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Abstract. In this paper we present a new approach for establishing correspon-
dences between sparse image features related by an unknown non-rigid mapping
and corrupted by clutter and occlusion, such as points extracted from a pair of im-
ages containing a human figure in distinct poses. We formulate this matching task
as an energy minimization problem by defining a complex objective function of
the appearance and the spatial arrangement of the features.Optimization of this
energy is an instance of graph matching, which is in general aNP-hard problem.
We describe a novel graph matching optimization technique,which we refer to
as dual decomposition (DD), and demonstrate on a variety of examples that this
method outperforms existing graph matching algorithms. Inthe majority of our
examples DD is able to find the global minimum within a minute.The ability to
globally optimize the objective allows us to accurately learn the parameters of
our matching model from training examples. We show on several matching tasks
that our learned model yields results superior to those of state-of-the-art methods.

1 Introduction

Feature correspondence is one of the fundamental problems of computer vision and is a
key ingredient in a wide range of applications including object recognition, 3D recon-
struction, mosaicing, motion segmentation, and image morphing. Several robust algo-
rithms (see e.g. [1, 2]) exist for registration of images of static scenes and for visual cor-
respondence under rigid motion. These methods typically exploit powerful constraints
(e.g. epipolar constraints) to reduce the search space and disambiguate the correspon-
dence problem. However, such constraints do not apply in thecase of non-rigid motion
or when matching different object instances. A popular approach in these cases is to dis-
card the information about the spatial layout of features, and to find correspondences
using appearance only. For example, many object recognition methods (see e.g. [3,
4]) represent images as orderless sets of local appearance descriptors, known as bags
of features. Recent work [5] has suggested that for many correspondence problems,
learned appearance-based models perform similarly or better than state-of-the-art struc-
tural models exploiting information about spatial arrangement of features. This is pri-
marily due to the challenges posed by the optimization and training of structural models,
which often require approximate solution of NP-hard problems. In this paper we con-
trast this theory, and demonstrate that a complex structural model for image matching
can be learned and optimized successfully. We cast the visual correspondence prob-
lem as an energy minimization task by defining a complex imagematching objective
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depending on (i) feature appearance, (ii) geometric compatibility of correspondences,
and (iii) spatial coherence of matched features. Additionally, we impose a uniqueness
constraint allowing at most one match per feature. We introduce a novel algorithm to
minimize this function based on the dual decomposition approach (DD) from combi-
natorial optimization, see e.g. [6–11]. The DD method worksby maximizing a lower
bound on the energy function. The value of the lower bound canbe used to gauge the
distance from the global minimum and to decide when to stop the optimization, in the
event the global minimum cannot be found. For the majority ofour examples DD finds
the global minimum in reasonable time, and otherwise provides a solution whose cost
is very close to the optimum. In contrast, previously proposed optimization methods
such as [12, 13] often fail to compute good solutions for our energy function. Our ex-
perimental evaluation shows that the model and the algorithm presented in this paper
can be applied to a wide range of image matching problems withresults matching or
exceeding those of existing algorithms [5, 14].

1.1 Relation to Previous Work

Models for feature matching Our technique is loosely related to algorithms that find
correspondences by matching appearance descriptors undersmooth spatial transforma-
tions (see e.g. [15, 16]). However, unlike such approaches,our method does not make a
parametric assumption about the transformation relating the input images, and thus can
be used in a wider range of applications. Belongie et al. [14]inject spatial smoothness
in the match by means of an iterative technique that alternates between finding corre-
spondences using shape features, and computing a regularized transformation aligning
the matching features. The shape descriptors are recomputed in each iteration after the
warping. Since the objective is changed at each iteration, the convergence properties of
this algorithm are not clear. Our approach is most closely related to the work of Berg
et al. [17], and Leordeanu and Hebert [18], who formulate visual correspondence as
a graph matching problem by defining an objective including terms based on appear-
ance similarity as well as geometric compatibility betweenpairs of correspondences.
Our model differs from those in [17, 18] in several ways. The methods proposed in [17]
and [18] handle outliers by removing low-confidence correspondences from the ob-
tained solutions. Instead, we include in our energy an explicit occlusion cost, as for ex-
ample previously done in [19]. Thus our algorithm solves forthe outliers as part of the
optimization. We add to the objective a spatial coherence term, favoring spatial aggre-
gation of matched features, which reduces the correspondence error on our examples.
We also show that geometric penalty functions defined in local neighborhoods provide
more accurate correspondences than global geometric costs, such as those used in [17]
and [18]. Finally, we use the method of Liu et al. [20] to learnthe parameter values for
the model from examples, thus avoiding the need of manual parameter tuning.
Graph matching optimization Graph matching is a challenging optimization problem
which received considerable attention in the literature (see [21] for a comprehensive
survey of methods). Proposed techniques include the graduated assignment algorithm of
Gold and Rangarajan [22], spectral relaxation methods [18,12], COMPOSE method of
Duchi et al. [13]. Maciel and Costeira [23] reduce the problem to concave minimization
and apply the exact method in [24]. Torr [19] and Schellewaldand Schnörr [25] use
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semi-definite programming (SDP) relaxation for graph matching. Among these papers,
only [23] and [25] report obtaining optimal (or near optimal) solutions. The method in
[23] was tested only on a single example with quadratic costs. We conjecture that on
practical challenging instances this method will suffer from an exponential explosion3.
As shown in [12], the SDP relaxation approach in [25] scales quite poorly and is too
expensive for problems of reasonable size.

2 Energy function

We now describe the energy function of our matching model. Let P ′ andP ′′ be the
sets of features extracted from the two input images. We denote with A ⊆ P ′ × P ′′

the set of potential assignments between features in the twosets. We will use the terms
assignment and correspondence interchangeably to indicate elements ofA. We repre-
sent amatching configurationbetween the two point sets as a binary valued vector
x ∈ {0, 1}A. Each correspondencea ∈ A indexes an entryxa in the vectorx. A cor-
respondencea is active if xa = 1, and it is inactive otherwise. We define an energy
functionE(x) modeling our matching problem assumptions. This will allowus to for-
mulate the matching task as minimization ofE(x). In this paper we consider matching
problems where at most one active correspondence per feature is allowed. This require-
ment is known as the uniqueness constraint and it is commonlyused in correspondence
problems. In order to enforce this condition we define the constraint setM :

M = {x ∈ {0, 1}A |
∑

a∈A(p)

xa ≤ 1 ∀ p ∈ P} (1)

whereP = P ′ ∪ P ′′ is the set of features from both images, andA(p) is the set of
correspondences involving featurep. The goal is to find the configurationx ∈ M
minimizingE(x). We define our energy as a weighted sum of four energy terms:

E(x) = λappEapp(x) + λocclEoccl(x) + λgeomEgeom(x) + λcohEcoh(x) (2)

whereλapp, λoccl, λgeom, λcoh are scalar weights. We describe the energy terms below.
FunctionEapp(x) favors correspondences between features having similar appear-

ance. We define this function as a sum of unary terms:

Eapp(x) =
∑

a∈A

θapp
a xa . (3)

For an assignmenta = (p′, p′′) ∈ A, θapp
a is the distance between appearance descrip-

tors (such as Shape Context [14]) computed at pointsp′ andp′′ in the respective images.
We have used different features depending on the task at hand(see sec. 4).

3 The method in [23] first selects alinear functionE
− which is an underestimator on the original

objective functionE, i.e.E−(x) ≤ E(x) for all feasible solutionsx. It then visitsall feasible
solutionsx with E

−(x) ≤ E(x∗) whereE(x∗) is the cost of the optimal solution. For each
solution a linear program is solved.
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The termEoccl(x) imposes a penalty for unmatched features. We defineEoccl(x)
to be the fraction of unmatched features in the smallest of the two feature sets. We can
write this function as

Eoccl(x) = 1 −
1

min{|P ′| , |P ′′|}

∑

a∈A

xa (4)

by noting that
∑

a∈A xa is equal to the number of distinct matched features inP ′ and
P ′′, ∀x ∈ M . This result derives trivially from the uniqueness constraint.

The termEgeom(x) is a measure of geometric compatibility between active cor-
respondences. This term is similar to the distortion costs proposed in [17, 18]. Note,
however, that the energy terms used in these previous approaches include distortion
costs for all pairs of matched features, which results in energy functions penalizing any
deviation from a global rigid transformation. Instead, ourfunctionEgeom(x) measures
geometric compatibility of correspondences only forneighboringfeatures. We demon-
strate that this model permits more flexible mappings between the two sets of features
and yields more accurate correspondences. We use a “neighborhood system”N to spec-
ify the pairs of correspondences involved in our measure of geometric compatibility.N
consists of all correspondence pairs defined over neighboring features:

N ={〈(p′, p′′), (q′, q′′)〉 ∈ A×A | p′ ∈ Nq′ ∨ q′ ∈ Np′ ∨ p′′ ∈ Nq′′ ∨ q′′ ∈ Np′′} (5)

whereNp indicates the set ofK nearest neighbors ofp (computed in the set of feature
p), andK is a positive integer value controlling the size of the neighborhood, which
we callgeometric neighborhood size. Egeom(x) is computed over pairs of active corre-
spondences in the setN :

Egeom(x) =
∑

(a,b)∈N

θgeom
ab xaxb (6)

where:
θ

geom
ab = η(eδ2

a,b/σ2

l − 1) + (1 − η)(eα2

a,b/σ2

α − 1) (7)

δ(p′,p′′),(q′,q′′) =
|||p′ − q′|| − ||p′′ − q′′|||

||p′ − q′|| + ||p′′ − q′′||
(8)

α(p′,p′′),(q′,q′′) = arccos

(

p′ − q′

||p′ − q′||
·

p′′ − q′′

||p′′ − q′′||

)

(9)

Intuitively, θgeom
(p′,p′′),(q′,q′′) computes the geometric agreement between neighboring cor-

respondences(p′, p′′),(q′, q′′) by evaluating how well the segmentp′q′ matches the
segmentp′′q′′ in terms of both length and direction. The parameterη is a scalar value
trading off the importance of preserving distances versus preserving directions.

The termEcoh(x) favors spatial proximity of matched features. It incorporates our
prior knowledge that matched features should form spatially coherent regions within
each image, corresponding to common objects or parts in the image pair, in analogy
to coherence on a pixel grid, used for example in image segmentation. We define the
costEcoh(x) as the fraction of neighboring feature pairs with differentocclusion status
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(this can be viewed as an MRF Potts model over feature occlusion). We now show how
to write this function directly in terms of solutionx. Let NP be the set of pairs of
neighboring features in the two images:

NP = {(p, q) ∈ (P ′ × P ′) ∪ (P ′′ × P ′′) | p ∈ Nq ∨ q ∈ Np}. (10)

Then we can expressEcoh(x) as a sum of unary and pairwise terms:

Ecoh(x) =
1

|NP |

∑

(p,q)∈NP

Vp,q(x) (11)

where:
Vp,q(x) =

∑

a∈A(p)

xa +
∑

b∈A(q)

xb − 2
∑

a∈A(p),b∈A(q)

xaxb . (12)

Vp,q(x) is equal to 0 ifp, q are either both matched or both unmatched;Vp,q(x) is equal
to 1 otherwise.
Feature correspondence as graph matching The problem defined above can be
written as

min
x∈M

E(x | θ̄) =
∑

a∈A

θ̄axa +
∑

(a,b)∈N

θ̄abxaxb (13)

where the constraint setM is given by (1). This problem is often referred to asgraph
matchingin the literature [22, 5]. FeaturesP ′ andP ′′ are viewed as vertices of the two
graphs. Pairwise term̄θabxaxb with a = (p′, p′′), b = (q′, q′′) encodes compatibility
between edges(p′, q′), (p′′, q′′) of the first and second graph, respectively, while unary
term θ̄axa measures similarity between verticesp′, p′′.

We now address the question of how to optimize problem (13). Unfortunately, this
problem is NP-hard [22]. We propose to use theproblem decompositionapproach (or
dual decomposition- DD) for graph matching. Details are given in the next section.

3 Problem decomposition approach

On the high level, the idea is to decompose the original problem into several “easier”
subproblems, for which we can compute efficiently a global minimum (or obtain a good
lower bound). Combining the lower bounds for individual subproblems will then pro-
vide a lower bound for the original problem. The decomposition and the corresponding
lower bound will depend on a parameter vectorθ; we will then try to find a vectorθ
that maximizes the bound. This approach is well-known in combinatorial optimization;
sometimes it is referred to as “dual decomposition” [6]. It was applied to quadratic
pseudo-boolean functions (i.e. functions of binary variables with unary and pairwise
terms) by Chardaire and Sutter [7]. Their work is perhaps theclosest to the method in
this paper. As in [7], we use “small” subproblems for which the global minimum can
be computed exactly in reasonable time. Our choice of subproblems for graph match-
ing, however, is different from [7]. In vision the decomposition approach is probably
best known in the context of the MAP-MRF inference task. It was introduced by Wain-
wright et al. [8] who decomposed the problem into a convex combination of trees and
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proposed message passing techniques for optimizing vectorθ. These techniques do not
necessarily find the best lower bound. Schlesinger and Giginyak [9, 10] and Komodakis
et al. [11] proposed to use subgradient techniques [26, 6] for MRF optimization, which
guarantee to converge to a vectorθ giving the best possible lower bound.

3.1 Graph matching via problem decomposition

We now apply this approach to the graph matching problem given by eq. (13). We
decompose (13) into subproblems characterized by vectorsθσ, σ ∈ I with positive
weightsρσ. (These weights are chosen a priori, and may affect the speedof convergence
of the subgradient method in section 3.3.) HereI is a finite set of subproblem indexes.
We will require the vectorθ = (θσ |σ ∈ I) to be aρ-reparameterizationof the original
parameter vector̄θ [8], i.e.

∑

σ∈I

ρσθσ = θ̄ (14)

For each subproblemσ we will define a lower boundΦσ(θσ) which satisfies

Φσ(θσ) ≤ min
x∈M

E(x | θσ) (15)

It is easy to see that the function

Φ(θ) =
∑

σ∈I

ρσΦσ(θσ) (16)

is a lower bound on the original function. Indeed, ifx
∗ is an optimal solution of (13)

then from (14)-(16) we get

Φ(θ) ≤
∑

σ∈I

ρσ min
x∈M

E(x | θσ) ≤
∑

σ∈I

ρσE(x∗ | θσ) = E(x∗ | θ̄)

In section 3.2 we will describe the subproblems that we use. For each subproblem
σ we will do the following: (1) define constraints on vectorθσ; (2) define the function
Φσ(θσ); (3) specify an algorithm for computingΦσ(θσ). In section 3.3 we will discuss
how to maximize the lower boundΦ(θ) using the subproblem solutions and, finally,
how to obtain solutionx ∈ M for our original problem.

3.2 Graph matching subproblems

Linear subproblem In our first subproblem, which we denote by the index “L”, we
require all pairwise terms to be zero:θL

ab = 0 for (a, b) ∈ N . In such case prob-
lem (13) can be solved exactly in polynomial time, for example using the Hungarian
algorithm [27]. (This is often known as thelinear assignment problem.) We define
ΦL(θL) = minx∈M E(x | θL). To compute this minimum, we converted the problem
to an instance of a minimum cost circulation with unit capacities and ran the succes-
sive shortest path algorithm [27]. This solves the problem usingO(|P | + |A|) Dijkstra
shortest path computations in graphs with|P | + 1 nodes andO(|P | + |A|) edges.
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Maxflow subproblem In the second subproblem, which we denote by the index “M ”,
we do not put any restrictions on the vectorθM . To get a lower bound, we ignore
the uniqueness constraint

∑

a∈A(p) xa ≤ 1 and leave only the discreteness constraint:

xa ∈ {0, 1}. If the functionE(x | θM ) is submodular (i.e. coefficientsθM
ab are non-

positive for all pairwise terms(a, b) ∈ N ), then we can compute a global minimum
using a maxflow algorithm. With arbitraryθM

ab the problem becomes NP-hard [28]. We
use theroof duality relaxation [29] to get a lower boundΦM (θM ) on the problem. It
can be defined as the optimal value of the following linear program:

ΦM (θM ) = min
∑

a∈A

θM
a xa +

∑

(a,b)∈N

θM
abxab (17)

subject to

{

0 ≤ xa ≤ 1 ∀ a ∈ A

xab ≤ xa, xab ≤ xb, xab ≥ xa + xb − 1, xab ≥ 0 ∀ (a, b) ∈ N

This relaxation can be solved in polynomial time by computing a maximum flow in a
graph with2(|A| + 1) nodes andO(|A| + |N |) edges [28].
Local subproblems For our last set of subproblems we use an exhaustive search to
compute the global minimum (see [30] for details). Thus, we need to make sure that
subproblems are sufficiently small. We use the following technique. For each point
p ∈ P we chooseNd

p ⊆ P to be the set ofKd nearest points in the same image where
Kd is a small constant, e.g. 2 or 3. (The superscriptd stands for “decomposition”.) We
then consider the subproblem which involves only assignments in the setA(Nd

p ) =

{(p′, p′′) ∈ A | p′ ∈ Nd
p ∨ p′′ ∈ Nd

p } and the edges between those assignments.
More precisely, we require vectorθp corresponding to this subproblem to satisfy the
following constraints: (i)θp

a = 0 if a /∈ A(Nd
p ), and (ii) θp

ab = 0 if a /∈ A(Nd
p ) or

b /∈ A(Nd
p ). These constraints imply that we can fix assignmentsa ∈ A − A(Nd

p ) to
0 when computing the minimumminx∈M E(x | θp). Then we get a graph matching
problem where the set of points in one of the images isNd

p .

3.3 Algorithm summary and properties of decomposition

Lower bound optimization In the previous section we described constraints on vector
θ and a lower boundΦ(θ) consisting of|P | + 2 subproblems. It can be seenΦ is a
concave function ofθ. Furthermore, the constraints onθ yield a convex setΩ. This
set is defined by the reparameterization equation (14) and constraints on individual
subproblemsθσ ∈ Ωσ given by equalitiesθσ

i = 0, where indexi here may denote either
an assignment (i = a) or an edge (i = (a, b)). Let Ii ⊆ I be the subsets of subproblem
indexes for whichθσ

i is not constrained to be 0. Thus, assignmenta ∈ A is involved in
subproblemsσ ∈ Ia, and edge(a, b) ∈ N is involved in subproblemsσ ∈ Iab. Similar
to [7, 9–11], we used a projected subgradient method [26, 6] for maximizingΦ(θ) over
Ω. One iteration is given byθ := PΩ(θ + λg) wherePΩ is the operator that projects a
vector toΩ, g is a subgradient ofΦ(θ) andλ > 0 is a step size.
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Projection To project vectorθ to Ω, we first compute vector̂θ =
∑

σ ρσθσ and then
updateθ as follows:θσ

i := 0 for σ ∈ I − Ii, and

θσ
i := θσ

i + ρσ
θ̄i − θ̂i

∑

σ′∈Ii
ρ2

σ′

∀σ ∈ Ii

Subgradient computation A subgradient of functionΦ(θ) is given byg =
∑

σ∈I ρσg
σ

whereg
σ is a subgradient of functionΦσ(θσ). If the latter function is the global min-

imum of E(x | θσ) (which is the case forσ ∈ I − {M}) then we can takegσ
a = xσ

a ,
gσ

ab = xσ
axσ

b wherex
σ is a global minimizer ofE(x | θσ). For the maxflow subprob-

lem a subgradient can be computed asg
M = x

M wherex
M is an optimal solution

of linear program (17). The method in [31] produces a half-integer optimal solution
wherexM

a ∈ {0, 0.5, 1} for all assignmentsa andxM
ab is determined as follows: if

(xM
a , xM

b ) 6= (0.5, 0.5) thenxM
ab = xM

a xM
b , otherwisexM

ab = 0 if θM
ab ≤ 0 (i.e. the

corresponding term is submodular) andxM
ab = 0.5 if θM

ab > 0.
Solution computation To conclude the description of the method, we need to specify
how to obtain solutionx ∈ M . We compute the solution in each iteration as follows:
starting with labelingx = 0, we go through local subproblemsσ ∈ I − {L, M}
and assignmentsa involved in σ (in a fixed order), setxa = 1 if xσ

a = 1 and this
operation preserves the uniqueness constraint onx. (Herex

σ denotes a global minimum
of subproblemσ.) We maintain the solution with the smallest energy computed so far,
and output it as a result of the method.

Further implementation details, e.g. the choice of the stepsizeλ, are given in [30].
Properties of decomposition It is not necessary to use all subproblems described in
section 3.2. The only requirement is that each assignmenta ∈ A and edge(a, b) ∈ N
must be covered by at least one subproblem. In [30] we discusshow the choice of
subproblems affects the optimal bound achievable with the decomposition method. Due
to lack of space, here we give only a summary: (i) the linear subproblem is not essential
with our choice of local subproblems; (ii) the maxflow subproblem is not essential if
K ≤ Kd; (iii) our lower bound is the same as or tighter than the boundof the roof
duality approach [28] applied to an equivalentquadratic pseudo-boolean optimization
formulation of problem (13).

4 Experimental results

In most of our experiments we learned problem-specific parameters of our energy model
from ground truth correspondences. We applied Nonlinear Inverse Optimization [20]
(NIO) to learn non-negative parameters{λapp, λoccl, λgeom, λcoh, η, σ2

l , σ2
α}. We used

DD within NIO to optimize the learning objective (see [30] for details). The learning
procedure was initialized using default parameters corresponding to uniform values for
the weights{λapp, λoccl, λgeom, λcoh}, η = 0.5, and variance valuesσ2

l = 0.5, σ2
α = 0.9.

In our experiments we compare the following algorithms:
DD We usedKd = min{K, 4}, whereK is the geometric neighborhood size. Moti-
vated by results in sec. 3.3, we did not use the linear subproblem. We setρσ = 1 for all
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other subproblemsσ. We used a maximum of 10000 iterations, and stopped earlier if
the gap between the lower bound and the cost became smaller than10−6.
FUSION This technique was introduced in [32] for MRF optimization with multi-
ple labels. We propose to use it for graph matching as follows. First, we generate 256
solutions by applying one pass of coordinate descent (ICM) to zero labeling using ran-
dom orders. (Different orders of visiting assignments usually yield different solutions.)
We then “fuse” together pairs of solutions using the binary tree structure until a single
solution remains. Fusion of solutionsx′, x

′′ is defined as follows. First, we fix all as-
signmentsa ∈ A for whichx

′ andx
′′ agree, i.e.x′

a = x′′

a . Then we convert the obtained
graph matching problem to a quadratic pseudo-boolean optimization problem (see [30]
for conversion details). Finally, we run the QPBO-PI method[33] starting either with
labelingx

′ if E(x′ | θ̄) < E(x′′ | θ̄) or with x
′′ otherwise. The produced solutionx is

guaranteed to have the same or smaller cost than the costs ofx
′ andx

′′.
BP We converted graph matching to a quadratic pseudoboolean optimization problem
and ran max-product belief propagation algorithm4. We also tested applying the roof
duality approach instead of BP, but results were quite discouraging (see details in [30]).
SMAC We ran the spectral relaxation method of Cour et al. [12], using the graduated
assignment algorithm [22] for discretization. Since SMAC imposes affine constraints on
the solution, we applied this algorithm only to datasets without outliers, where the one-
to-one affine constraint is satisfied. In principle, SMAC could handle outliers by the
introduction of dummy nodes. However, this would increase the number of variables
and potentially make the problem harder to solve.
COMPOSE We reimplemented the algorithm in [13]. The problem was castas assign-
ing a label from the setA(p′) ∪ {“occlusion′′} to each pointp′ ∈ P ′. Min-marginals
for the linear subnetwork were computed viaO(|A| + |P ′|) calls to the Dijkstra algo-
rithm. As in [13], we used Residual Belief Propagation (RPB)[34] with damping=0.3
for computing pseudo min-marginals for the “smoothness” subnetwork containing pair-
wise termsθabxaxb. However, in our experiments messages did not converge, so we set
an additional termination criterion for RBP: we stop it after passing20|N |messages. As
in [13], we computed the configuration by looking at individual messages at each node.
We did not use damping for the outer loop since otherwise the produced configurations
usually did not satisfy the uniqueness constraint.
HUNG As in [5], we also tested the Hungarian algorithm using an energy consist-
ing only of linear terms. On problems with occlusions, we used our occlusion cost in
addition to the appearance energy term, i.e.EHUNG(x) = λappEapp(x) + λocclEoccl(x).

4.1 Comparative results

Hotel sequence: wide baseline matching.We first demonstrate our approach on the
CMU ’hotel’ sequence5. We used as features the same manual labeling of 30 landmark
points employed in [5]. Since these points are visible in allframes and the motion is
rigid, this matching problem is relatively simple. We include this dataset in our experi-
ments as it was used in [5] to compare the performance of graphmatching methods. We

4 We used the code from http://www.adastral.ucl.ac.uk/˜ vladkolm/papers/TRW-S.html
5 Available at: http://vasc.ri.cmu.edu/idb/html/motion/hotel/index.html.



10 Lorenzo Torresani, Vladimir Kolmogorov, and Carsten Rother

(a)
0

5

10

15

11.81%

15.97%

4.51%

0.06%

13.05%

0.19%

HUNG SMACCOMPOSE BP FUSION DD

m
is

m
at

ch
 %

(b)
0

20

40

60

80

100

43.81%

83.81%

98.10%

20.95%

100.00%

SMACCOMPOSE BP FUSION DD

gl
ob

al
 m

in
im

um
 a

tta
in

ed
 (

%
)

(c)
0.25 0.5 1 2 3 4 5 10 20 30 60 240

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

E
ne

rg
y 

va
lu

e

Time (sec)
 

 

SMAC
COMPOSE
BP
FUSION
DD
DD lower bound

Fig. 1. Results on the Hotel sequence (|P ′| = |P ′′| = 30, |A| = 900). (a) Mismatch
percentages of HUNG and different optimizations applied toour energy model. (b)
Frequency of convergence to global minimum. (c) Energy minimization versus time.

reproduce the experimental setup described in [5] using a subset of 105 frame pairs and
adopting distances between Shape Context descriptors as unary terms. However, we re-
place the pairwise terms proposed in [5], with our geometricenergy functionEgeom(x),
usingK = 2. Due to the absence of outliers, we removeEcoh(x) from our energy
and use a large constant value forλoccl. We set the remaining parameters to default
values, as defined above. We setA = P ′ × P ′′. Figure 1(a) shows the matching error
obtained by optimizing this model with different methods. We include in the plot also
the performance of HUNG. Here BP and DD perform dramaticallybetter than the other
methods, with errors approaching 0%. Note that the error of our system is over 50 times
smaller than the errors reported in [5]. On this dataset DD found always the global
minimum within a minute (see Figure 1(b)). Figure 1(c) illustrates performance versus
runtime on one image pair (frame 1 and 64). In this plot we indicate convergence to a
global minimum with a green circle. BP does well on this sequence, nearly matching the
minimization performance of DD, at a reduced cost. We also implemented the energy
function described in [5]. This model uses Delaunay triangulation to define the graph
topology in each image, and employs binary edge compatibility values in{0,1}. DD
provided the best performance with this model, with a 5.7% error. This suggests that
both our model and our optimization contribute to the improvement over the results
reported in [5] where the best system had a matching error above 10%.

Matching MNIST digits. Here we describe experiments on images of handwritten
digits from the MNIST dataset [35]. For training, we randomly sampled from this
dataset one image pair for each of the 10 digits. We repeated the same procedure to
generate a test set of 10 pairs of same digits. From each pair we extracted point sets
P ′ andP ′′ by uniformly sampling 100 points along the Canny edges of each image,
using the procedure described in [14]. We defined the unary potentialsθapp

(p′,p′′) to be
the Euclidean distances between Shape Context descriptorscomputed at pointsp′, p′′.
We formed the set of candidate assignmentsA ∈ P ′ × P ′′ by selecting the 5 most
similar features, in terms of Shape Context distance, for each pointp ∈ P . We col-
lected ground truth correspondences in the set(P ′ × P ′′) for each of the 20 image
pairs. The parameters of our model were learned from the 10 training image pairs with
NIO. Figure 2(a) shows that the matching accuracy on the testset critically depends on
the ability to globally optimize the energies during the model learning stage. The left
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Fig. 2. Experimental results on MNIST digits (|P ′| = |P ′′| = 100, |A| = 695, on
average). (a) Correlation between learning accuracy and matching performance: the
left plot shows the frequency of global minimum convergenceduring learning versus
K; the right plot shows mismatch error on test set. (b) Normalized energy values. (c)
Optimization performance versus runtime. (d) Mismatch error comparison between dif-
ferent optimization methods using our energy model. (e) Mismatch error using different
energy models.

plot reports the frequency of convergence to a global minimum during learning, plotted
as a function ofK, the geometric neighborhood size. The second plot shows thetest
set matching error of DD with learned versus default parameters. Matching error here
is measured as percentage of incorrect correspondences (asdefined in [30]). We can
see that the matching is much more accurate when using the parameters for which DD
reached more frequently global optimality during learning. Interestingly, although the
frequency of global minimum convergence increases slightly when varyingK from 2
to 4, the matching error remains roughly the same. This suggests that geometric penalty
terms defined over small neighborhoods are sufficient to spatially regularize the corre-
spondences. Thus, models involving geometric costs definedover all pairs of matched
features, such as those used in [17, 18], may be unnecessarily restrictive for many ap-
plications, in addition to being more difficult to optimize.

Given these results, we have used the model learned withK = 3 for the MNIST ex-
periments described below. Figure 2(b) shows the normalized energy values obtained by
different optimization methods on the test set. For each family of results we performed
anadditivenormalization so that for each image pair the energy of the best method be-
comes a fixed number. On 9 out of the 10 test image pairs, DD reaches global optimality,
and provides the minimum energy value on all examples. FUSION, BP, and COMPOSE
find the global minimum only on 2 images. FUSION finds solutions with energy values
very close to those obtained by DD. COMPOSE and BP provide considerably higher
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(a) (b)

Fig. 3. Estimating human motion (|P ′| = 118, |P ′′| = 172, |A| = 1128 on average).
Correspondences computed with (a) the Hungarian method and(b) DD. Correct corre-
spondences are shown in blue, missed assignments in green, and mismatches in red.

energy values on some of the examples. Figure 2(c) shows minimization performance
as a function of time, evaluated on a sample image pair. Figure 2(d) shows the cor-
respondence accuracy obtained by optimizing our energy with the different methods.
Again, we find that DD and FUSION yield the best accuracy. We also evaluated vari-
ations of the energy model defined in Equation (2) obtained byusing only the linear
tearms (HUNG), by dropping the spatial coherence term, and by forcing all points to be
matched (implemented by fixingλoccl to a large value). The parameters of these mod-
ified models were learned again with NIO, using DD for both training and testing. We
see from Figure 2(e) that both the spatial coherence prior, as well as the occlusion cost,
improve the matching accuracy. On these instances the simple appearance-based model
used by HUNG gives poor accuracy. We also report the matchingerror given by the
model and optimization method of Belongie et al., which was applied to MNIST digit
examples in [14]. Our approach performs better than this state-of-the-art method.

Estimating long range non-rigid motion. In this subsection we describe results on
the task of estimating large-disparity motion. For this experiment we used four (time-
separated) video frames of a child jumping. We matched each image to every other
image, for a total of six matches. The motion between any pairof these pictures is very
large and highly non-rigid. There is self-occlusion created by the motion of arms and
torso, and occlusion due to a tricycle positioned between the child and the camera. Fea-
ture points were extracted by running the Harris corner detector on each image. We used
Euclidean distances of geometric blur descriptors [17] computed at each feature point,
both for selecting assignments inA (by choosing the five most similar features for each
pointp ∈ P ) as well as for calculating the unary terms of our energy. We learned the pa-
rameters in our model by applying the NIO algorithm to groundtruth correspondences
of two image pairs from a separate sequence containing the same child walking. Here
we report results usingK = 6. Figure 3 shows two matching examples from this exper-
iment and correspondences found with HUNG and DD. Note the ability of our system
to cope well with occlusion and multiple motions. DD converged to a global minimum
on all the image pairs in this experiment (see Figure 4(a,b)). Figure 4(c) reports the
correspondence errors (including mismatches as well as missed assignments).

Additional results and experiments on another dataset are given in [30].
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Fig. 4. Experiments on human motion frames. (a) Frequency of convergence to global
minimum. (b) Normalized energy values. (c) Correspondenceerror.

5 Conclusions

We have introduced novel models and optimization algorithms for feature correspon-
dence. We believe to be the first to demonstrate graph matching techniques capable of
reaching global optimality on various real-world image matching problems. As a future
work, we plan to replace exhaustive search for local subproblems with a branch-and-
bound method, as in [7]. We hope that this may speed up substantially the DD method.
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