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Abstract. In this paper we present a new approach for establishing@gpon-
dences between sparse image features related by an unkoowigid mapping
and corrupted by clutter and occlusion, such as points@seiidrom a pair of im-
ages containing a human figure in distinct poses. We formtités matching task
as an energy minimization problem by defining a complex dhjedunction of
the appearance and the spatial arrangement of the fea@pémization of this
energy is an instance of graph matching, which is in genekd-dnard problem.
We describe a novel graph matching optimization technigdch we refer to
as dual decomposition (DD), and demonstrate on a varietyahples that this
method outperforms existing graph matching algorithmsh&majority of our
examples DD is able to find the global minimum within a mindtke ability to
globally optimize the objective allows us to accuratelyrtethe parameters of
our matching model from training examples. We show on séweatching tasks
that our learned model yields results superior to thoseadé sif-the-art methods.

1 Introduction

Feature correspondence is one of the fundamental problecosputer vision and is a
key ingredient in a wide range of applications includingembjrecognition, 3D recon-
struction, mosaicing, motion segmentation, and image hiogp Several robust algo-
rithms (see e.qg. [1, 2]) exist for registration of imagestafis scenes and for visual cor-
respondence under rigid motion. These methods typicafyoepowerful constraints
(e.g. epipolar constraints) to reduce the search spaceisahbiguate the correspon-
dence problem. However, such constraints do not apply iedBe of non-rigid motion
or when matching different object instances. A popular epph in these cases is to dis-
card the information about the spatial layout of featuresl, ®@ find correspondences
using appearance only. For example, many object recognitiethods (see e.g. [3,
4]) represent images as orderless sets of local appearasceptors, known as bags
of features. Recent work [5] has suggested that for manyespandence problems,
learned appearance-based models perform similarly cartiftn state-of-the-art struc-
tural models exploiting information about spatial arramgat of features. This is pri-
marily due to the challenges posed by the optimization aaiditrg of structural models,
which often require approximate solution of NP-hard praiseln this paper we con-
trast this theory, and demonstrate that a complex struatuwdel for image matching
can be learned and optimized successfully. We cast theluvisugespondence prob-
lem as an energy minimization task by defining a complex immag&hing objective
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depending on (i) feature appearance, (ii) geometric coitipigt of correspondences,
and (iii) spatial coherence of matched features. Addifignaie impose a uniqueness
constraint allowing at most one match per feature. We intcech novel algorithm to
minimize this function based on the dual decomposition eaghn (DD) from combi-
natorial optimization, see e.g. [6-11]. The DD method wdrksnaximizing a lower
bound on the energy function. The value of the lower boundbsansed to gauge the
distance from the global minimum and to decide when to stepiftimization, in the
event the global minimum cannot be found. For the majoritguafexamples DD finds
the global minimum in reasonable time, and otherwise prewvia solution whose cost
is very close to the optimum. In contrast, previously praubsptimization methods
such as [12, 13] often fail to compute good solutions for mergy function. Our ex-
perimental evaluation shows that the model and the algorihresented in this paper
can be applied to a wide range of image matching problemsneghlts matching or
exceeding those of existing algorithms [5, 14].

1.1 Relation to Previous Work

Models for feature matching Our technique is loosely related to algorithms that find
correspondences by matching appearance descriptorssmdeth spatial transforma-
tions (see e.g. [15, 16]). However, unlike such approaahesnethod does not make a
parametric assumption about the transformation relatiegrtput images, and thus can
be used in a wider range of applications. Belongie et al. [djéft spatial smoothness
in the match by means of an iterative technique that altesnla¢tween finding corre-
spondences using shape features, and computing a regdlén@nsformation aligning
the matching features. The shape descriptors are recocthjpueach iteration after the
warping. Since the objective is changed at each iteratim¢onvergence properties of
this algorithm are not clear. Our approach is most closdbted to the work of Berg
et al. [17], and Leordeanu and Hebert [18], who formulatei@icorrespondence as
a graph matching problem by defining an objective includemgs based on appear-
ance similarity as well as geometric compatibility betweairs of correspondences.
Our model differs from those in [17, 18] in several ways. Thetmods proposed in [17]
and [18] handle outliers by removing low-confidence coroesfences from the ob-
tained solutions. Instead, we include in our energy an ecclusion cost, as for ex-
ample previously done in [19]. Thus our algorithm solvestfer outliers as part of the
optimization. We add to the objective a spatial coherenagr,tavoring spatial aggre-
gation of matched features, which reduces the correspaedamnor on our examples.
We also show that geometric penalty functions defined inlloeghborhoods provide
more accurate correspondences than global geometric sastsas those used in [17]
and [18]. Finally, we use the method of Liu et al. [20] to letlva parameter values for
the model from examples, thus avoiding the need of manuahpeter tuning.

Graph matching optimization Graph matching is a challenging optimization problem
which received considerable attention in the literatuee (1] for a comprehensive
survey of methods). Proposed techniques include the gredlaasignment algorithm of
Gold and Rangarajan [22], spectral relaxation methodsl2B8 COMPOSE method of
Duchi et al. [13]. Maciel and Costeira [23] reduce the prabte concave minimization
and apply the exact method in [24]. Torr [19] and Schellevwadd Schnorr [25] use
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semi-definite programming (SDP) relaxation for graph miatighAmong these papers,
only [23] and [25] report obtaining optimal (or near optinsblutions. The method in
[23] was tested only on a single example with quadratic ca8ts conjecture that on
practical challenging instances this method will suffeinfran exponential explosién
As shown in [12], the SDP relaxation approach in [25] scal@gecpoorly and is too
expensive for problems of reasonable size.

2 Energy function

We now describe the energy function of our matching modef.2’eand P be the
sets of features extracted from the two input images. Wetgenith A C P’ x P”

the set of potential assignments between features in thedtgo We will use the terms
assignment and correspondence interchangeably to irdétatnents ofA. We repre-
sent amatching configuratiobetween the two point sets as a binary valued vector
x € {0,1}4. Each correspondeneec A indexes an entry,, in the vectorz. A cor-
respondence is active ifz, = 1, and it is inactive otherwise. We define an energy
function E(x) modeling our matching problem assumptions. This will allesvto for-
mulate the matching task as minimizationfofx). In this paper we consider matching
problems where at most one active correspondence perégataifowed. This require-
ment is known as the uniqueness constraint and it is comnuselgt in correspondence
problems. In order to enforce this condition we define thestraimt set)/:

M={zec{0,1}*] Y w.<1 VpeP} (1)
a€A(p)

whereP = P’ U P” is the set of features from both images, ati@) is the set of
correspondences involving featupe The goal is to find the configuration € M
minimizing E(x). We define our energy as a weighted sum of four energy terms:

E(:B) _ )\appEapp(w) + )\OCClEOCd((B) + )\geomEgeom(m) + )\cohEcoh(w) (2)

where)aPP, \occl \geom \coh gre scalar weights. We describe the energy terms below.
Function E?PP(x) favors correspondences between features having simijsaap
ance. We define this function as a sum of unary terms:

E*P(z) = ) 03P, . (3)

a€A

For an assignment = (p/, p") € A, 05°Pis the distance between appearance descrip-
tors (such as Shape Context [14]) computed at ppirasdp” in the respective images.
We have used different features depending on the task at(seadec. 4).

% The method in [23] first selectdiaear function £~ which is an underestimator on the original
objective functionZ, i.e. E~ (x) < E(x) for all feasible solutions:. It then visitsall feasible
solutionsz with £~ () < E(x™) whereE(x™) is the cost of the optimal solution. For each
solution a linear program is solved.
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The termE°°C!(z) imposes a penalty for unmatched features. We défiffé!(x)
to be the fraction of unmatched features in the smallest@flo feature sets. We can
write this function as

occ _ 1
E l(:c)—l—mzxa (4)

a€cA

by noting thaty _ ,_ , =, is equal to the number of distinct matched featuregirand
P”,Vx € M. This result derives trivially from the uniqueness coristra

The termE9°x) is a measure of geometric compatibility between active cor-
respondences. This term is similar to the distortion costpgsed in [17,18]. Note,
however, that the energy terms used in these previous agmeanclude distortion
costs for all pairs of matched features, which results inggntinctions penalizing any
deviation from a global rigid transformation. Instead, éunction E9°™x) measures
geometric compatibility of correspondences onlyrieighboringfeatures. We demon-
strate that this model permits more flexible mappings betvike two sets of features
and yields more accurate correspondences. We use a “nefgidzbsystem’lV to spec-
ify the pairs of correspondences involved in our measureoftetric compatibility N
consists of all correspondence pairs defined over neighpéeatures:

N={{(',0"),(d,q")) € AXA|p' € Ny V¢ € Ny V p" € NyvV ¢" € Ny} (5)

whereN,, indicates the set ok nearest neighbors @f(computed in the set of feature
p), and K is a positive integer value controlling the size of the nbeigihood, which
we callgeometric neighborhood siz&9°™(x) is computed over pairs of active corre-
spondences in the sat:

E9%°"(z) = Z Hggomxaxb (6)
(a,b)eN
where: . .
0% = (el — 1) + (1 — p)(e%er/7a = 1) (7)
P —d'l = [Ip" —4"]l|
5 e 1oy — (8)
®.p"),(a",qa") o —=dl =+ =7
»—q ' —q"
O 0y) 1! 1 411y = arccos . (9)
) (IIp’—q’II ||p"—q~||)
Intuitively, 9?;02) (¢ COMPUtes the geometric agreement between neighboring cor-

respondence§’, p”),(¢', ¢") by evaluating how well the segmept;’ matches the
segmenp’”q” in terms of both length and direction. The parametés a scalar value
trading off the importance of preserving distances versasgyving directions.

The termE°°(x) favors spatial proximity of matched features. It incorgesaour
prior knowledge that matched features should form spgt@iherent regions within
each image, corresponding to common objects or parts imthge pair, in analogy
to coherence on a pixel grid, used for example in image setatien. We define the
costEN(x) as the fraction of neighboring feature pairs with differeatlusion status
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(this can be viewed as an MRF Potts model over feature occlusive now show how
to write this function directly in terms of solutiom. Let Np be the set of pairs of
neighboring features in the two images:

Np={(p,q) € (P" x P'Y)U(P" x P")|p€ N,V q€N,}. (10)

Then we can expreds®"(z) as a sum of unary and pairwise terms:

ECOh Z ‘/p (11)
(P,q JENPp
where:
Z Tq + Z Ty — 2 Z Talyp - (12)
acA(p) beA(q) a€A(p),beA(q)

Vp.q() is equal to O ifp, ¢ are either both matched or both unmatchég, () is equal
to 1 otherwise.
Feature correspondence as graph matching The problem defined above can be
written as
s%leww > barat Y Oapram (13)

acA (a,b)eN

where the constraint sét/ is given by (1). This problem is often referred togrsph
matchingin the literature [22, 5]. Featurd® andP” are viewed as vertices of the two
graphs. Pairwise ter,,z,z, with a = (p’,p”), b = (¢, ¢") encodes compatibility
between edge@’, ¢'), (p”, ¢"’) of the first and second graph, respectively, while unary
terméf,z, measures similarity between vertigésp” .

We now address the question of how to optimize problem (18joktunately, this
problem is NP-hard [22]. We propose to use fieblem decompositioapproach (or
dual decompositionDD) for graph matching. Details are given in the next settio

3 Problem decomposition approach

On the high level, the idea is to decompose the original gmlihto several “easier”
subproblems, for which we can compute efficiently a globaimum (or obtain a good
lower bound). Combining the lower bounds for individual grdblems will then pro-
vide a lower bound for the original problem. The decompositind the corresponding
lower bound will depend on a parameter vedipme will then try to find a vectod
that maximizes the bound. This approach is well-known inloioitorial optimization;
sometimes it is referred to as “dual decomposition” [6]. Hsaapplied to quadratic
pseudo-boolean functions (i.e. functions of binary vddatwith unary and pairwise
terms) by Chardaire and Sutter [7]. Their work is perhapsctbsest to the method in
this paper. As in [7], we use “small” subproblems for whick tfiobal minimum can
be computed exactly in reasonable time. Our choice of sutmus for graph match-
ing, however, is different from [7]. In vision the decompasn approach is probably
best known in the context of the MAP-MRF inference task. Iswdroduced by Wain-
wright et al. [8] who decomposed the problem into a convexluoation of trees and
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proposed message passing techniques for optimizing v@cldrese techniques do not
necessarily find the best lower bound. Schlesinger and #gif®, 10] and Komodakis
et al. [11] proposed to use subgradient techniques [26 yOJIfRF optimization, which
guarantee to converge to a vecfogiving the best possible lower bound.

3.1 Graph matching via problem decomposition

We now apply this approach to the graph matching problemngbse eq. (13). We
decompose (13) into subproblems characterized by veéfors € I with positive
weightsp, . (These weights are chosen a priori, and may affect the sfestvergence
of the subgradient method in section 3.3.) Héiis a finite set of subproblem indexes.
We will require the vecto® = (0° | o € I) to be ap-reparameterizatioof the original
parameter vectdt [8], i.e.

Y peb7 =0 (14)

oel

For each subproblem we will define a lower bound,, (67) which satisfies

@,(60%) < min E(a|0) (15)

It is easy to see that the function

B(0) =D pePs(67) (16)

oel

is a lower bound on the original function. Indeedgif is an optimal solution of (13)
then from (14)-(16) we get

P(0) <> po min B |6°) <D poB(z" [ 07) = E(a" |6)
oel oel

In section 3.2 we will describe the subproblems that we useekch subproblem
o we will do the following: (1) define constraints on vectst, (2) define the function
d,(07); (3) specify an algorithm for computing, (67). In section 3.3 we will discuss
how to maximize the lower bound(0) using the subproblem solutions and, finally,
how to obtain solutior: € M for our original problem.

3.2 Graph matching subproblems

Linear subproblem In our first subproblem, which we denote by the indéX,“we
require all pairwise terms to be zer@f, = 0 for (a,b) € N. In such case prob-
lem (13) can be solved exactly in polynomial time, for exaenpsing the Hungarian
algorithm [27]. (This is often known as tHaear assignment problemWe define
&1 (07) = minge s E(x | 7). To compute this minimum, we converted the problem
to an instance of a minimum cost circulation with unit capiasiand ran the succes-
sive shortest path algorithm [27]. This solves the problemgaiO(|P| + | A|) Dijkstra
shortest path computations in graphs Wit + 1 nodes and(|P| + | A|) edges.
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Maxflow subproblem In the second subproblem, which we denote by the indéX,*
we do not put any restrictions on the vect¥. To get a lower bound, we ignore
the uniqueness constraipi, . 4, z. < 1 and leave only the discreteness constraint:

z, € {0,1}. If the function E(z | 6) is submodular (i.e. coefficients!! are non-
positive for all pairwise termsa,b) € N), then we can compute a global minimum
using a maxflow algorithm. With arbitras/ the problem becomes NP-hard [28]. We
use theroof duality relaxation [29] to get a lower boun#l,, (1) on the problem. It
can be defined as the optimal value of the following lineagpam:

Gpr(0M) =min Y0z + Y 0N aa (17)
acA (a,b)eN

. {0 <z, <1 Vae A

subject to

Tap < Tay, Tab < Th, Tap > Ta+Tp— 1, xep >0 V(a,b) €N
This relaxation can be solved in polynomial time by compgignmaximum flow in a
graph with2(|A| + 1) nodes and(|A| + |N|) edges [28].
Local subproblems For our last set of subproblems we use an exhaustive search to
compute the global minimum (see [30] for details). Thus, wedto make sure that
subproblems are sufficiently small. We use the followinghteégque. For each point
p € Pwe choosei\f;f C P to be the set of(? nearest points in the same image where
K%is a small constant, e.g. 2 or 3. (The supersetigtands for “decomposition”.) We
then consider the subproblem which involves only assigrisignthe setA(N;f) =
{p/,p") € A|p € N;f v p' e N;j"} and the edges between those assignments.
More precisely, we require vectdP corresponding to this subproblem to satisfy the
following constraints: (i = 0 if a ¢ A(N{), and (ii) 67, = 0if a ¢ A(N]) or
b ¢ A(Ny). These constraints imply that we can fix assignments A — A(Nf) to
0 when computing the minimumiingca; E(x | 67). Then we get a graph matching
problem where the set of points in one of the imagds';fs

3.3 Algorithm summary and properties of decomposition

Lower bound optimization In the previous section we described constraints on vector
6 and a lower bound(8) consisting of| P| + 2 subproblems. It can be seénis a
concave function oB. Furthermore, the constraints éhyield a convex sef?. This
set is defined by the reparameterization equation (14) andticnts on individual
subproblemg” € (2, given by equalitiegy = 0, where index here may denote either
an assignment (= a) or an edgeid= (a,b)). LetI; C I be the subsets of subproblem
indexes for whicl¥ is not constrained to be 0. Thus, assignmem A is involved in
subproblems € I, and edg€a, b) € N is involved in subproblems € I,;,. Similar

to [7,9-11], we used a projected subgradient method [2@&rGhaximizing®(6) over
2. One iteration is given by := P, (0 + \g) wherePq, is the operator that projects a
vector tof?, g is a subgradient ab(#) and\ > 0 is a step size.
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Projection To project vecto® to {2, we first compute vectdt = >, P07 and then
updated as follows:¢? := 0 foro € I — I;, and

EU’EH pg’

Subgradient computation A subgradient of functio®(0) is givenbyg = > __; pog”
whereg? is a subgradient of functio@, (67). If the latter function is the global min-
imum of E(x | %) (which is the case fos € I — {M}) then we can takg? = 27,
97, = xJx7 wherex? is a global minimizer ofE(x | 7). For the maxflow subprob-
lem a subgradient can be computedgdé = 2™ wherex™ is an optimal solution
of linear program (17). The method in [31] produces a haiéger optimal solution
wherez? € {0,0.5,1} for all assignments andz?/ is determined as follows: if
(M M) # (0.5,0.5) thenz = zMaM, otherwiser = 0if 627 < 0 (i.e. the

corresponding term is submodular) amf = 0.5 if 627 > 0.

Solution computation To conclude the description of the method, we need to specify
how to obtain solutiore € M. We compute the solution in each iteration as follows:
starting with labelingz = 0, we go through local subproblenass € I — {L, M}

and assignments involved ino (in a fixed order), set, = 1if 27 = 1 and this
operation preserves the uniqueness constraimt gHerex denotes a global minimum

of subproblemy.) We maintain the solution with the smallest energy comghstefar,

and output it as a result of the method.

Further implementation details, e.g. the choice of the siep)\, are given in [30].
Properties of decomposition It is not necessary to use all subproblems described in
section 3.2. The only requirement is that each assignmentd and edg€a, b) € N
must be covered by at least one subproblem. In [30] we discagsthe choice of
subproblems affects the optimal bound achievable with @e@ohposition method. Due
to lack of space, here we give only a summary: (i) the linebpsoblem is not essential
with our choice of local subproblems; (ii) the maxflow subgem is not essential if
K < K% (iii) our lower bound is the same as or tighter than the boahthe roof
duality approach [28] applied to an equivalepiadratic pseudo-boolean optimization
formulation of problem (13).

07 =07 + p, Vo el

4 Experimental results

In most of our experiments we learned problem-specific patara of our energy model
from ground truth correspondences. We applied Nonlineagrse Optimization [20]
(NIO) to learn non-negative parametgiaPP, \o¢cl \geom \coh 52 521 We used
DD within NIO to optimize the learning objective (see [30] fbetails). The learning
procedure was initialized using default parameters cpmeging to uniform values for
the weights{ \aPP, \occl \geom o, ) — (.5, and variance valueg® = 0.5, 02 = 0.9.

In our experiments we compare the following algorithms:
DD We usedk? = min{K, 4}, whereK is the geometric neighborhood size. Moti-
vated by results in sec. 3.3, we did not use the linear sulgmolWe sep, = 1 for all
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other subproblems. We used a maximum of 10000 iterations, and stopped edflier i
the gap between the lower bound and the cost became smalter(th®.

FUSION This technique was introduced in [32] for MRF optimizatioittwmulti-
ple labels. We propose to use it for graph matching as foll&ust, we generate 256
solutions by applying one pass of coordinate descent (I@\gto labeling using ran-
dom orders. (Different orders of visiting assignments ligyéeld different solutions.)
We then “fuse” together pairs of solutions using the binaeg tstructure until a single
solution remains. Fusion of solutions, =" is defined as follows. First, we fix all as-
signments € A forwhicha’ andz’ agree, i.ex], = «!/. Then we convert the obtained
graph matching problem to a quadratic pseudo-boolean @gatiion problem (see [30]
for conversion details). Finally, we run the QPBO-PI metlid8] starting either with
labelingz’ if E(x'|6) < E(x” | ) or with " otherwise. The produced solutianis
guaranteed to have the same or smaller cost than the castantiz”.

BP We converted graph matching to a quadratic pseudobooldanipation problem
and ran max-product belief propagation algorithi/e also tested applying the roof
duality approach instead of BP, but results were quite disaging (see details in [30]).
SMAC We ran the spectral relaxation method of Cour et al. [12haighe graduated
assignment algorithm [22] for discretization. Since SMA@pDses affine constraints on
the solution, we applied this algorithm only to dataset&wiitt outliers, where the one-
to-one affine constraint is satisfied. In principle, SMAC Icbandle outliers by the
introduction of dummy nodes. However, this would incredse iumber of variables
and potentially make the problem harder to solve.

COMPOSE We reimplemented the algorithm in [13]. The problem was aastssign-
ing a label from the setl(p’) U {“occlusion’’} to each poinp’ € P’. Min-marginals
for the linear subnetwork were computed 4| A| + | P’|) calls to the Dijkstra algo-
rithm. As in [13], we used Residual Belief Propagation (RPB)] with damping=0.3
for computing pseudo min-marginals for the “smoothnesbhatwork containing pair-
wise termd),,x,x,. HOwever, in our experiments messages did not convergee setv
an additional termination criterion for RBP: we stop it aftassin20| N| messages. As
in [13], we computed the configuration by looking at indivédmessages at each node.
We did not use damping for the outer loop since otherwise tbdyred configurations
usually did not satisfy the uniqueness constraint.

HUNG As in [5], we also tested the Hungarian algorithm using arrggneonsist-
ing only of linear terms. On problems with occlusions, wedusar occlusion cost in
addition to the appearance energy term,EBYNG (2) = \3PPEaPP(g;) 4 \O¢Cl ocel(gz),

4.1 Comparative results

Hotel sequence: wide baseline matching.We first demonstrate our approach on the
CMU ’hotel’ sequenceg We used as features the same manual labeling of 30 landmark
points employed in [5]. Since these points are visible infralines and the motion is
rigid, this matching problem is relatively simple. We indtuthis dataset in our experi-
ments as it was used in [5] to compare the performance of gregpthing methods. We

4 We used the code from http://www.adastral.ucl.ac.uk/tkdéém/papers/TRW-S.html
5 Available at: http://vasc.ri.cmu.edu/idb/html/motibotel/index.html.
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Fig. 1. Results on the Hotel sequend®{] = |P"”| = 30, |A| = 900). (a) Mismatch
percentages of HUNG and different optimizations appliedto energy model. (b)
Frequency of convergence to global minimum. (c) Energy mination versus time.

reproduce the experimental setup described in [5] usindpsetwof 105 frame pairs and
adopting distances between Shape Context descriptoraagtenms. However, we re-
place the pairwise terms proposed in [5], with our geometmiergy functionz9¢°™ z),
using K = 2. Due to the absence of outliers, we remdv®"(z) from our energy
and use a large constant value ff°. We set the remaining parameters to default
values, as defined above. We set= P’ x P”. Figure 1(a) shows the matching error
obtained by optimizing this model with different methodse Wclude in the plot also
the performance of HUNG. Here BP and DD perform dramatidadfyer than the other
methods, with errors approaching 0%. Note that the errouo§gstem is over 50 times
smaller than the errors reported in [5]. On this dataset Dinébalways the global
minimum within a minute (see Figure 1(b)). Figure 1(c) ithases performance versus
runtime on one image pair (frame 1 and 64). In this plot wedat# convergence to a
global minimum with a green circle. BP does well on this semeenearly matching the
minimization performance of DD, at a reduced cost. We alggiémented the energy
function described in [5]. This model uses Delaunay tridagon to define the graph
topology in each image, and employs binary edge compayibiiilues in{0,1}. DD
provided the best performance with this model, with a 5.786reilhis suggests that
both our model and our optimization contribute to the imgment over the results
reported in [5] where the best system had a matching erroreab@%.

Matching MNIST digits. Here we describe experiments on images of handwritten
digits from the MNIST dataset [35]. For training, we randgnsbmpled from this
dataset one image pair for each of the 10 digits. We repehtedame procedure to
generate a test set of 10 pairs of same digits. From each jpagxtvacted point sets
P’ and P” by uniformly sampling 100 points along the Canny edges oheamage,
using the procedure described in [14]. We defined the unalqrﬂals@?}fffp,,) to be
the Euclidean distances between Shape Context descrguonsuted at pointg’, p”.
We formed the set of candidate assignmefits P’ x P” by selecting the 5 most
similar features, in terms of Shape Context distance, fohgmintp € P. We col-
lected ground truth correspondences in the($&tx P”) for each of the 20 image
pairs. The parameters of our model were learned from thealfirig image pairs with
NIO. Figure 2(a) shows that the matching accuracy on thestgstritically depends on
the ability to globally optimize the energies during the rabléarning stage. The left
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Fig. 2. Experimental results on MNIST digits®’| = |P”| = 100, |A| = 695, on

average). (a) Correlation between learning accuracy artdhimg performance: the
left plot shows the frequency of global minimum convergedogng learning versus
K; the right plot shows mismatch error on test set. (b) Norpeal energy values. (c)
Optimization performance versus runtime. (d) Mismatcbreromparison between dif-
ferent optimization methods using our energy model. (eyhdih error using different
energy models.

plot reports the frequency of convergence to a global mininduring learning, plotted
as a function ofi’, the geometric neighborhood size. The second plot showtette
set matching error of DD with learned versus default paramseMatching error here
is measured as percentage of incorrect correspondencdsfiasd in [30]). We can
see that the matching is much more accurate when using thenpéars for which DD
reached more frequently global optimality during learnilmgerestingly, although the
frequency of global minimum convergence increases slighitien varyingK from 2
to 4, the matching error remains roughly the same. This sigdfeat geometric penalty
terms defined over small neighborhoods are sufficient taadjyategularize the corre-
spondences. Thus, models involving geometric costs defimedall pairs of matched
features, such as those used in [17, 18], may be unnecgssatilictive for many ap-
plications, in addition to being more difficult to optimize.

Given these results, we have used the model learnedAivith3 for the MNIST ex-
periments described below. Figure 2(b) shows the nornténergy values obtained by
different optimization methods on the test set. For eachilyaohresults we performed
anadditivenormalization so that for each image pair the energy of tis¢ inethod be-
comes a fixed number. On 9 out of the 10 test image pairs, Dhesagiobal optimality,
and provides the minimum energy value on all examples. FBSEP, and COMPOSE
find the global minimum only on 2 images. FUSION finds solusiavith energy values
very close to those obtained by DD. COMPOSE and BP providsiderably higher
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Fig. 3. Estimating human motion ®’| = 118,|P”| = 172,|A| = 1128 on average).
Correspondences computed with (a) the Hungarian metho¢bamD. Correct corre-
spondences are shown in blue, missed assignments in grekmismatches in red.

energy values on some of the examples. Figure 2(c) showsniziation performance
as a function of time, evaluated on a sample image pair. Eigd) shows the cor-
respondence accuracy obtained by optimizing our enerdy thé different methods.
Again, we find that DD and FUSION yield the best accuracy. Ve avaluated vari-
ations of the energy model defined in Equation (2) obtainedgigg only the linear
tearms (HUNG), by dropping the spatial coherence term, gridrging all points to be
matched (implemented by fixing”°® to a large value). The parameters of these mod-
ified models were learned again with NIO, using DD for botlinireg and testing. We
see from Figure 2(e) that both the spatial coherence psaxedl as the occlusion cost,
improve the matching accuracy. On these instances thesmpplearance-based model
used by HUNG gives poor accuracy. We also report the matahiray given by the
model and optimization method of Belongie et al., which wagli@d to MNIST digit
examples in [14]. Our approach performs better than thie-sththe-art method.

Estimating long range non-rigid motion. In this subsection we describe results on
the task of estimating large-disparity motion. For thisemment we used four (time-
separated) video frames of a child jumping. We matched eaelye to every other
image, for a total of six matches. The motion between anyqfdhese pictures is very
large and highly non-rigid. There is self-occlusion creabg the motion of arms and
torso, and occlusion due to a tricycle positioned betweertttild and the camera. Fea-
ture points were extracted by running the Harris corneralet®n each image. We used
Euclidean distances of geometric blur descriptors [17]moted at each feature point,
both for selecting assignmentsin(by choosing the five most similar features for each
pointp € P) as well as for calculating the unary terms of our energy.&¥eried the pa-
rameters in our model by applying the NIO algorithm to grotnuth correspondences
of two image pairs from a separate sequence containing the shild walking. Here
we report results usinff’ = 6. Figure 3 shows two matching examples from this exper-
iment and correspondences found with HUNG and DD. Note thilgyabf our system

to cope well with occlusion and multiple motions. DD convetdo a global minimum
on all the image pairs in this experiment (see Figure 4(afijure 4(c) reports the
correspondence errors (including mismatches as well asechisssignments).

Additional results and experiments on another datasetieea gn [30].
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5 Conclusions

We have introduced novel models and optimization algoritfion feature correspon-
dence. We believe to be the first to demonstrate graph mattbalhniques capable of
reaching global optimality on various real-world image om@tg problems. As a future
work, we plan to replace exhaustive search for local subdpnob with a branch-and-
bound method, as in [7]. We hope that this may speed up sulzdhathe DD method.
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