupled,
according to Definition 8.

One approach to ensuring atomicity of the classes of a decomposition is to
recursively test subsets of probes to see if they result in valid decompositions.
For example, by testing partitions of the class {A,B,C,D} for independence,
the partition {{A,B}, {C,D}} would be uncovered. The test can use heuristics
to avoid testing all possible subclasses. For example, just by examining overlap
in influences in the class {A,B,C,D}, the partition {{A,B}, {C,D}} can be
generated as a counterexample to the atomicity of {A,B,C,D}. If a class is
already small, out-of-class probes can be used in such a test, and, if necessary,
new probes can be introduced. For example, in an atomicity test for {A,B},
checking independence of {A,C} from {B,D} would show that {A,B} is
indeed atomic. A more efficient and empirically effective method is to allow
grouping of pairs of probes only if their near fields sufficiently overlap, as
shown in Figure 15.
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function cluster probes(I = (S,C,E,w), G ⊂ C × C)
Let P = {{c} | c ∈ C}
Repeat:

Let nbrij = (Pi 6= Pj) ∧ (∃c1 ∈ Pi, c2 ∈ Pj : (c1, c2) ∈ G) ∧ atomic(Pi ∪ Pj)
Let simij = (α place sim(Pi, Pj) + param sim(Pi, Pj)) if nbrij is true

or 0 otherwise
Let besti = arg maxj simij

Let merge = {Pi ∪ Pj | besti = j ∧ bestj = i}
Let keep = {Pi | ∃j : besti = j ∧ bestj 6= i}
Set P to merge ∪ keep

Until merge = ∅
Return P

Table 2
Algorithmic description of probe clustering.

4.4 Control Probe Partitioning

Based on these criteria, control probes can be clustered into decoupled, atomic
equivalence classes. We introduce an algorithm for performing this clustering,
using the SAL neighborhood graph and classification mechanisms. Start with
each probe in its own class, and form a neighborhood graph of classes based
on proximity (e.g. Delaunay triangulation or nearness neighborhood). Then
greedily merge neighboring pairs of classes that are most similar, as long as a
region is strongly influenced by other regions, and until a merger would result
in a non-atomic class. Table 2 provides pseudocode for this algorithm, and
Figure 16 shows the data flow. Figure 17 illustrates a sample probe neighbor-
hood graph, Figure 18 depicts sample influence gradients for two probes, and
Figure 19 shows the controlled regions for equivalence classes of probes after
the merging process.

4.5 Performance

The influence-based decomposition algorithm has proved effective in designing
control placements for decentralized thermal regulation. The performance has
been measured in two ways: quality of the decomposition, and ability of the
resulting control design to achieve an objective.

One important question about the design algorithm is the impact of the num-
ber of control probes on the effectiveness of the resulting design. To test this,
different numbers of probes (4, 8, 16, and 32) were placed at random in a
given domain, and results were averaged over a number of trial runs. While
smarter probe placement techniques might yield more consistently effective de-
signs, this approach provides a baseline and illustrates the trade-off between
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Fig. 16. Data flow for probe clustering algorithms: repeatedly merge best-match
pairs of classes.

Fig. 17. Probe merging example: probe neighborhood graph.

Fig. 18. Probe merging example: influence gradient vectors from two probes.

number of probes and error/variance.

Data for three sample problems are given here: a plus-shaped piece of material,
a P-shaped piece of material, and an anisotropic (non-uniform conduction
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Fig. 19. Probe merging example: region decomposition after merging.

coefficient) bar. These problems illustrate different geometries, topologies (the
P-shaped material has a hole), and material properties. Other problems have
also been tested; the results are similar.

The probe-based algorithm described above was used to decompose the input
domain. The near field of each probe was set to all nodes with influence at
least 10 percent of the peak. The probe neighborhood graph was a Delaunay
triangulation. Similarity measures between probe classes compared only flow
vector direction differences as in Eq. 7. Merging was performed until four
classes remained.

4.5.1 Decomposition Quality

The goal of the decomposition algorithm is to partition a domain into regions
such that source placement and parametric optimization in each region is rel-
atively independent of that in all regions (decomposed) and has no internally
independent regions (atomic). Recall that Eq. 6 provides a metric indicating
how well this goal is achieved.

To provide a baseline for comparing the performance of our approach, we
implemented the technique of Shi and Malik [21]: apply spectral partitioning
to a matrix equivalent to an influence graph with edges weights modulated
by total influence from corresponding control nodes. Intuitively, this approach
partitions the influence graph, removing edges so that the resulting connected
regions maximize internal influence (atomic) and minimize external influence
(decomposed). Shi and Malik showed that this yields a partition that generally
reaches a nearly-optimal decomposition according to Eq. 6.

Table 3 provides raw performance data: the average and standard deviation of
the decomposition quality over the set of trial runs. Figure 20 illustrates the
variation in error and standard deviation with respect to different numbers of
control probes.
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Spectral Infl4 Infl8 Infl16 Infl32

Plus

error 1.0 0.97 1.06 1.21 1.17

std dev n/a 0.30 0.17 0.12 0.10

P

error 1.0 0.68 0.77 0.86 1.11

std dev n/a 0.063 0.15 0.12 0.066

Bar

error 1.0 0.56 0.65 0.76 0.85

std dev n/a 0.26 0.10 0.073 0.024
Table 3
Performance data for decomposition quality: relative average and standard deviation
of decomposition quality. Spectral uses spectral partitioning to decompose a full
influence graph, while Infl4–Infl32 use the probe-based method with 4–32 randomly-
placed probes.
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Fig. 20. Performance data indicate that the influence-based decomposition algorithm
supports trading decomposition quality for computation. Decompositions achieve
quality comparable to spectral partitioning, but with an influence graph for a small
number of probes rather than a full influence graph.
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For all three problems in Figure 20, the average quality naturally decreases as
the number of probes decreases. (There is a slight taper in the performance for
the plus shape, due to statistical sampling.) Furthermore, the standard devi-
ation of quality tends to increase as the number of probes decreases, since the
partition is more sensitive to specific probe placements. The curve indicates
a trade-off between the amount of computation versus the resulting decom-
position quality. With enough probes, the decomposition quality is roughly
equivalent to that of spectral partitioning. It is worth noting that spectral
partitioning requires computation of a matrix corresponding to a full influ-
ence graph (from every node to every other node), rather than just influence
from a small number of probes. The spectral partitioning approach also re-
quires solving a general eigenvalue problem for the influence matrix.

4.5.2 Control Placement Quality

The ultimate measure of the control design algorithm is how well a design
based on a decomposition can achieve a control objective. This section eval-
uates the ability of decomposition-based control designs to achieve a uniform
temperature profile. This profile is better than other, non-uniform profiles at
indicating the performance of a decomposition, since it does not depend as
much on local placement adjustment and parametric optimization. Intuitively,
if a decomposition clumps together sources, then some other region will not
get enough heat and thus will have a large error.

Recall that the goal of decomposition is to determine atomic, decoupled re-
gions, each to be controlled separately. To generate a simple control placement
from a given partition, we placed controls in the “center of influence” of each
region of the partition. The center of influence is like the center of mass, but
weighted with total influence from the probes, rather than mass, at each point.

To compare the performance of our approach to a standard technique, we
implemented a simulated annealing [22] design algorithm. A configuration
consists of a heat source placement; each step moves one source and tests
whether or not the move improves the ability of the design to meet the desired
temperature profile. The annealing process was run for 100 steps, requiring
computation equivalent to placing 100 probes.

Table 4 provides the raw performance data, including the average error (sum of
squared difference between actual temperature profile and desired temperature
profile) and the standard deviation in the error over the set of trial runs.
Figure 21 illustrates the variation in error and standard deviation with respect
to different numbers of control probes.

As with decomposition quality, the average and standard deviation of con-
trol quality tend to improve with the number of probes. With enough probes,
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Anneal Infl4 Infl8 Infl16 Infl32

Plus

error 1.0 1.25 1.07 1.03 1.0

std dev 0.014 0.083 0.069 0.028 0.029

P

error 1.0 1.16 1.17 1.03 0.99

std dev 0.014 0.077 0.124 0.014 0.027

Bar

error 1.0 1.42 1.11 1.0 0.99

std dev 0.011 0.24 0.13 0.085 0.050
Table 4
Performance data for decomposition-based control design: relative average and stan-
dard deviation of error. Anneal is a simulated-annealing based optimizer, while
Infl4–Infl32 use the influenced-based decomposition method with 4–32 randomly-
placed probes.
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Fig. 21. Performance data indicate that decomposition-based control placement de-
sign supports trading control quality for computation. Designs achieve performance
comparable to simulated annealing, but with a small, fixed number of field evalua-
tions.
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the quality is commensurate with that of simulated annealing. A major dif-
ference is that the decomposition-based approach uses a small, fixed number
of function evaluations. In both cases, only the global control placement was
designed; local placement adjustments could somewhat reduce the error.

4.6 Discussion

The control placement design algorithm decomposes a domain based on influ-
ence graph structures for a set of control probes. It uses influence graphs to
measure similarity of effects on the field from classes of probes. Based on these
measures, it identifies minimal equivalence classes of probes that are mutually
independent with respect to control placement and parameter design.

In order to provide a consistent basis for comparison with other algorithms (i.e.
spectral partitioning and simulated annealing) which require a fixed number of
partitions, the performance data presented here applied probe merging until
a desired number of regions was reached. However, our framework has the
advantage of a metric, probe class atomicity, that indicates the best number
of partitions.

Spectral partitioning and other graph partitioning algorithms [23–26] could
be used directly for control design: partition a field into subfields and place
a control in each subfield. However, these approaches account for topology
and perhaps geometry, but not material properties. This section presented
spectral partitioning on the influence graph (rather than on the domain) as
a baseline for decomposition performance data. As previously mentioned, our
approach is much more efficient, using influences for only a small number
of probes, rather than for every node. The influence-based partition process
could be implemented by encoding probe similarity metrics in graph edges and
then applying a graph partitioning algorithm. However, the merging algorithm
presented here is simple, efficient, and effective.

The influence-based design algorithm searches the design space in a much dif-
ferent manner from that of other combinatorial optimization algorithms, such
as genetic algorithms [27] and simulated annealing [22]. Rather than searching
the space of all possible combinations of source locations, our approach com-
bines results from a small set of control probes, develops a global description
of the domain, and partitions it appropriately. We explicitly form equivalence
classes and structures in the domain, rather than implicitly representing them
in terms of, for example, increased membership of highly-fit members in a
population. Since design decisions are based on the influence structure of the
field, this approach supports higher-level reasoning about and explanation of
its results; for example, a design decision could be explained in terms of con-
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strained influence flows through a field.

Both decomposition quality and control quality increase somewhat asymptot-
ically with the number of probes. The major computational cost is in com-
puting probe influences, rather than in merging probe classes. This suggests
a modified control design algorithm that iteratively increases the number of
probes, checks the resulting decomposition at each step, and halts when the
quality stabilizes. This algorithm avoids dependence on a fixed number of
probes and follows a trade-off curve between computation and control quality.

5 Control Parameter Design

Given a control placement design, the next task is to optimize control param-
eters in order to satisfy the design objectives. Consider the control objective
of maintaining a specified temperature distribution for an extended period of
time, as is the case for rapid thermal prototyping [14]. This task can be bro-
ken into two parts: design-time computation of set points around which the
heat source outputs will vary, and run-time feedback control of the actual heat
source outputs based on local, linearized models derived at those set points.
This section considers the computation of the set-point heat source values,
leaving the feedback control to standard engineering techniques (e.g. as in [14]
or [13]).

Definition 10 (Control Parameter Design) Control parameter design for
a set of controls C = {c1, c2, . . . , cn} with respect to a desired set-point tem-
perature profile T and allowable error ε yields set-point heat outputs U =
{u1, u2, . . . , un} minimizing the deviation from T and ensuring that it is less
than ε.

Control parameter design requires simultaneous optimization of many parame-
ters (the heat source values). While algorithms for multi-parameter optimiza-
tion exist [28], they are computationally expensive for large problems and
difficult to parallelize for distributed applications. This section demonstrates
that structural knowledge, in the form of the influence graph, significantly
improves the performance of a basic decentralized optimization algorithm.

A simple decentralized optimization algorithm repeatedly tests adjustments to
control outputs and chooses those that minimize the error (e.g. sum of squared
difference of the resulting temperature from the desired profile). Table 5 and
Figure 22 summarize the algorithm and its data flow. Remember that the
optimization processes are decentralized, so that each heat source adjusts itself
independently, taking a step towards what it thinks minimizes error. The
desired temperature T is represented as {(si, ai) | si ∈ S} where ai is the
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function decentralized opt(I = (S,C,E,w), T, ε)
Let U = {(u1, 0), (u2, 0), . . . , (un, 0)}
Repeat:

For each ci ∈ C:
Let ∆i = {δi,−δi}
Increment ui by arg min

δ∈∆i

||T − temp (I, U |ui=ui+δ)||

Until ||T − temp (I, U)|| < ε
Return U

Table 5
Algorithmic description of decentralized optimization algorithm.

Field node Field node

heat
error

heat
error

adjust adjust

Control Control

error
heatheat

error

Fig. 22. Data flow for the basic decentralized optimization algorithm: adjust control
values based on the error in the field resulting from different heat outputs.

temperature at si. We assume a function temp that evaluates the temperature
field given a set of parameter values for an influence graph (e.g. by relaxation,
as in Section 2). Our implementation uses a set ∆i of control adjustments
proportional to the current control value; other sets are possible.

In the next three sections, the influence graph mechanism will be used (1) to
avoid redundant computation during field evaluation, (2) to reduce communi-
cation among sources and field nodes, and (3) to support cooperation among
local optimization processes for the sources.

5.1 Efficient Field Evaluation

During each step of an iterative optimization process, the field is evaluated
using a relatively expensive, iterative relaxation method, as discussed in Sec-
tion 2. However, recall that an influence graph caches the dependence of field
nodes on normalized sources, and that the field is determined by a linear su-
perposition of source effects. Thus the field value for a node can be calculated
by summing together the weights of influence graph edges coming into the
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function decentralized opt efficient field evaluation(I = (S,C,E,w), T, ε)
Let U = {(u1, 0), (u2, 0), . . . , (un, 0)}
Let F = {(s1, 0), (s2, 0), . . . , (sn, 0)}
Repeat:

For each ci ∈ C:
Let ∆i = {δi,−δi}
Let dFδ = {(s, δ I(ci, s)) | s ∈ S} for δ ∈ ∆i

Increment ui by arg min
δ∈∆i

||T − (F + dFδ)||

Increment F by dFδ for chosen δ
Until ||T − F || < ε
Return U

Table 6
Algorithmic description of decentralized optimization algorithm incorporating effi-
cient field evaluation.

Field node Field node

delta T delta T delta T

infl
inflinfl

error error

infl

Control

adjust

Control

adjust

delta T
error error

Fig. 23. Data flow for efficient field evaluation: adjust temperatures based on changes
in source values and influence graph information.

node, scaled by the control source values. This computation is extremely fast
and results in a drastic speed-up in computation.

Table 6 summarizes the field-evaluation algorithm, and Figure 23 illustrates
the data flow for the modified optimization algorithm. To determine the im-
pact of a different heat output, a source calculates the resulting temperature
change for each field node, based on influence graph edge weights.

The influence graph essentially pre-computes and caches the inverse of the
capacitance matrix of the field (Eq. 3). An important distinction is that it
does this in a decentralized fashion, without ever forming a global matrix
for the temperature field or the sources. This representation is particularly
efficient when sources are sparse.
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Very often

Not so often

Fig. 24. Influence structure supports reduced communication between control node
and field nodes: a control should communicate more frequently with field nodes it
strongly influences.

Field node Field node

Control

frequencyfrequency

infl
infl

infl

Control

infl

frequencyfrequency

Fig. 25. Data flow for reduced communication optimization: modulate frequency of
source-field communication by influence strength.

5.2 Reduced Communication

At each optimization step, a source must estimate the error caused by an ad-
justment to the source value, with respect to the current state of the temper-
ature field. The source can consult the entire temperature field for the current
error, and then adjust the values throughout the field when it changes, but
that requires much communication. Alternatively, it can consider only a local
region assigned to it (e.g. the region for which it was designed in Section 4),
but that ignores the influence on the other regions. Better yet, a source can
communicate more frequently with those field nodes it most strongly affects,
as shown in Figure 24. If a source only weakly affects a temperature node, we
need not assign it much blame/credit for the error at that node.

Table 7 summarizes the new field-evaluation algorithm, and Figure 25 illus-
trates the new data flow during control optimization. The frequency of source-
field communication is proportional to the amount of influence. Decreasing
frequency decreases overall communication costs, but increases the potential
for error due to underestimated source effects.

There are several possible strategies for establishing source node to field node
communication. The most basic method, used in Tab. 7, computes communi-
cation frequency as a function of the weight along the influence graph edge.
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function decentralized opt reduced communication(I = (S,C,E,w), T, ε)
Let U = {(u1, 0), (u2, 0), . . . , (un, 0)}
Let F = {(s1, 0), (s2, 0), . . . , (sn, 0)}
Let n = 0
Repeat:

For each ci ∈ C:
Let ∆i = {δi,−δi}
Let Vi = {s ∈ S | n = 0 (modα/I(ci, s))}
Let dFδ = {(s, δ I(ci, s)) | s ∈ Vi} ∪ {(s, 0) | s 6∈ Vi} for δ ∈ ∆i

Increment ui by arg min
δ∈∆i

||T − (F + dFδ)||

Increment F by dFδ for chosen δ
Increment n

Until ||T − F || < ε
Return U

Table 7
Algorithmic description of decentralized optimization algorithm incorporating
reduced-communication field evaluation.

This requires each source to communicate with each field node (some more
frequently than others). A more qualitative method forms equivalence classes
of field nodes based on influence (iso-influences) for each source, and treats the
regions equivalently with respect to communication frequency. Now communi-
cation paths only exist between sources and regions. An even more qualitative
method forms equivalence classes of field nodes based on which source has the
strongest influence, again treating regions equivalently with respect to com-
munication frequency. With this assignment, each source communicates only
with its own region and with other sources, which pass information on to their
regions.

5.3 Joint Optimization

While the decentralized optimization algorithm seeks to independently op-
timize sources, in reality there is coupling: the heat from one source affects
the temperature throughout the entire field and thus influences the actions
taken by other sources (refer again to Figures 7(b) and (c)). Independent op-
timization of coupled sources might require more iterations to converge, as the
sources make seemingly independent choices which they later find to be wrong
due to dependencies. Even worse, sources might converge to sub-optimal val-
ues, where no independent actions help, but cooperative actions would.

As a particular example of cooperative optimization, consider the “ridge prob-
lem” faced by optimization techniques. An example manifestation of the ridge
problem in the temperature control domain, illustrated in Figure 26, occurs
when independently increasing the value of one source increases the total er-
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Fig. 26. Ridge problem in control optimization: starting at x, independently increas-
ing or decreasing either control output increases the error, but jointly decreasing
control 1 and increasing control 2 decreases the error.

→

Fig. 27. Supervisor control shifts control value from one control to another.

ror and independently decreasing the value of another source also increases
the total error, but jointly increasing the one and decreasing the other de-
creases the total error. This is due to coupling between the areas influenced
by the sources: the joint modification maintains a similar temperature profile
in the overlap area and benefits other areas. By cooperatively optimizing, the
optimizer walks along the ridge in the error landscape.

Joint optimization can be programmed by incorporating supervisors into the
decentralized optimization algorithm. A supervisor is a control node whose
action is to shift control output from one control to another, as in Figure 27.
Supervisors can be placed, for example, between pairs of very close controls,
or between pairs of controls whose influence hills are highly overlapping. Since
a supervisor’s action shifts control value from one control to another, its in-
fluence is simply the influence difference between the two nodes. Figure 28
summarizes the data flow for this approach. The pseudocode is the same as
before, except that the control adjustments ∆i for a control ci supervising con-
trols cj and ck shift an amount δi of control between cj and ck, so that either
uj is incremented by δi and uk decremented by δi, or else uj is decremented
by δi and uk is incremented by δi.

Supervisors implement source cooperation and help avoid optimization ridges
by shifting heat from one source to the other based on the error profile in the
field. This approach could be extended to the addition of supervisor controls
that shift heat among groups of sources rather than between pairs. Note that a
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Fig. 28. Data flow for joint optimization: form supervisor nodes for tightly-coupled
sources; optimize supervisors, shifting heat from one source to another based on
errors in the field.

supervisor only needs to be established for a group of sources that are tightly
coupled. Further extensions could let supervisors check for cooperation less
frequently or recognize a potential need for cooperation (for example, too
much heat near one source and not enough near the other) before attempting
an expensive adjustment.

5.4 Performance

The control parameter design algorithms, when applied to several problems,
result in competitive designs and run-time performance.

For a distributed optimization problem with m sources and n field objects, the
basic algorithm requires on the order of KLmn units of computation, where
K and L are the numbers of iterations for the optimization and relaxation
processes respectively. K and L depend on properties of the problem includ-
ing the size of the field, the number of controls, the material properties, and
the geometry; in the test cases below, K is roughly between 10 and 100, while
L is roughly between 100 and 1000. Using the influence graph to eliminate
repeated relaxation, the algorithm scales as Kmn. Exploiting the communi-
cation structure, the cost is reduced to KmCn for a smaller Cn, the number
of field objects with which each source communicates, possibly independent
of n. By cooperating among the local optimizers, the number of iterations K
is further reduced.
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5.4.1 Efficient Field Evaluation

As expected, the influence graph mechanism results in enormous savings dur-
ing repeated decentralized field evaluations. For example, in our implementa-
tion, it takes about 49 seconds to iteratively solve for the temperature in a
field with about 1000 nodes, while it takes less than 0.02 seconds using the
influence graph. The speed-up would be similar for any implementation —
it illustrates the vast savings obtained by simply summing influences rather
than re-solving the linear equations each time.

5.4.2 Reduced Communication

Influence graphs significantly reduce communication during source optimiza-
tion. Table 8 summarizes results for steady-state parametric design on a regu-
lar 20x20 discretized thermal field. While the domain evaluated here is square,
similar results hold for other shapes — the important factor is the locality of
the thermal hills encapsulated in the influence graph. Data for three problems
are provided: four sources near the corners of the grid, four sources near the
center of the grid, and sixteen sources tiled over the grid. These three problems
exhibit varying thermal hill shapes and thus varying ability to reduce com-
munication. Three performance results are shown for each test: the number
of iterations for convergence, the total source-field node communication, and
the average squared error across the thermal field. Actual run-time is roughly
proportional to the number of communications.

The first two optimizers evaluated (Gauss-Newton and Broyden-Fletcher-Golfarb-
Shanno) are Matlab-based implementations of two standard multi-parameter
optimization algorithms (Simplex search optimization is not included because
it fails to converge within 300 steps on all of these tests.) Note that the Matlab
algorithms are not decentralized; in order to compare the amount of commu-
nication, each source is considered to communicate with each non-boundary
field node each iteration. The influence-based optimizers use an implementa-
tion with varying amounts of communication: Infl1 updates each field object
based on each source every iteration, while Infl2–Infl4 update field objects with
frequency proportional to influence, with different constants of proportionality.
Performance numbers are relative to Gauss-Newton (lower is better).

These results show that on representative multi-parameter optimization prob-
lems, the structure-based decentralized optimizers compete well with the cen-
tralized optimization techniques in both speed and error, while greatly reduc-
ing the amount of communication among distributed optimization processes.
Figure 29 charts the trade-off between communication and error in the four
influence-based optimizers on these problems. Naturally, error increases as
communication decreases, but there is quite a long flat area where the com-
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GN BFGS Infl1 Infl2 Infl3 Infl4

4-corner

iterations 1.0 .7368 1.105 1.0 .8947 1.0

communication 1.0 .7368 1.105 .4293 .0947 .0465

error 1.0 1.0 1.0 1.004 1.125 1.243

4-center

iterations 1.0 .7 1.2 1.05 .95 1.55

communication 1.0 .7 1.2 .8103 .2693 .2002

error 1.0 1.0 1.0 1.001 1.047 1.134

16-tiled

iterations 1.0 3.804 .6429 .875 .8214 1.339

communication 1.0 3.804 .6429 .5573 .2051 .1346

error 1.0 1.0 1.003 1.015 1.022 1.157
Table 8
Performance data for communication reduction in optimization: relative number of
iterations, number of communications, and resulting error for different optimization
methods for representative problems. GN (Gauss-Newton) and BFGS (Broyden-
Fletcher-Golfarb-Shanno) are Matlab-based centralized optimizers. Infl1–Infl4 are
influence graph-based decentralized optimizers with communication rates propor-
tional to influence, with varying constants of proportionality. Values are relative to
Gauss-Newton.

munication decreases without a serious impact on the error. In problems with
larger domains, there will be even fewer field nodes strongly influenced by
a source (depending on geometry and material properties), providing even
greater potential savings.

5.4.3 Joint Optimization

Influence graphs also support cooperative source optimization. Table 9 pro-
vides data for representative problems with tight coupling among sources due
to material properties and source spacing. The sources are placed in four
different configurations on a 20x20 grid: a pair of sources at the edge, four
sources tightly packed near a corner, eight sources in a line across the middle,
and sixteen sources tightly packed near the center. The results from the two
(centralized) Matlab optimizers are provided for reference; the first influence-
based optimizer does not cooperatively optimize, while the second one places
a supervisor between each neighboring pair of sources. BFGS fails to converge
for the 8-line test case.
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Fig. 29. Performance data indicate that influence graphs support trading optimiza-
tion quality for amount of communication. In the flat area, amount of communica-
tion is greatly reduced with little impact on error.
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Fig. 30. Performance data indicate that influence graphs support cooperative opti-
mization: Infl-coop uses supervisors for pairs of tightly-coupled sources and generally
requires fewer iterations than does the standard optimizer Infl. The centralized Mat-
lab optimizers GN (Gauss-Newton) and BFGS (Broyden-Fletcher-Golfarb-Shanno)
are provided for reference.
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GN BFGS Infl Infl-coop

pair

iterations 1.0 0.5814 3.419 1.302

error 1.0 1.0 1.0 1.0

4-packed

iterations 1.0 1.861 2.347 0.5139

error 1.0 1.0 1.0 1.0

8-line

iterations 1.0 n/a 0.8529 0.5515

error 1.0 n/a 1.007 1.003

16-packed

iterations 1.0 0.1859 0.2244 0.3750

error 1.0 1.004 1.054 1.009
Table 9
Performance data for cooperative optimization: number of iterations and resulting
error for different optimization methods for representative problems. GN (Gauss-
Newton) and BFGS (Broyden-Fletcher-Golfarb-Shanno) are Matlab-based central-
ized optimizers. Infl is the standard decentralized optimizer, while Infl-coop uses
influence graph-based joint optimization. Values are relative to Gauss-Newton.

Figure 30 illustrates the convergence rate of the different algorithms. Both
influence-based optimizers find or come very close to the optimal error, but
the use of cooperation generally results in much faster convergence. In the final
test case (16 sources tightly packed), the cooperative optimization method
takes somewhat longer. This is most likely due to the implementation of only
pairwise cooperation — the tight coupling of so many sources might benefit
from hierarchical supervision of larger groups of sources.

5.5 Discussion

Influence graphs support control parameter design by encoding structural de-
pendencies among control sources and spatial fields. This information allows
efficient evaluation of fields in terms of scaled sums of influences. It also sup-
ports trading off among computation, communication, and control quality
based on amount of influence. While the optimization algorithm was based on
a very simple decentralized updating process, its results are competitive with
several standard centralized optimization algorithms.
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Fig. 31. The influence graph mechanism support decentralized control design with
a set of generic data types and operators for partitioning probes and optimizing
parameters.

6 Conclusion

This paper has presented the influence-based model decomposition to de-
centralized control design and a case study application. The influence graph
mechanism supports decentralized control design utilizing structural descrip-
tions uncovered in physical data. The influence graph-based control design
algorithms decompose a problem domain into minimally-coupled subregions,
efficiently evaluate fields, and compare parametric design trade-offs. The al-
gorithms are efficient and yield explainable designs.

While we have concentrated on the specific application of decentralized con-
trol of a thermal field, many of these techniques generalize to other, similar
application areas. The influence graph mechanism developed in this paper pro-
vides a generic framework, illustrated in Figure 31, for decentralized control
design. Probing a field allows extraction of a structural representation (the
influence graph) of the effects of controls on the field. Control probes are clas-
sified based on similarity and atomicity measures, and the controlled regions
of the equivalence classes yield a decomposition of the original field. Actual
controls are placed based on this decomposition. Parametric optimization ad-
justs the control actions of these controls, based on their effects on the field as
encapsulated in an influence graph. This generic framework is applicable to a
variety of decentralized control design domains. The remainder of this section
discusses the conditions that make this approach successful and potentially
appropriate for other design problems.
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The control design algorithms rely on the encoding in influence graphs of phys-
ical field dependencies. Static influence graphs might not be realistic for some
physical processes; for example, when material properties vary with temper-
ature. In such cases, it might be necessary to reason with sets of influence
graphs; for example, different influence graphs for different temperature bins.

One key piece of physical knowledge leveraged by the control design algo-
rithms is that of locality. Control placement design strives for decoupling,
placing controls so that they interfere as little as possible. This allows control
parameter optimization to individually optimize the resulting controls. In ad-
dition, control parameter optimization separately considers a control’s effects
on strongly-influenced nodes and on weakly-influenced nodes. Certain prob-
lems, such as heat transfer with highly conductive materials, may not possess
strong locality; such problems are less amenable to these approaches.

Control placement design forms groups of control probes with similar effects
on the field. This technique relies on continuity of effects: nearby controls
have similar effects, unless there are particular constraints due to geometry
and material properties. The goal of the control probes is to uncover these
constraints. This requires that probes be dense enough, relative to conditions
imposed by geometry and material properties, so that groups of probes with
similar effects can be uncovered. Otherwise, each probe ends up in its own
class, and the decomposition is too dependent on probe placement.

Many physical processes (e.g. heat conduction, gravity, electrostatics, and in-
compressible fluid flow) obey linear superposition of solutions. The influence
graph-based optimization process uses this property to evaluate fields effi-
ciently, based on sums of influences. The influence graph encapsulates other
possibly nonlinear irregularities in physical fields, exposing linear dependence
on control values.

6.1 Related Work

Influence-based model decomposition uses explicit representations of physical
knowledge in order to reason about physical systems. Much research in Qual-
itative Reasoning has also studied how to apply high-level representations of
physical systems and domain knowledge in order to predict, diagnose, recon-
figure, and tutor [29–32]. Many of the results in that community have centered
around three main ontologies: the device ontology [30], which propagates qual-
itative constraints along topological connections between devices such as the
elements of a circuit; the process ontology [29], which generates possible qual-
itative temporal evolutions of processes such as fluid flow between containers,
based on specifications of interaction; and the constraint ontology [31], which
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simulates qualitative differential equations describing the evolution of a sys-
tem. High-level languages such as the Compositional Modeling Language [33]
support the specification and compilation of domain knowledge. These on-
tologies tend to deal only with a system’s topology, abstracting away its rich
spatial properties.

Some recent research has extended these approaches to utilize spatial informa-
tion. Qualitative spatial reasoning systems use abstract descriptions of shape
and topology as the basis for inferring behaviors of systems. For example, the
Region-Connection Calculus [34] represents topological relations, such as over-
laps and is-disconnected-from, while Rajagopalan’s extremal point represen-
tation [35] supports relative orientation and position descriptions. Qualitative
physical fields [36] extend Qualitative Process Theory [29] to include qual-
itative spatio-temporal processes; for example, modeling heat flow between
topologically connected sunny and shaded regions and inferring the evolution
of warm and cold regions. Recognizing that topology is often not sufficient
for complex tasks, the Metric Diagram / Place Vocabulary (MD/PV) the-
ory [37] incorporates problem-specific metric information between special enti-
ties (places) in a domain. Similarly, the Spatial Semantic Hierarchy [38,39] dis-
covers “interesting” locations in the construction of mappings between topo-
logical and metric maps for robot navigation.

Spatial simulation research in the diagrammatic reasoning community also
leverages knowledge of physical systems in order to predict behaviors over
time. WHISPER [40] represents objects in a pixel-occupancy array in order to
solve problems in a blocks world; similar models have been used to simulate
fluid flow from low-level “molecular” interactions [41]. The analogical simula-
tion framework [42] employs a multi-level symbolic/visual representation of a
system and has been used to simulate rigid body kinematic behaviors.

Our work differs from most of the above related work in that, in addition to
using structural descriptions of physical phenomena to reason about systems,
we also support automatic generation of the structural descriptions of physical
phenomena from data or simulations (“predicate extraction” in the taxonomy
of Chandrasekaran [43]).

The key idea of decomposing large models of physical systems based on some
notion of influence has also been used successfully in areas such as qualita-
tive reasoning, Bayesian nets, image processing, and molecular dynamics. For
example, in the area of parameter estimation, Williams and Millar developed
a decomposition algorithm that determines for each unknown variable in a
model a minimally overdetermined subset of constraints [44]. The algorithms
of this paper identify similar dependencies among nodes of a net either from a
constraint net or directly from numerical data, and then partition the depen-
dency graph into nearly decoupled subsets. For qualitative simulation, Clancy
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introduced an algorithm that generates an envisionment of a model expressed
as a qualitative differential equation, once a partition of the model is given
by the modeler [45]. Our influence-based decomposition algorithms can pro-
duce the model partitions required by Clancy’s algorithm. Recent work in
image segmentation has introduced measures of dissimilarity to decompose
images, based on pixel intensity differences [21,46]. In the probabilistic rea-
soning community, Friedman et al. have introduced a method to decompose
a large Bayesian belief net into weakly-interacting components by examining
the dependency structure in the net [47]. Finally, in the well-studied N-body
problem, the interactions among particles are classified into near and far field
so that they can be decomposed into a hierarchy of local interactions to achieve
a linear-time speed-up [48].

A large body of engineering literature explores methods for modeling spatially
distributed physical systems and elaborating the consequences of these models.
Since closed-form analytical solutions are often impossible, engineers typically
use techniques such as finite differences and finite elements [19] to represent
a system’s governing partial differential equations in terms of matrices on
an appropriate discretization. They then apply iterative algorithms [28] to
solve the resulting sets of equations. Advanced techniques such as domain
decomposition [4] and multigrid methods [5] achieve additional efficiency in
convergence or parallelizability of computation.

Our approach differs from these traditional techniques in a number of ways.
We provide operators and data types at a level of abstraction appropriate
for the tasks, not requiring coercion of a program into a matrix form. Our
approach builds only local models and elaborates the consequences of these
models through local interaction rules. It makes explicit where and how phys-
ical knowledge and domain-specific assumptions are being used, in order to
avoid the fragility often associated with numerical methods. In combination
with multi-layer descriptions of a system, the explicit use of physical knowl-
edge allows high-level explanation of results.

Much engineering research has also studied the design of decentralized control
actions for spatially distributed phenomena. One approach is to simplify (e.g.
linearize) the model of a system and apply traditional engineering techniques
(e.g. linear-quadratic-gaussian control or Kalman filters) to the design [49].
Another approach is to apply local control methods at the individual con-
trollers and then use hierarchical techniques to exchange information necessary
for global control [50]. Market-based methods [51] allow individual controllers
to negotiate commodities representing control parameters in order to reach a
global solution [52]. Recently, hierarchical constrained optimization has been
developed for optimally allocating actuator forces for a planar array of air-
jets given a global desired trajectory of an object being controlled [53]. The
method allocates actuation forces to groups of airjets of various spatial scales,
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according to a user specified grouping of actuators into modules, say, using
knowledge of the physical layout of the airjet table.

Design techniques for decentralized control placement have also been studied
in the engineering community. Different metrics can be used to estimate the
quality of a control design. For example, a control design can be evaluated
in terms of effectiveness for specific vibration modes [54], required control
energy [55], or error with respect to a desired control profile over a family of
expected disturbances [56]. The controller placement is then computed by com-
binatorial optimization of the metric; for example, by greedy search [57,58],
genetic algorithms [55,54,59], or simulated annealing [60].

In contrast to these parametric and structural design techniques, we seek to
use domain knowledge to automatically extract and exploit high-level struc-
tural descriptions of physical phenomena in the design process. This yields
principled methods for reasoning about designs and design trade-offs, based
on an encapsulation of deep knowledge in structures uncovered for a partic-
ular problem. This in turn supports higher-level reasoning about and expla-
nation of the design decisions. For example, the structural description is used
to automatically decouple a region into relatively independently controllable
subregions.

6.2 Future Work

Empirical evidence was provided demonstrating that the structure-based de-
sign algorithms perform at least as well as standard approaches, and also
support explicit trade-offs between criteria such as communication and con-
trol quality. However, no mathematical proofs guaranteeing properties of the
control design were presented. It would be interesting to see which control
theoretic properties of the algorithms, if any, can be stated in analytic forms.

The control placement design algorithms seek to decompose a field in order to
place controls that minimally interfere with each other. Other criteria are also
important, and could be combined with this approach. For example, if there
is exactly one desired temperature profile, its characteristics could be used to
steer control placement to locations where most heat is required.

The control parameter design algorithms deal with temperature regulation by
varying control output around some set point. The algorithms naturally extend
to timing-varying control, where the goal is to track some desired profile over
time. By discretizing controls in time as well as in space, the same properties
of locality and linearity hold, and the same trade-offs between communication
and control quality can be made. However, additional design criteria (e.g.
total error over time vs. maximum error at any point) become important.
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Furthermore, timing-varying control opens up new avenues of control design;
for example, achieving decentralized control with one moving control rather
than with a set of stationary controls.

The control design algorithms also explicitly focus on the thermal regulation
domain. Since many other systems, including electrostatics, gravity, and in-
compressible fluid flow, obey the same model, it would be interesting to study
application of the techniques developed here to those domains. Extending this
work to address wave phenomena (governed by a model different from the
diffusion equation) remains as a future research topic.

The control design algorithms only address one side of the picture: placement
and optimization of controls. Equally important is the dual problem of sensor
placement. In some cases, such as heat control with readily-available data from
an infrared camera, the sensor placement problem need not be addressed.
In other cases, however, it has a great impact on the control design. For
example, controls might have access only to data from nearby sensors, and
sensors might not even be available in some parts of the domain. One simple
approach to sensor placement is to co-locate sensors with actuators. Then
sensor information could be propagated to controls, perhaps using methods
similar to the reduced-communication optimization algorithm in order to trade
off between communication frequency and accuracy.

A more sophisticated approach to sensor placement requires reasoning about
the information available at various sensor locations; that is, what each po-
tential location reveals about the effects of the controls. A mechanism dual
to the influence graph could be defined to encode distributed representations
of information available at potential sensor locations. This mechanism could
then be utilized to place sensors so as to maximize coverage and minimize
overlap, just as with the control placement algorithm.

A related consideration is that of the effect of noise on sensors and the result-
ing control actions. Standard control techniques could be applied to smooth
data over time in order to reduce the effects of noise. However, more powerful
techniques could use influence graphs and the information graphs proposed
above in order to reason about potential error in the data. For example, out-
lying data points could be identified by building up a model of the influence
hill for a control, and noticing when a data point does not conform to the
appropriate shape. The influence graph mechanism could also be extended, in
a manner similar to the reduced communication optimization algorithm, to
reason about the effects of sensor uncertainty. That is, there is a curve trading
off error in sensor state and error in control analogous to the curve trading off
frequency of sensor state update and error in control.

Enabled by advances in microelectronics and microfabrication, a new gener-
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ation of sensor-actuator-rich systems, ranging from smart buildings to self-
diagnosing printers to airplanes steered by micro-flaps, calls for a scalable and
principled approach to the massively distributed data interpretation and con-
trol design problem. There are many challenges in programming such data
interpretation and control applications, and existing tools are not sufficient.
The Spatial Aggregation Language and influence-based model decomposition
represent a step towards the development of powerful programming environ-
ments for these tasks: they provides high-level data types and operators in a
decentralized framework, they use explicit representations of physical knowl-
edge, and they bridge local and global representations through multiple layers
of abstraction. The control design algorithms presented here also exemplify
many of the characteristics desirable for such applications: by decomposing
and decentralizing they are scalable, by reasoning in terms of spatial structures
they provide explainable design decisions, and by utilizing physical knowledge
they expose trade-offs among desirable design properties.
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