
Learning Query-dependent Prefilters for Scalable Image Retrieval

Lorenzo Torresani
Dartmouth College
Hanover, NH, USA

lorenzo@cs.dartmouth.edu

Martin Szummer
Microsoft Research

Cambridge, UK
szummer@microsoft.com

Andrew Fitzgibbon
Microsoft Research

Cambridge, UK
awf@microsoft.com

Abstract

We describe an algorithm for similar-image search which
is designed to be efficient for extremely large collections of
images. For each query, a small response set is selected by
a fast prefilter, after which a more accurate ranker may be
applied to each image in the response set. We consider a
class of prefilters comprising disjunctions of conjunctions
(“ORs of ANDs”) of Boolean features. AND filters can be
implemented efficiently using skipped inverted files, a key
component of web-scale text search engines. These struc-
tures permit search in time proportional to the response set
size. The prefilters are learned from training examples, and
refined at query time to produce an approximately bounded
response set.

We cast prefiltering as an optimization problem: for
each test query, select the OR-of-AND filter which maximizes
training-set recall for an adjustable bound on response set
size. This may be efficiently implemented by selecting from
a large pool of candidate conjunctions of Boolean features
using a linear program relaxation. Tests on object class
recognition show that this relatively simple filter is neverthe-
less powerful enough to capture some semantic information.

1. Introduction
The application domain of this paper is in content-based

image retrieval. In operation, a query image is presented to
the system; images from a (possibly very large) database
are retrieved and ranked according to similarity to the query;
and presented to the user in rank order. We are interested in
retrieval using high-level notions of similarity, in particular
object class similarity, rather than object instance similarity.
Ideally, we want the similarity to work not only on a specific
set of classes, thus we consider a general same class/different
class setting.

To make such queries efficient against large databases,
it is common to use some form of fast prefiltering on the
database before applying a more expensive analysis or rank-

ing step. In order to define terminology, let us briefly outline
the structure of a typical image search system:

A dictionary of visual words is defined, which maps im-
age regions to integers in the range 1..W . Values ofW in the
literature range from 103 to 106. Image i is represented by
several (possibly overlapping) regions r ∈ Ri, whose cen-
ters and sizes (parameters θr) are defined either by evenly
sampling, randomly sampling, or running an interest-point
operator. Each region is mapped to a word wr using the dic-
tionary. Thus each image is associated to a multiset of words
Wi = {wr | r ∈ Ri}. Denote by ni = #Wi the number
of words inWi. The words are aggregated in the word his-
togram hi ∈ NW , where hi := [hi1, ..., hiW] = [hiw]Ww=1

and hiw := #{wr | wr = w, r ∈ Ri}. The parameters θr
are typically also remembered and used for ranking after
prefiltering, but shall be ignored in this paper, where each
image is assumed to be represented by its histogram alone.

At query time, a new image q is presented, and the task
is to retrieve images similar to q from the database. This
is divided into two stages. The first stage is the prefilter:
selecting images using a fast index structure such that the
selected images have histograms likely to be similar to hq.
We call this set of images the response set.

In a second stage, ranking, the images in the response set
are processed in greater detail, for example by applying more
sophisticated ranking schemes to the returned histograms,
or returning to the image for more comprehensive analysis.
This stage will generally require computation linear in the
size of the response set, and it is clear that if this computation
is expensive per image, then limiting the size of the response
set is the key to a tractable implementation.

We design with scalability to web-size collections of bil-
lions of images in mind. Thus, the prefiltering stage must
be fast (its computational cost should ideally be strongly
sublinear in the database size); and it should have bounded
response (it should return at most a certain proportion of
the database). The algorithm we shall describe has cost
proportional to the size of the response set, so the bounded
response property also controls the computational cost. The
primary design variable throughout the paper is the bound

“photograph” “boolean” “chihuahua” response
1 0 0 46,300,000
0 1 0 10,200,000
1 1 0 161,000
0 0 1 7,870,000
1 1 1 881

Table 1. Efficiency of AND queries (text search example). Num-
ber of documents returned by live.com text search for ANDs of
terms, each of which is common. Although each term is common,
skip pointers in the index allow the conjunctions to be recovered
very efficiently: essentially the first 1000 for each can be generated
in constant time. By formulating visual queries as ORs of ANDs,
we can gain the same efficiency in similar-image search.

on response ratio, τ . For a database of 1 billion images,
one might set τ = .01%, and then process the 105 returned
images for each query using a fast linear ranker such as
tf-idf [17].

Our approach uses co-occurrences of visual words for
retrieval. In contrast to previous work, however, we observe
that the co-occurrences may be defined at query time, not
at index time, providing that the database is implemented
using skipped inverted files [15, 12]. For each word, the
inverted file lists the images in which the word appears
(possibly with a certain count). The images that contain
a cooccurrence of several words can be found by merging
the individual lists. The merging is very efficient since skip
pointers have been inserted into each inverted list, giving
fast access to the location of an image in the list. The key is
that even for words which are individually very common, the
AND of several such words will often be rare, and retrieval
time is proportional to the number of results, not to the fre-
quency of occurrence of the individual words. Table 1 shows
a text-based example: search for the words “photograph”
and “boolean” returns 46M and 10M responses respectively.
Searching for documents in which they co-occur, however,
returns just 161K documents, with an estimated time to re-
turn those documents of under 1 second. Adding another
term, “chihuahua”, further reduces the response set size, de-
spite each term being common on its own. The upshot is that
we can use AND queries in order to reduce response set size.
In order to retrieve examples similar to the query image, we
shall define ORs of AND queries to maximize recall while
constraining the response set to be small.

In the following sections, we discuss previous approaches,
and then define the problem of learning a “same-different”
classifier for each new query, subject to the bounded response
constraint. The main technical contributions of our work are:

1. To cast the prefiltering problem as an explicit search
for filters which retrieve small response sets with high recall.

2. Learning the prefilters in a hypothesis class matched to
what search engines support efficiently, namely OR of AND
queries.

3. Learning the prefilters at query time, so building an
efficient prefilter for each individual query image.

2. Related work
Our key measure in reviewing existing work is the re-

sponse ratio–the average proportion of the database retrieved
in the response set—which we denote by ρ.

Most existing schemes reduce ρ by making the dictionary
size W large, so that individual words are less frequent, re-
ducing the chance of a random overlap with an irrelevant
image. Either the original quantization is generated using a
large W , or a new vocabulary of metawords (“phrases” [21],
“configurations” [20, 19], “min-hashes” [1, 2], “triplets” [23])
is defined. We shall assume that any such translation has
already been performed, so that W becomes the size of the
metaword dictionary. In each case, prefiltering is performed
by taking the list of nq (meta)words in the query image, and
running a search on the database to find images containing
any of the words. This is an nq-way OR query, and, imple-
mented using inverted files, will take time proportional to the
sum of response sizes of the individual words. For large W ,
the response ratio for each word will be low on average,1 but
the response set size over all words may still be very large.

The simplest form of this strategy is to quantize local
descriptors to W = 106, and then retrieve all images with
at least one word in common with the query. However, as
Chum et al. report [1] in one application, about 43% of the
database will be returned for a typical query (ρ = 43%),
and we have found similar numbers in other scenarios. For
lower vocabulary sizes (e.g. W < 100, 000), the response
is typically 100% of the database. This is despite the very
large vocabulary, which, as figure 1 indicates, is too finely
quantized for object class recognition. On the other hand, a
useful property of this approach is that with little extra cost,
tf-idf ranking can be performed on the response set [17, 18],
so it is useful as an intermediate phase between prefiltering
and more complex ranking.

A second approach is to mine a training set for frequently
occurring word tuples, for example using “frequent itemset
mining” [21], or by spatial selection of word tuples [20,
10, 23], or combinations of the two [22]. Such approaches
have two main difficulties. First, if the new metawords (i.e.
the tuples) are indeed very frequent, the response ratio will
be too high for prefiltering. This is normally corrected by
eliminating “too common” metawords from consideration,
at least at the prefiltering stage. An alternative is to look
for discriminative metawords [19], however this has so far
been applied only for class recognition of predefined classes,
not to general “same/different” classification. A second

1Note that the shape of the word frequency histogram will not in general
follow Zipf’s law. For example, it will be flat if clustering was used to form
the vocabulary, but may be closer to exponential if word cooccurrences are
used to form metawords.

http://www.live.com/

80 85 90 95 100
0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

0.021

W = 100

W = 200

W = 500

W = 1000

W = 2000

W = 5000

W = 10000

W = 50000

filter set size (DB %)

M
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

Figure 1. Performance of tf-idf ranker on an object categoriza-
tion benchmark. Precision versus response set size obtained by
varying the vocabulary size in a tf-idf ranker. The prefilter, based
on single-word overlap, retrieves more than 80% of the database
even at a vocabulary size of 50,000, at which point precision has
begun to drop.

difficulty is that many more metawords may occur in a given
image, increasing the chance of a single item overlap, and
hence response set size.

An elegant extension of this concept is the min-hash sys-
tem of Chum et al. [1, 2]. There, similarity between a pair of
images i, j is defined by the weighted histogram intersection

sim(d; i, j) :=
d>min(hi,hj)
d>max(hi,hj)

. (1)

for a predefined weight vector d, and where min and max
operate elementwise on vectors. The prefilter cleverly de-
rived from this measure computes k hash values (or “sketch
hashes”) on the histograms of each image, and selects
database images which match the query on at least one
hash. The hash values may be thought of as being drawn
from a very large vocabulary (of size W 2 or W 3), so the
filter may again be treated as a single-word-overlap system.
This technique produces the smallest response sets so far re-
ported: for near-duplicate detection (k = 64), the response is
ρ = 0.005% of the dataset, and for object instance detection
(k = 64 to k = 2680), the ratio is between ρ = 0.7% and
ρ = 4%. As we show in this paper, this measure also pro-
vides advantages even as a measure of object class similarity,
but with lower precision than our proposal.

A different approach is taken by Grauman et al. [5],
where the histograms are not binned, but are represented
by M locality-sensitive hash projections, where M is ap-
proximately the square root of the database size. In [5], M
sorted lists of projection values are maintained, so that an ap-
proximate minimum of |hq−hi| over all i can be found. Jain
et al. [7] extend this representation to compute a learned dis-
tance metric (hq−hi)>A(hq−hi), which can be optimized

with the same efficiency, and thus their problem statement
is very close to ours. However, the memory requirement
grows as O(N

√
N), as

√
N sorted lists are required for the

hash search. In contrast, the number of words stored per
image is independent of database size, particularly for small
vocabularies such as those used by min-hash.

3. Boolean “same or different” classifiers
The essence of the prefilter is that it decides which im-

ages in the database are the “same” as the query. For object
instance recognition and near-duplicate detection, the def-
inition of same versus different can be hand-engineered a
priori based on histogram overlap and geometric consis-
tency [1, 18]. For object class similarity, however, a train-
ing set of “same” and “different” training pairs is required.
There is a considerable literature on distance metric learning,
with [4] providing useful pointers into the literature. As our
primary goal is efficiency, the “same/different” classifiers we
consider must be constrained to be efficiently implementable
on very large datasets. As illustrated above, and described
in more detail in §3.3, classifiers which are ORs of ANDs of
indexed words are efficient, so we consider prefilters of this
form.

The fundamental building block of our queries will be
a decision stump of the form “word w occurs more than t
times”. We also include “fewer than” stumps, which are
treated exactly analogously, so the description below covers
only the “more than” case. We denote a generic stump
by Cs(h), whose parameters are a word index ws and a
threshold ts. More formally Cs is a binary function of a
histogram h = [h1, ..., hW] defined by

Cs(h) = C(ws, ts; h) := (hws
> ts). (2)

A stump classifies images i and j as “similar” if it is true for
both, i.e.

Cs(i, j) := Cs(hi) ∧ Cs(hj). (3)

We now define a “phrase” using a set of stumps S, which
applies to a histogram h by taking the AND of the stumps:

PS(h) :=
∧
s∈S

Cs(hi). (4)

A phrase marks two images as similar if it is present in both:

PS(i, j) := PS(hi) ∧ PS(hj). (5)

Finally, a complete classifier is defined as an OR of ANDs
of stumps. The classifier is specified by a set Σ of sets of
stumps as follows

QΣ(hi,hj) :=
∨
S∈Σ

PS(hi,hj) (6)

=
∨
S∈Σ

∧
s∈S

Cs(hi,hj). (7)

This is an instance of at least two forms of classifier: decision
forests [16] and set covering machines [13], and could be
trained using standard methods. However such methods do
not ensure bounded response, which is a key requirement of
our prefilters. Let us assume, nevertheless, that such a classi-
fier has been trained (our training procedure is described in
§3.2) yielding a phrase pool Σ, and see how it can be used
to bootstrap a bounded-response per-query classifier.

3.1. Tuning and bounding a classifier at query time

The key idea is that although the global classifier using
the whole phrase pool Σ does not have bounded response, the
phrases which define it are constructed so that each includes
at most τC training examples, where τC is a small fraction
of the response bound τ . By selecting a subset of the phrases
in Σ on a per-query basis, we can control the size of the
response set (as estimated on the training set) for that query.

We need a large training set of images to accurately mea-
sure the response ratio. In our work the set of images for
which labels are provided is a very small subset of the entire
training collection.

The training set comprises N images for which we com-
pute visual word histograms {h1, ...,hN}. The more images
we have, the more accurately we can estimate the response
ratio. For a very small subset of these images, we addition-
ally need labels indicating which pairs of images are similar.
We represent the similarity labels as a set of M positive
pair indices M = {(im, jm)}Mm=1, where (i, j) ∈ M iff
images i and j are similar. For a new query image q, let the
active set of phrases be the subset Aq present in the query
image, namely Aq = {S ∈ Σ | PS(hq)}, which will be
denoted {P1, ..., PK} in the following. Then the evaluation
of QΣ(hq,hi) for any image i reduces to

QΣ(hq,hi) =
K∨
k=1

Pk(hi). (8)

The goal is to choose a subset B of Aq such that the
restricted classifier defined by B has good performance on
the training set, subject to a maximum response of τ on the
training set. If the training set statistics are similar to the
database statistics, this low response will apply once the
query is issued against the database, and the response ratio
will be close to the target. A subset B is represented by a
binary indicator vector b ∈ {0, 1}K . The training set can be
represented as anN×K binary matrix F where the presence
of a phrase k in image i is indicated by Fik = Pk(hi). The
positive pairs are denoted by an M × K matrix T, with
Tmk = Pk(him) ∧ Pk(hjm), i.e. Tmk is 1 when phrase k
occurs in both images of pair m. The objective is then to
choose b to maximize the number of true positives among

the pairs:

M∑
m=1

H
[(K∑
k=1

Tmk · bk
)
≥ 1
]
, (9)

subject to the response constraint

N∑
i=1

K∑
k=1

Fik · bk < τ. (10)

In the above, H is 1 when the inequality is satisfied and 0
otherwise; a pair is retrieved when at least one of the phrases
in the pool Σ is selected by b, since we are taking an OR
the phrases. Note that the response constraint restricts the
total postings list length of the response, i.e. the sum of the
per-phrase response set sizes, so is a stricter constraint than
the original, as discussed further below.

The above constraints may be expressed as a 0-1 integer
program by introducing slack variables in the form of binary
vector ξ ∈ {0, 1}M , yielding the problem

min
b,ξ

1>ξ subject to Tb ≥ 1− ξ (11)

1>Fb < τ.

We evaluated several approaches to solving this program:
various SAT solvers, an LP relaxation of the objective, and
a greedy method analogous to the fitting algorithm for the
Set Covering Machine [13]. The greedy algorithm yields the
best results in practice, and its compute time is typically a
second for a training set with O(100K) images, so is our
current method of choice.

Given b, and hence the phrase subset B ⊂ Aq ⊂ Σ, the
final query-specific filter applied to the database is∨

S∈B
PS(h). (12)

This filter is expressed as an OR of ANDs. The response set
defined by this classifier is retrieved and passed to the ranker.

3.2. Generating the phrase pool Σ

Selection of the phrase pool Σ is performed in an offline
training process, analogous to bounding the response of a
classifier at query time. We have used the same training sets
for both, although offline sets could be larger since process-
ing time is not constrained. Some preliminary observations
are that each phrase S defines an axis-aligned box in his-
togram space, and that Σ defines a union of such boxes,
which we refer to as the positive region.

The goal is to choose a set of phrases Σ which maximizes
the number of true positives in the positive region:

TP =
∑

(i,j)∈M

QΣ(hi,hj). (13)

10
−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

filter set size (database log%)

re
c
a

ll
%

Our system

Our system (training on unrelated classes)

[Chum et al., 2008]

Inverted file filtering

a 10
−2

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

filter set size (database log%)

re
c
a

ll
(%

)
@

 1
0

0
0

b

Figure 2. Recall as a function of response ratio. (a) Proportion of positives in the response set. (b) Proportion of positives at 1000 after
tf-idf ranking. Our prefilter provides 5 times as many positives to the ranker than the only competitive system.

subject to an upper bound on the sizes of the individual boxes∑
i

PS(hi) < τC ∀S ∈ Σ. (14)

Such an objective does not directly prevent overfitting, be-
cause placing the smallest possible boxes around each posi-
tive pair would maximize the objective. This is avoided be-
cause of an implicit regularization in the training algorithm
we now describe. We experimented with several algorithms
for phrase selection, and describe one—a variant of “bump
hunting” [3]—which has proved effective in practice.

The algorithm takes one parameter—the phrase length L,
and returns a set of phrases Σ, with the following properties:
all positive pairs are recalled (∀(i,j)∈MQΣ(hi,hj) = 1);
each phrase satisfies (14); and the sizes of the boxes are in
some sense “large”.

Starting with Σ = �, each positive pair (i, j) ∈ M is
considered in turn, and those for which QΣ(hi,hj) is not
already true will generate a phrase to add to Σ.

For such an example (i, j), the phrase is built from a se-
ries of stumps in L iterations, adding one stump per iteration.
Let P r−1(h) be the partial phrase at iteration r, to which
will be added a stump. For each word in the dictionary, a
candidate stump of the form hw > t is chosen as the smallest
t (i.e. largest box) for which the current cumulative response
ratio 1

N

∑N
i=1 P

r−1(hi) ∧ (hiw > t) is below τ
r/L
C . Thus

the response constraint is progressively tightened until the
final iteration, when it becomes equal to τC . From the ≈W
candidate stumps thus defined, the one which yields largest
recall when added to P r−1(h) is selected.

3.3. Performance considerations

Our vocabulary sizes are very small (W = 100 for one
test), so some of these words occur very frequently in the

index. However the response bound ensures that these will
be selected only as part of rare conjunctions, so skipped
inverted files will still be efficient.

The stump filters may be implemented using inverted
files by generating metawords for each used stump filter.
Our examples use about 20K stumps (100 words with 255
possible threshold values), so this is the effective vocabulary
size. Some of these metawords will be very common, for
example “bin w > 1” for any w, but again will be selected
only as part of conjunctions that are rare.

If more stumps were needed, or the thresholds were to
be chosen at runtime, one would generate metawords of the
form “2pr < bin w ≤ 2p+1r” for appropriate values of r
and p. Then a query of the form “binw > t” can be executed
in time O(log2 t) for any t.

4. Experiments

Caltech256. We tested our system on the Caltech256 [6]
dataset, which contains labeled images of 256 object cat-
egories. The system is evaluated on the task of retrieving
images of the same category as the query image. We split the
Caltech256 dataset into three distinct sets of images: query,
training, and database images. The queries were drawn from
a subset of 20 arbitrarily chosen categories, by randomly
selecting 25 images from each of these categories. The train-
ing set was formed by randomly choosing 15 images from
each of the 256 categories, thus yielding M = 15·14

2 × 256
positive pairs. The images not belonging to the query or
training set were used as database images to measure the
retrieval performance of the system. Bag-of-words features
were obtained by computing SIFT descriptors [11] at interest
points detected with the Hessian-Affine detector [14]. SIFT
descriptors were quantized into visual words with the vocab-

3.5 4 4.5 5 5.5 6 6.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

posting length (database %)

a
0 10 20 30 40 50

0

0.02

0.04

0.06

0.08

0.1

0.12

posting length (database %)

b

Figure 3. Distribution of postings list length. Test set histograms
of postings list length: (a) ours for τ = 5%; (b) min-hash (using
settings yielding average response set size roughly equal to 5%).
The PLL is the cost of actually running the prefilter, the cost of
running tf-idf on the output, and is the quantity that is bounded on
the training set in (10). The fact that it is also close to the bound
on the test set is felicitous.

ularies described in [9], which were computed by running
the k-means clustering method on a large dataset of Flickr
images. The tf-idf weights for each dictionary were learned
on the Caltech256 training images. Figure 1 shows the per-
formance obtained with a pure tf-idf ranker. The plot shows
mean average precision (truncated at 1000) versus average
size of the response set. Note that for tf-idf ranking the best
precision is obtained using a dictionary of 10K words, which
yields on average a response set containing over 95% of
the database images. Increasing the dictionary size further
reduces the response set but, as shown in this plot, hurts
precision.

Flickr distractors. In order to test the scalability of our
approach, we added to the database more than 800K Flickr
photos taken from the collection described in [8]. In our
evaluation we assumed that these images do not contain
occurrences of the query object category and so they served
purely as distractors. Another set of 200K Flickr photos
from the same collection was added to the training set for
the purpose of measuring ρ, the response ratio, during the
phrase pool generation and the query-dependent refinement
of the classifier.

Prefiltering evaluation. We evaluated our system under
various choices of parameter values. The best results were
obtained using a vocabulary of size W = 100 and phrases of
length L = 4. We generated the pool of phrases by repeating
the phrase generation procedure for values of τC varying in
the set τ × {0.01, 0.03, 0.05, 0.07, 0.09}, for a given choice
of τ . We report results for τ ∈ {0.001, 0.005, 0.05}, corre-
sponding to postings length bounds (10) ranging from 0.1%
to 5% of the database. Phrases were selected at query time
using the greedy algorithm of [13]. We compared our pre-
filtering algorithm with Chum’s min-hash method. We tried
several tunings of the parameters in their system (e.g. the

dictionary size, the number of sketches, and the sketch sizes)
and present the best obtained results here. We also evalu-
ated the simple filtering produced by retrieving all images
sharing at least one visual word with the query by means
of inverted files (using the setting W = 106). Figure 2
summarizes the prefiltering performances of the methods.
The plot in Figure 2(a) shows recall, i.e. the proportion of
retrieved images belonging to the category of the query, as
a function of the response set size (plotted on a log scale).
The size of the response set is relevant for scalability, one
of the primary concerns of this paper, and the recall within
the response set places an upper bound on the recall of any
subsequent ranker. Note that for the same response set size,
our algorithm retrieves 5 times as many true positives as the
min-hash method, while the mere sharing of one or more
individual words performs very little filtering in practice.
Figure 2(b) shows recall at 1000, obtained after ranking the
images in the response set by tf-idf score (using W = 106,
as this is the best setting for tf-idf ranking). This simulates
the situation where a computationally expensive ranker will
be run on the top-1000 candidate list obtained by fast tf-idf
scoring. Our algorithm yields a recall @1000 higher than
that of one-word-sharing via inverted files, and with a much
smaller response set. Error bars are also show in these plots.

In order to evaluate the ability of our classifier to gen-
eralize to never seen object classes, we removed from our
training set all images of the 20 query categories and then
retrained our system. As shown on figure 2 (black diamond),
performance was only slightly worse than that obtained by
training on all classes. This suggests that our approach
learns a same-different classifier which is fairly category-
independent and thus usable in general settings where the
test categories may be different from those present in the
training set.

Figure 3 shows the distribution of the postings list length
(PLL) obtained when setting τ = 5%. It is instructive to
look at the PLL since it corresponds to the actual cost of
running the prefilter and also bounds the cost of applying
the tf-idf ranker on the resulting response set. Furthermore,
the PLL is the quantity that we constrain on the training set
in (10). Figure 3(a) indicates that even the test set postings
list length is close to the target bound. The min-hash ap-
proach instead produces postings lists that vary widely in
length (Figure 3(b)), thus yielding widely differing query
execution time in practice.

Figure 4 is a box plot of the recall obtained on the held-out
20 query categories using τ = 0.5%. The red central mark
of each box indicates the median recall on that category, the
edges of the box are the 25th and 75th percentiles, and the
whiskers extend to the most extreme points considered not
to be outliers, while the outliers are plotted individually.

Table 2 summarizes the phrase selection statistics. From a
pool of about 60K phrases, about 400 are typically present in

0 5 10 15 20 25 30 35

ak47

american−flag

butterfly

computer−monitor

dolphin−101

frog

horse

hot−air−balloon

ice−cream−cone

lightbulb

mushroom

school−bus

scorpion−101

soccer−ball

sushi

swiss−army−knife

syringe

tennis−racket

tower−pisa

umbrella−101

recall % for !=0.005

Figure 4. Box plot of recall per individual query category.

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

filt
er

 s
et

 s
ize

 (d
at

ab
as

e
%

)

phrase length (L)

a
2 3 4 5 6

0

1

2

3

4

5

6

7

re
ca

ll %

phrase length (L)
b

Figure 5. Performance of our method for τ = 0.5% as a func-
tion of phrase length: (a) average response set size; (b) corre-
sponding recall.

τ #Σ Avg active #Aq Avg selected 1>b
0.05 58533 470 9.3
0.005 57035 343 3.0
0.001 58533 344 2.3

Table 2. Phrase generation and selection. Typical queries contain
2–9 ORs, many fewer than the 64–256 of min-hash.

a given query, and the query-dependent selection chooses 2
to 9 of them to query the index.

Figure 5 shows the performance obtained by varying the
length L of the learned phrases. Our algorithm is relatively
insensitive to the choice of this parameter value.

Figure 6 presents some examples of query images and cor-
responding true positives retrieved by our algorithm. Note
that in most examples, each selected phrase retrieves differ-
ent relevant images. This suggests that our query-dependent
prefilter tends to choose complementary phrases. Most of the
images in these response sets are rather different in appear-
ance from the queries and therefore could not be retrieved
using a simple near-duplicate detection algorithm.

Figure 6. Visualization of prefiltering results for τ = 0.5%. The
first column in each example shows repeated copies of the query
image, one for each visual phrase selected at query time. The
decision stumps used in each phrase are shown next to the query,
with color-coded visual words. The true positive images retrieved
by each phrase are shown in the second column.

5. Discussion
We have shown that constructing classifiers at query time

allows prefiltering of a small number of candidates from a
large corpus with reasonable recall, several times higher than
that of the nearest competition. While previous approaches
have looked for commonly occurring patterns, we look for
rare ones with disjoint coverage of the query space.

Our system is designed to scale to billions of images.
Here we reported results only on a million-image set. How-
ever, the indexing efficiencies should extend to a billion
images—at the time of writing we are testing a 100 million-
image index—but the outstanding question is whether the
distractor statistics will become so flat that we are swamped
by false positives. However, the relatively small degradation
in performance we have observed from 30K to 1M images
gives some hope that this effect will not be too pronounced.

The design separates the contents of the image index
(which can be enormous and could take months to update
with new visual words or their combinations) from the clas-
sifier that uses it (which can be learned dynamically at query
time to form flexible new combinations of words from the
index). Systems based on indexing only metawords cannot
evolve incrementally and are too limited in adapting to new
queries, classes or training data.

Currently the classifier is symmetric in the query and
database images. However, we have much more CPU time
available to analyze the query image, so it would be inter-
esting to see if an asymmetric filter permits more accurate
classification.

For future work, it would also be interesting to explore
more general phrases. Our phrases were separable in that
eq. 5 decomposed into two independent tests of query and
database image. A straightforward extension would allow
phrases to test whether the both images contained the same
count of a visual word, within some tolerance.

6. Acknowledgements
This work was carried out while LT was at Microsoft

Research Cambridge. We are grateful to Michael Isard, Ollie
Williams, and Nick Craswell for useful discussion. Thanks
to Herve Jegou for sharing data.

References
[1] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable

near identical image and shot detection. In Conf. Image and
Video Retrieval (CIVR), pages 549–556, NY, 2007. ACM.

[2] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image
detection: min-hash and tf-idf weighting. In British Machine
Vision Conf., 2008.

[3] J. H. Friedman and N. I. Fisher. Bump hunting in high-
dimensional data. Statistics and Computing, 9(2):123–143,
Apr. 1999.

[4] A. Frome, Y. Singer, and J. Malik. Image retrieval and classi-
fication using local distance functions. In Advances in Neural
Information Processing Systems (NIPS), volume 19, pages
417–424, 2007.

[5] K. Grauman and T. Darrell. The pyramid match kernel: Effi-
cient learning with sets of features. Jrnl. of Machine Learning
Research (JMLR), 8:725–760, Apr. 2007.

[6] G. Griffin, A. Holub, and P. Perona. Caltech-256 object
category dataset. Technical Report 7694, California Institute
of Technology, 2007.

[7] P. Jain, B. Kulis, and K. Grauman. Fast image search for
learned metrics. In Proc. Comp. Vision Pattern Recogn.
(CVPR), pages 1–8, June 2008.

[8] H. Jegou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
In European Conf. Computer Vision, Oct. 2008.

[9] H. Jegou, H. Harzallah, and C. Schmid. A contextual dissim-
ilarity measure for accurate and efficient image search. In
Proc. Comp. Vision Pattern Recogn. (CVPR), 2007.

[10] S. Lazebnik, C. Schmid, and J. Ponce. A discriminative frame-
work for texture and object recognition using local image fea-
tures. In J. Ponce, M. Hebert, C. Schmid, and A. Zisserman,
editors, Toward Category-Level Object Recognition, pages
423–442. Springer, 2006.

[11] D. Lowe. Distinctive image features from scale-invariant
keypoints. Intl. Jrnl. of Computer Vision, 60(2):91–110, 2004.

[12] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[13] M. Marchand and J. Shawe-Taylor. The set covering machine.
Journal of Machine Learning Research, 3:723–746, 2002.

[14] K. Mikolajczyk and C. Schmid. Scale and affine invariant in-
terest point detectors. Intl. Jrnl. of Computer Vision, 60(1):63–
86, 2004.

[15] A. Moffat and J. Zobel. Self-indexing inverted files for fast
text retrieval. ACM Trans. Inf. Syst., 14(4):349–379, 1996.

[16] F. Moosmann, E. Nowak, and F. Jurie. Randomized clustering
forests for image classification. IEEE Trans. Pattern Analysis
and Mach. Intell. (PAMI), 30(9):1632–1646, Sept. 2008.

[17] D. Nistér and H. Stewénius. Scalable recognition with a
vocabulary tree. In Proc. CVPR, pages 2161–2168, 2006.

[18] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Ob-
ject retrieval with large vocabularies and fast spatial matching.
In Proc. Comp. Vision Pattern Recogn. (CVPR), 2007.

[19] T. Quack, V. Ferrari, B. Leibe, and L. Van Gool. Efficient
mining of frequent and distinctive feature configurations. In
Intl. Conf. Computer Vision, pages 1–8, Oct. 2007.

[20] J. Sivic and A. Zisserman. Video data mining using configu-
rations of viewpoint invariant regions. In Proc. Comp. Vision
Pattern Recogn. (CVPR), pages 488–495, 2004.

[21] J. Yuan, Y. Wu, and M. Yang. Discovery of collocation
patterns: from visual words to visual phrases. In Proc. Comp.
Vision Pattern Recogn. (CVPR), pages 1–8, June 2007.

[22] Y.-T. Zheng, M. Zhao, S.-Y. Neo, T.-S. Chua, and Q. Tian.
Visual synset: Towards a higher-level visual representation.
In Proc. Comp. Vision Pattern Recogn. (CVPR), 2008.

[23] C. L. Zitnick, J. Sun, R. Szeliski, and S. Winder. Object in-
stance recognition using triplets of feature symbols. Technical
Report MSR-TR-2007-53, Microsoft Research, 2007.

	. Introduction
	. Related work
	. Boolean ``same or different'' classifiers
	. Tuning and bounding a classifier at query time
	. Generating the phrase pool Sigma
	. Performance considerations

	. Experiments
	. Discussion
	. Acknowledgements

