
340 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

The Journal of Fourier Analysis and Applications

Volume 9, Issue 4, 2003

FFTs for the
2-Sphere–Improvements and

Variations

D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec,
and S. Moore

Communicated by John J. Benedetto

ABSTRACT. Earlier work by Driscoll and Healy [18] has produced an efficient algorithm for
computing the Fourier transform of band-limited functions on the 2-sphere. In this article we present
a reformulation and variation of the original algorithm which results in a greatly improved inverse
transform, and consequent improved convolution algorithm for such functions. All require at most
O(N log2 N) operations whereN is the number of sample points. We also address implementation
considerations and give heuristics for allowing reliable and computationally efficient floating point
implementations of slightly modified algorithms. These claims are supported by extensive numerical
experiments from our implementation in C on DEC, HP, SGI and Linux Pentium platforms. These
results indicate that variations of the algorithm are both reliable and efficient for a large range of
useful problem sizes. Performance appears to be architecture-dependent. The article concludes
with a brief discussion of a few potential applications.

Math Subject Classifications.primary: 33C55, 65T99; secondary: 42C10, 65T40.
Keywords and Phrases.spherical Fourier transform; spherical harmonics; fast Legendre transform; recur-
rence relations.
Acknowledgements and Notes.Earlier versions of this article have been circulated through some of the
computational harmonic analysis community. (Preliminary versions of some of the results have also
appeared in the “An FFT for the 2-sphere and Applications,” Proc. of ICASSP-96, Volume 3, p. 1323–
1326.) Nevertheless, this is the first appearance of this work in print, and this final version differs from
the most recent (“FFTs for the 2-Sphere—Improvements and Variations,” D. Healy, S. Moore, and D.
Rockmore, Department of Computer Science, Dartmouth College PCS-TR96-292, May, 1996), mainly
in the extensive numerical experiments that have been performed using newly optimized code on current
platforms. These experiments are “reproducible” in the sense of Donoho—the software is easily obtained
over the web, and to date has been used by numerous researchers on their home platforms.
D.M. Healy, Jr. was supported in part by ARPA as administered by the AFOSR under contract DOD-
F4960-93-0567. D.N. Rockmore was supported in part by NSF DMS Awards 9404275 and P.J. Kostelec
was supported by a Presidential Faculty Fellowship.

c© 2003 Birkḧauser Boston. All rights reserved
ISSN 1069-5869

342 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

1. Introduction

1.1 History

The numerical calculation of Fourier expansions and convolutions of functions on
the 2-sphere are related problems which have been identified as important computational
issues in many areas of applied science. For example, potential applications are found in
astronomy [52], computer vision [38, 59], medical imaging [12], biology [48], statistical
analysis of directional data [29, 28] and chemistry [43]. Protein surfaces may be represented
with spherical harmonics, which enables efficient means of analyzing protein-protein inter-
actions [20]. The article [27] contains many references for possible applications in physics.

A significant set of applications comes from the fields of numerical weather prediction
and global circulation modeling. In these areas much of the computational effort is directed
towards the numerical solution of partial differential equations in spherical geometry [9, 60,
66]. Use of spectral methods for these purposes requires efficient and reliable algorithms
for computing spherical harmonic expansions—the lack of such an algorithm (until now)
has been a serious bottleneck in pursuing a spectral method approach (see e. g., [60], p. 3416
and [66]).

These sorts of applications have motivated much of the research in fast algorithms
for computing spherical harmonic expansions. Early work proposed approximate solutions
to the problem of computing Fourier expansions on the 2-sphere [54]. Other related work
includes the development of generalizations of spherical harmonic transforms and efficient
Legendre projection methods [65] for uses where the spectral coefficients are not required.
Also, there is the use of fast multipole methods for the computation of Legendre polynomial
expansions, which gives part of the full spherical harmonic expansion [3]. The complexity
of these algorithms scales linearly in the desired accuracy. We refer the interested reader
to [63], where may be found a detailed and rigorous comparison and analysis of the per-
formances of a variety of Legendre projection algorithms, including those based on the fast
multipole method, as well as other methods [49].

A different approach was proposed in [18], which presents an exact, asymptotically
fast approach to the problem of computing spherical harmonic coefficients. More specifi-
cally, an algorithm is given which in exact arithmetic permits efficient exact computation
of the Fourier expansion and convolution of functions on the two-sphere, assuming that
the functions have finite expansions in terms of spherical harmonics. The effects of finite
precision arithmetic in the implementation were studied through a priori error estimates and
numerical experiments for crucial steps in the algorithm. These results strongly suggest the
possibility of an effective floating point implementation of the algorithm.

In a general setting, these algorithms can all be viewed as computational approaches to
nonabelian harmonic analysis. Cast in this light, they have as their natural ancestor the now
“classical” Fast Fourier Transform (FFT), first discovered by Gauss and later rediscovered
and popularized by Cooley and Tukey (see [34] for a nice outline of much of the history,
and [46] for a group theoretic context of this work). This family of algorithms efficiently
computes the Fourier coefficients of a band-limited function on the circle, an abelian group.
Its effective implementation has made possible a wealth of advances in many fields, most
noticeably digital signal processing (see e. g., [21, 53]). A natural direction of generalization
of the Cooley–Tukey FFT is the development of efficient and reliable algorithms to compute
expansions of functions defined on finite or compact groups in terms of irreducible matrix
coefficients [45]. In this article we present some particular results towards the development

FFTs for the2-Sphere–Improvements and Variations 343

of this program, especially as relates to the 2-sphere. For work in the nonabelian noncompact
setting (esp. the motion group) motivated by applications to engineering, see [13], and for
a survey of other results and applications of “generalized FFTs,” see [47, 58].

This article continues and supplements the work in [18]. We give a reformulation
and variation of that article’s algorithm in terms of a sparse structured factorization of the
appropriate Fourier transform matrix. Reordering and transposing provides a more efficient
inverse transform than that presented in [18]; we now attain the same order of complexity
as that fast forward transform. Efficient inverse and forward transforms combine to yield a
faster convolution algorithm. This is the most efficient such algorithm known to date. Our
new presentation resembles the filterbank technology currently of interest in many digital
signal processing applications (see e. g., [67]). The algorithms are of more than theoretical
interest. By slightly varying the basic algorithm (at little theoretical cost) we have obtained
numerically reliable and computationally efficient implementations that are competitive
with other algorithms at useful problem sizes. The relative performance of the algorithms
appears to be architecture-dependent.

1.2 Main Idea

The Fourier transform of a function on the 2-sphere amounts to itsL2-projection onto
the elements of a basis ofspherical harmonic functions.This particular basis respects the
rotational symmetries of the 2-sphere in much the same way that the familiar sines and
cosines are adapted to translations of periodic functions on the real line.

The primary algorithmic tool presented in this article is an efficient algorithm for the
computation ofdiscrete Legendre transforms.For a given “bandwidth”B > 0 (cf. Section 2)
these are the sums of the form

ŝ(`, m) =
2B−1∑
k=0

P m
` (cosθk)[s]k |m| ≤ ` = 0, 1, . . . , B − 1 (1.1)

whereP m
` is the associated Legendre function of degree` and orderm, θk = π(k+1/2)

2B
ands

is a data vector withkth component[s]k, obtained from the samples of the original function
which we wish to transform. Simply stated, these are inner products of a vector of sampled
associated Legendre functionsPm

` against a data vectors.
An obvious approach to evaluating the sums (1.1) is to compute them successively

for the various degrees and orders. Computed in this way, each of these steps requires
2B multiplications and 2B − 1 additions. Since there aren = B2 of these steps required
to compute the full Fourier transform, this implies a total naive complexity of at most
4n3/2 = 4B3 operations.1 We will refer to this as thedirect algorithm .

In contrast, the results of this article provide the basic tools for algorithms which im-
prove the asymptotic complexity of the complete set of Legendre transforms fromO(n3/2)

to O(n log2 n) (n = B2). Variants of our algorithm still improve upon the betterO(n3/2)

exact algorithms, beginning at problem sizes as small asB = 256 (cf. Section 6).
These fast algorithms use a divide and conquer approach, which may be familiar from

the structure of many of the usual (abelian) FFT algorithms (see e. g., [15, 68]). In such an

1Here we assume the standard arithmetic complexity model which defines a single operation as a complex
multiplication followed by a complex addition.

344 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

approach, the problem of computing projections onto Legendre functions is decomposed
into smaller subproblems of a similar form. The subproblems are solved recursively, by
further subdivision, and their solutions are combined to solve the original problem. The
advantage to this approach derives from the fact that the costs of the smaller subproblems,
together with the cost of splitting will be less than the cost of the direct approach.

To insure that the splitting actually results in subproblems of reduced complexity we
apply two main ideas:

• Using the Recurrence.The associated Legendre functions satisfy athree-term
recurrence(as do many systems of special functions). This drives the divide
and conquer strategy, expressing the higher degree inner products in terms of
inner products with sampled trigonometric polynomials of lower degree, which
according to the following observation, can be computed more efficiently.

• Smoothing and Subsampling.The inner products of a data vector against sampled
low degree trigonometric polynomials may actually be accomplished in fewer than
B operations by using a “smoothed” data vector with fewer samples. In fact, only`

samples are needed to compute the inner product with a trigonometric polynomial
of degreè < B.

Issues of numerical reliability are important in implementation and we will see how
these considerations may be satisfied by developing variations of the basic algorithm. The
main problem to guard against is that of pushing the recurrence too far.

1.3 Organization

The organization of the remainder of the article is as follows. In Section 2 we briefly
recall the notation and some necessary technical background material on Fourier analysis
and fast algorithms. In particular, we review Fourier analysis on the 2-sphere i. e., the
theory of spherical harmonics. We continue with a discussion of the recurrences satisfied
by these functions and of the technique of smoothing and subsampling mentioned above.
Section 3 contains the main algorithmic results of the article. Here we explain how the
techniques mentioned above (using the recurrence, smoothing and subsampling) may be
combined to produce our basic divide and conquer transform algorithm. This algorithm has
a natural formulation as a particular structured matrix factorization of a matrix containing
sampled Legendre functions. This simultaneously provides a similar factorization of the
transpose of the matrix for the forward transform, and as a result, we immediately obtain a
fast inverse transform or synthesis algorithm and consequent fast convolution algorithm as
well. This is all explained in Section 4. In Section 5 we discuss some simple variants of the
basic algorithm, designed to give speed-ups in actual implementations. Numerical results
supporting our claims of efficiency and reliability are presented in Section 6. In Section 7,
we outline two possible applications of the algorithm. For the first application we show
how our algorithm may be used towards the efficient computation of the bispectrum for
band-limited functions. In the other application we present some experiments in using our
algorithm for matched filtering of signals on the 2-sphere. We conclude in Section 8 with
a summary and brief discussion of future work.

FFTs for the2-Sphere–Improvements and Variations 345

2. Background

This section collects the basic tools for the formulation and solution of the problem of
efficient Fourier analysis on the 2-sphere. We first recall the definitions of Fourier analysis
on the 2-sphere and the spherical harmonic functions. We present the discretization of the
Fourier transform and indicate the complexity of standard algorithms for its evaluation.
We show how the problem of a fast transform is reduced to the question of fast discrete
Legendre transforms, and detail the main tools (the use of recurrence relations as well as
smoothing and subsampling) used for their efficient evaluation.

2.1 Fourier Analysis on the2-Sphere

As usual,S2 denotes the 2-sphere or unit sphere inR3. A unit vector inR3 may be
described by an angleθ , 0≤ θ ≤ π measured down from thez-axis and an angleφ, 0≤ φ

< 2π measured counterclockwise off thex-axis; this representation is unique for almost all
unit vectors. Thus, ifω ∈ S2, then we may writeω(θ, φ) = (cosφ sinθ, sinφ sinθ, cosθ).

FIGURE 1 Parametrization of the 2-sphere.

Let L2(S2) denote the Hilbert space of square integrable functions on theS2. In
coordinates, the usual inner product is given by

〈f, h〉 =
∫ π

0

[∫ 2π

0
f (θ, φ)h(θ, φ) dφ

]
sinθ dθ . (2.1)

As is well-known (see e. g., [70]), thespherical harmonicsprovide an orthonormal basis
for L2(S2). For any nonnegative integer` and integerm with |m| ≤ `, the(`, m)-spherical
harmonic Ym

` is a harmonic homogeneous polynomial of degree`. The harmonics of
degree` span a subspace ofL2(S2) of dimension 2̀ + 1 which is invariant under the
rotations of the sphere. The expansion of any functionf ∈ L2(S2) in terms of spherical
harmonics is written

f =
∑
`≥0

∑
|m|≤`

f̂ (`, m)Ym
` (2.2)

andf̂ (`, m) denotes the(`, m)-Fourier coefficient, equal to〈f, Ym
` 〉.

In the coordinates(θ, φ), Ym
` has a factorization,

Ym
` (θ, φ) = k`,mP m

` (cosθ)eimφ (2.3)

346 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

whereP m
` is the associated Legendre functionof degreè and orderm andk`,m is a

normalization constant.
Consequently, separating variables according to (2.3) shows that the computation

of the spherical harmonic transform can be reduced to a regular Fourier transform in the
longitudinal coordinateφ followed by a projection onto the associated Legendre functions

f̂ (`, m) = 〈f, Ym
`

〉 = k`,m

∫ π

0

[∫ 2π

0
e−imφf (θ, φ) dφ

]
P m

` (cosθ) sinθ dθ . (2.4)

The associated Legendre functions satisfy a characteristicthree-term recurrence

(`−m+ 1)P m
`+1(x)− (2`+ 1)xP m

` (x)+ (`+m)P m
`−1(x) = 0 (2.5)

critical for the algorithms developed in this article.
In analogy with the case of functions on the circle, we say thatf ∈ L2(S2) is

band-limited with band-limit or bandwidth B ≥ 0 if f̂ (`, m) = 0 for all ` ≥ B. For
band-limited functions we have a simple quadrature (sampling) result which reduces the
integrals (2.4) to finite weighted sums of a sampled data vector obtained from the integrand.

Theorem 1 (cf. [18], Theorem 3).
Letf ∈ L2(S2) have bandwidthB. Then for each|m| ≤ ` < B,

f̂ (`, m) =
√

2π

2B

2B−1∑
j=0

2B−1∑
k=0

a
(B)
j f (θj , φk)e

−imφkP m
` (cosθj)

where the sample points are chosen from the equiangular grid:θj = π(2j + 1)/4B,

φk = 2πk/2B; and the weightsa(B)
j (cf. Figure 2) play a role analogous to thesinθ factor

in the integrals.

Remark. Although we will use this formulation of the Sampling Theorem to provide
the starting point for our fast algorithms, it is actually possible to give a sampling theorem
which uses onlyB samples in theθ coordinate. These samples are then interpolated to give
2B − 1 samples for use in the fast transform algorithms.

FIGURE 2 Plot of sample weights for range of problem sizes.

FFTs for the2-Sphere–Improvements and Variations 347

2.2 A Discrete Fourier Transform for S2 and the Legendre
Transform

TheFourier transform of a functionf of bandwidthB is the collection of its Fourier
coefficients, {

f̂ (`, m) | 0 ≤ |m| ≤ ` < B
}

.

The Sampling Theorem (Theorem 1) expresses the(`, m)-Fourier coefficient off as the
finite sum

f̂ (`, m) =
√

2π

2B

2B−1∑
j=0

2B−1∑
k=0

a
(B)
j f (θj , φk)e

−imφkP m
` (cosθj) . (2.6)

This method of computing the Fourier coefficients off is called thediscrete Fourier
transform, or DFT of f . Notice that direct computation of eacĥf (`, m) would require
4B2 operations and thusO(B4) in total.

More efficient algorithms use a separation of variables approach. We proceed by first
summing over thek index, computing the inner exponential sums which depend only the
indicesj andm. We may do this efficiently for allm between−B andB via the FFT
(cf. [21]). The computation is completed by performing the requisitediscrete Legendre
transforms, which for a given orderm > 0 we define as a set of sums

N−1∑
k=0

[s]kP m
` (cosθk) =

〈
s, Pm

`

〉 ; ` = m, m+ 1, . . . , N − 1 , (2.7)

for an arbitrary input vectorswith kth component[s]k. Here we have introduced a discrete
inner product notation and the convention thatPm

` denotes the vector comprised of the
appropriate samples of the functionP m

` (cosθ):

Pm
` =

 P m
` (cosθ0)

...

P m
` (cosθN−1)

 .

We may also say that (2.7)computes the projection of s onto Pm` .
The problem of a fast spherical harmonic transform is now reduced to the efficient

calculation of these discrete Legendre transforms. Notice that even without a fast algorithm
here, the separation of variables turns anO(B4) calculation into anO(B3) calculation.

In order to simplify the discussion of the basic idea for the efficient evaluation of the
sums (2.7), we will specialize to the casem = 0, for whichP m

` = P 0
` = P` is theLegendre

polynomial of degreè . For higher orders the algorithm generalizes directly.
As remarked in the introduction, our fast algorithm relies on two basic ideas,

(1) Using the Recurrence; (2) Smoothing and Subsampling.

We proceed by developing each of these techniques separately (Sections 2.3 and 2.4)
and then show how they are combined to yield our algorithm (Section 3).

348 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

2.3 Using the Legendre Recurrence

The recurrence relation satisfied byP`(cosθ) is (for ` ≥ 0)

(`+ 1) P`+1(cosθ)− (2`+ 1) cosθ P`(cosθ)+ (`) P`−1(cosθ) = 0 (2.8)

with initial conditionsP0(cosθ) = 1 andP−1(cosθ) = 0. Consequently, the higher degree
Legendre polynomials can be expressed in terms of those of lower degree as follows.
For any fixed “level”L, iterating the recurrence formula (2.8) forwardr steps produces
trigonometric polynomialsAL

r andBL
r such that

PL+r (cosθ) = AL
r (cosθ) PL(cosθ)+ BL

r (cosθ) PL−1(cosθ) , (2.9)

for r ≥ 1. We refer toAL
r andBL

r , asshifted Legendre polynomials, as they are generated
by the following shifted form of the Legendre polynomial recurrence (2.8),

(L+ r + 1) pL
r+1(cosθ)− (2L+ 2r + 1) cosθ pL

r (cosθ)+ (L+ r) pL
r−1(cosθ) = 0 (2.10)

with initial conditionsAL
0 = 1, AL−1 = 0 andBL

0 = 0, BL−1 = 1, respectively. This is
readily concluded by comparing a matrix formulation of (2.9),(

PL+r+1

PL+r

)
=
(

AL
r+1 BL

r+1

AL
r BL

r

) (
PL

PL−1

)
, (2.11)

with the matrix form of the one-step recurrence (2.8)(
PL+r+1

PL+r

)
=

(
2(L+r)+1
L+r+1 cosθ − L+r

L+r+1

1 0

) (
PL+r

PL+r−1

)

=
(

2L+2r+1
L+r+1 cosθ − L+r

L+r+1

1 0

) (
AL

r BL
r

AL
r−1 BL

r−1

)(
PL

PL−1

)
.

A similar argument gives the general recurrence satisfied by the shifted Legendre functions(
AL

r+s BL
r+s

AL
r+s−1 BL

r+s−1

)
=
(

AL+r
s BL+r

s

AL+r
s−1 BL+r

s−1

)
·
(

AL
r BL

r

AL
r−1 BL

r−1

)
. (2.12)

We make the convention that

A0
r = Pr, and B0

r = 0 (2.13)

so that (2.12) subsumes the original Legendre recurrence (2.11).
From (2.10) we see that the degrees of the shifted Legendre polynomialsAL

r andBL
r

arer andr − 1, respectively. The point of introducing these polynomials is that they allow
us to rewrite projections onto high degree Legendre polynomials as sums of projections
onto (shifted) Legendre polynomials of lower degree. More precisely, suppose that in the
course of computing the inner products

〈
s, Pj

〉
(for j ≤ L) we had stored the components

of the vectorssj = sPj , defined as the pointwise product of the vectorss andPj . The

FFTs for the2-Sphere–Improvements and Variations 349

recurrence (2.9) allows us to re-use this data to compute the projection ofs onto a higher
order function,PL+r as follows:

〈s, PL+r 〉 =
〈
s,
(
AL

r PL + BL
r PL−1

)〉
=
〈
sL, AL

r

〉
+
〈
sL−1, BL

r

〉
. (2.14)

If the vectorssL = sPL andsL−1 = sPL−1 have been stored, then (2.14) shows
that the higher degree inner product can be computed as inner products of stored data and
(precomputed) sampled values of the polynomialsAL

r andBL
r , each of which have degree

at mostr, which is necessarily less than the degree ofPL+r .
SinceAL

r andBL
r also satisfy a recurrence, this procedure can be repeated. Following

this through yields a divide and conquer scheme for performing the full computation.
The motivation for the successive reductions is that the projections of a data vector

onto lower degree trigonometric polynomials can be computed more efficiently by first
lowpass filtering (smoothing) and then subsampling the data vector, so that ultimately the
projection may be computed by a summation with fewer terms (cf. Lemma 1). This is the
next topic.

2.4 Smoothing and Subsampling–Working in the “Cosine
Transform” Domain

The “conquer” part of the divide and conquer algorithm described above is the com-
putation of inner products of the form〈s, Qn〉 for a sequence of vectorsQn varying over
some range ofn. Heres is a data vector, andQn is composed of samples of a trigonometric
polynomialQn of degreen (in fact, a shifted Legendre polynomial). We examine the com-
plexity of computing these inner products, and show that it grows linearly withn, modulo a
fixed overhead. We will make use of a cosine transform representation of the vectors in the
inner product. Put in the language of matrices, we will show that the matrix of the discrete
Legendre transform may be brought to triangular form by means of the cosine transform
matrix.

We begin by recalling that any vector of lengthN , s, may always be represented as
uniform samples of a cosine series of degree less thanN :

[s]k =
N−1∑
n=0

σn cos(nθk) , k = 0, . . . , N − 1 , (2.15)

where, as before,θk = π(2k+1)
2N

.
The coefficientsσn are obtained by computing thediscrete cosine transform(DCT)

of s. Explicitly, we let CN denote theN -dimensional orthogonal DCT matrix (see e. g.,
[21], p. 386) comprised of normalized sampled cosines:

(CN)j,k = b(j) cos(jθk) 0 ≤ j, k ≤ N − 1 , (2.16)

with normalization factors

b(0) =
√

1

N
and b(j) =

√
2

N
for j = 1, . . . , N . (2.17)

350 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

In terms ofC = CN , the coefficients in (2.15) are given by

σn =

√

2

N
[Cs]n if n 6= 0√

1

N
[Cs]n if n = 0 .

(2.18)

Remark. In practice, the set of cosine coefficients{[Cs]n | n = 0, . . . , N − 1} can
be obtained efficiently (in at most32N logN operations forN a power of 2) by a fast
DCT algorithm, which amounts to a clever factorization of the matrixC (see [64] and the
references contained therein).

The orthogonality ofC implies〈Cs, CQ〉 = 〈s, Q〉. The computational advantage of
computing the inner product in the cosine transform domain comes from the fact that for
any trigonometric polynomialQ of degree at mostN − 1, the cosine coefficients[CQ]n
vanish forn > deg(Q) (cf. Lemma 1) and this reduces the number of operations required
to compute the inner product withCs. In particular, this applies to the various Legendre
functions we use.

To illustrate, the Legendre polynomialQ = P` is a trigonometric polynomial of
degreè . This is easily verified using the recurrence relation (2.8) with the initial conditions
P0(cosθ) = 1, P1(cosθ) = cosθ . For example,

P2(cosθ) = 5

3
cosθ cosθ + 2

3
1= 5

3

cos(2θ)+ 1

2
+ 2

3
.

Consequently, forn > `, [CP`]n = 0 and the inner product sum〈CP`, Cs〉 = 〈P`, s〉 can be
computed as a sum of onlỳ+ 1 terms (instead ofN),

〈s, P`〉 =
N−1∑
m=0

[Cs]m [CP`]m

=
l∑

m=0

[Cs]m [CP`]m +
N−1∑

m=l+1

[Cs]m · 0

=
l∑

m=0

[Cs]m [CP`]m . (2.19)

This shows that the computation of the low degree Legendre projections (i. e., projections of
data ontoP` for small`) can be accomplished with very few operations, after the overhead
of computing the cosine expansions of the data vectorsand the vector of sampled Legendre
polynomialsP`.

In terms of matrix arithmetic (2.19) is equivalent to the observation that the matrix
representing the discrete Legendre transform has a factorization as a product of a cosine
transform matrix and a triangular matrix comprised of the Legendre polynomial cosine
coefficients,

((
P`(cosθj)

))
=

[CP0]0 0 · · · 0

[CP1]0 [CP1]1 · · · 0
...

...
. . .

...[CPN−1
]
0

[CPN−1
]
1 · · · [CPN−1

]
N−1

 · C (2.20)

FFTs for the2-Sphere–Improvements and Variations 351

whereC denotes theN ×N orthogonal discrete cosine transform matrix defined in (2.16).
If the cosine coefficients of the sampled Legendre polynomials ([CPj]k) are prestored, this
approach is an alternative to the direct computation of the Legendre transform which has the
same asymptotic complexity, but is faster for even moderate sized transforms, assuming the
use of a fast DCT routine. (See the previous remark and reference on this issue). Figures 3
and 4 illustrate both of these approaches.

FIGURE 3 Graphical representation of a direct non-DCT discrete Legendre transform of sampled signals:
(a) Input of lengthN , s; (b) The vectors of sampled Legendre polynomialsPk ; (c) Pointwise multiplicationss Pk

such that
∑

j

[
s Pk

]
j
= 〈s, Pk〉 in at mostN operations indicated by the6 notation.

Lemma 1 below gives a generalization of (2.19) appropriate for use in our fast al-
gorithm, where we apply it to reduce the complexity of projections onto the lower degree
Legendre functions. The lemma reformulates the earlier discussion of this section in terms
of smoothing or filtering operators applied to the vectors involved in the inner products.

We define thecritically sampled lowpass operator(of bandwidthp), denotedLN
p

(for p < N), by

LN
p = C−1

p T N
p CN (2.21)

whereT N
p is thetruncation operator that only keeps the firstp coordinates of a given input

vector. The effect ofLN
p is to first compute the cosine representation of a vector of length

N , then remove all frequency components beyondp from s, (smoothing) and finally, to
keep only those samples necessary to represent this smoothed version (subsampling). This
is illustrated schematically in Figure 5 below. As indicated by the subscript and superscript,
this operator takes sequences of lengthN to sequences of lengthp.

With the preceding notation, the necessary generalization of (2.19) is given by
Lemma 1.

352 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

FIGURE 4 Graphical representation of discrete Legendre transform of Figure 3, using the DCTs of the signals
and the sampled Legendre polynomials: (a) InputCs for s in Figure 3; (b) DCT of the vectors of sampled Legendre
polynomialsPk , CPk . Notice that the DCT of a given Legendre polynomial has only as many nonzero coefficients
as the degree; (c) Pointwise multiplicationsCs CPk such that

∑
j

[Cs CPk

]
j
= 〈s, Pk〉 in at mostk operations

indicated by the6 notation.

Lemma 1.
LetQ be a trigonometric polynomial of degreep,

Q(cosθ) =
p∑

m=0

γm cosmθ ,

and lets be any sequence of lengthN with N ≥ p. Then

〈s, Q〉 =
N−1∑
k=0

[s]kQ(cosθk) =
p−1∑
j=0

[
LN

p s
]
j
Q

(
cos

Nθj

p

)
=
〈
LN

p s, LN
p Q

〉
.

Proof.

〈s, Q〉 = 〈CNs, CNQ〉

=
N−1∑
k=0

[CNs]k[CNQ]k

=
p∑

k=0

[CNs]k[CNQ]k

since[CNQ]k = 0 for k > p. This last sum is the same as〈
T N

p CNs, T N
p CNQ

〉
=
〈
LN

p s, LN
p Q

〉
(2.22)

FFTs for the2-Sphere–Improvements and Variations 353

FIGURE 5 Smoothing and subsampling.

and it is immediately verified thatLN
p Q is the same as the functionQ sampled on the coarser

grid.

Note that the rightmost inner product is of sequences of lengthp, and sinceQ already
has bandwidthp, the effect of applyingLN

p to Q is to simply sampleQ on the coarser grid.

Lemma 2.
Let 0 < p ≤ N be powers of2. For an arbitrary inputs the computations 7→ LN

p s

can be accomplished in at most3
2N logN + 3

2p logp operations.

Proof. As described above,LN
p s can be accomplished by taking the DCT ofs, a vector

of lengthN , truncating the result to the firstp coefficients, and then using the inverse DCT
to evaluate the lowpassed function atp samples. A fast DCT (and inverse DCT) algorithm
due to Stiedl and Tasche [64] requires3

2m logm operations to compute a DCT of lengthm.
Since truncation requires no additional operations, the lemma follows.

Lemma 3.
LetN be a power of 2 andsa vector of lengthN . SupposeF`(cosθ) (` = 0, . . . , N−

1) satisfies a recurrencea`F`+1(cosθ) − b` cos(θ)F`(cosθ) + c`F`−1(cosθ) with initial
conditionsF−1 = 0 andF0 = 1. Then assuming the prestorage of the DCT of theF`, for
an arbitrary inputs, the collection of inner products〈F`, s〉 can be computed in at most
3
2N logN + N(N+1)

2 operations, versusN2 required by direct computation.

Computation of any collection of discrete trigonometric polynomial projections by
applying the DCT according to Lemma 1 will be referred to as computation by thesemi-
naive approach.

The key property of (2.19) is that it shows that only` + 1 samples of a suitably
modified data vector are needed to compute the inner products〈s, P`〉. The generalization
of this to the various associated Legendre functions and their shifted forms permits us to

354 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

reduce the complexity of the small Legendre transform problems obtained by applying a
divide and conquer approach to the original problem. As we shall see in Section 3.1, these
subproblems compute inner products of data with (shifted) Legendre polynomials of at most
half the degree of the inner products in the original problem.

3. Fast Discrete Legendre Transforms

In Section 2 we saw that the problem of computing fast spherical harmonic expansions
for band-limited functions may be reduced to the efficient calculation of discrete Legendre
transforms defined in (2.7).

In this section we show how this is done. We simplify the discussion by presenting
the case of the Legendre polynomial transform,m = 0, For higher orders the algorithm
generalizes directly.

The problem of interest is then to efficiently compute

N−1∑
k=0

[s]kP`(cosθk) = 〈s, P`〉; ` = 0, 1, . . . , N − 1 , (3.1)

wheres represents a data vector which we think of as sampled values of a functionf which
we wish to transform. To do this we apply the two basic notions, the Legendre recurrence,
and smoothing, which we have considered in Sections 2.3 and 2.4. In this section we show
how they are combined in a divide and conquer algorithm for efficient computation of the
Legendre transform. This is our main theoretical result and it can be found in Section 3.3
as Theorem 2.

3.1 Fast Discrete Legendre Transform Via Divide and Conquer

Sections 2.3 and 2.4 provide the ingredients that make up our divide and conquer
algorithm for computing discrete Legendre transforms. Schematically, the idea is quite
simple to describe: The recurrence relations satisfied by the (shifted) Legendre polynomi-
als (2.9) permit projection of data onto a collection of Legendre functions to be computed
as linear combinations of similar projections onto Legendre functions of lower degree. The
projections at lower degree require fewer samples (cf. Lemma 1), thereby taking on the
form of problems of smaller size.

A uniform formulation of the problem allows us to divide the original problem (3.1)
into a low degree and high degree subproblem, each of which can be shown to be equivalent
to Legendre transforms of half the size. LetT (N) denotes the complexity of a discrete
Legendre transform of sizeN . Then this simple description gives rise to the usual divide
and conquer recurrenceT (N) = 2T (N/2)+S(N) (see e. g., [15]), whereS(N) represents
the overhead cost of rewriting the problem of sizeN as two subproblems of sizeN/2.
Efficiency derives from the ability to perform the reduction quickly. In particular we
shall see thatS(N) is O(N logN), so that iterating this subdivision procedure yields an
O(N log2 N) algorithm for computing the original discrete Legendre transform.

Before giving the general framework, we illustrate the details of the basic idea by
applying it once to split the original problem of computing theN Legendre projections
〈s, P`〉, (0 ≤ ` < N) into two subproblems of sizeN/2. To do this, we proceed by dividing
the original problem into two separate computations:

FFTs for the2-Sphere–Improvements and Variations 355

• Low degree transform coefficients: 〈s, Pr 〉, 0≤ r < N
2 .

• High degree transform coefficients: 〈s, PN
2 +r
〉, 0≤ r < N

2 .

Although each subproblem is a collection ofN/2 projections, these are not as yet problems
of sizeN/2 since both use input of sizeN . (Recall that the original problem assumes input
of sizeN). Reduction of the problem size will come from applying Lemma 1 which showed
that any trigonometric polynomial projection〈s, Q〉 can be computed as a sum of length
deg(Q) by smoothing. This fact can be used immediately for the low degree projections,
yielding the equivalent set of inner products〈LN

N
2

s, LN
N
2

P`〉 (0 ≤ ` < N
2), which is a discrete

Legendre transform of sizeN/2. That is, we are projecting ontoN/2 Legendre functions
using inner products of lengthN/2.

To apply the same idea to the high degree projections, we use the recurrence (2.9)
which allows〈s, PN

2 +r
〉, 0 ≤ r < N

2 to be rewritten as a sum of projections onto lower

degree shifted Legendre polynomials,〈
s, PN

2 +r

〉
=

〈
s, A

N
2
r PN

2
+ B

N
2
r PN

2 −1

〉
=

〈
s

N
2 , A

N
2
r

〉
+
〈
s

N
2 −1, B

N
2
r

〉
(3.2)

where we have maintained the notation from Section 2.3, writings
N
2 = sPN

2
ands

N
2 −1 =

sPN
2 −1. Since forr = 0, . . . , N

2 − 1 the shifted Legendre polynomialsA
N
2
r andB

N
2

r all

have degree less thanN/2, again Lemma 1 may be applied and (3.2) may be computed as
a sum of inner products of lengthN/2,〈

LN
N
2

s
N
2 , LN

N
2

A
N
2
r

〉
+
〈
LN

N
2

s
N
2 −1, LN

N
2

B
N
2
r

〉
. (3.3)

While the reductions at low and high degree look slightly different [the former requires
only smoothing, but the latter requires both smoothing and the use of the recurrence (2.9)],
Section 3.2 will provide a uniform formulation in which both sets of projections become
instances of a Legendre transform of sizeN/2.

Finally, it is critical that the reduction to a smaller problem size may be accomplished

efficiently. SettingL = LN
N
2

, if the dataLP`, LA
N
2
r , andLB

N
2
r are all stored, then only the

quantitiesLs, Ls
N
2 , andLs

N
2 −1 need be computed. According to Lemma 2 this requires at

most 3[32(N logN + N
2 log N

2)] operations.

Remark. In order to simplify the remaining formulas, for the remainder of the article we
will continue to writeL for LN

N
2

, leavingN to be determined by context.

3.2 General Legendre Transforms—A Uniform Problem
Formulation

The preceding discussion gives the basic idea behind the divide and conquer approach.
The process indicated above must be repeated, recursively subdividing the original problem
into smaller and smaller subproblems. In order to see how the pieces fit together, we

356 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

need a uniform description of the computational “unit” encountered at each division. This
motivates the following definition.

Definition 1. For integersM > 0 andL ≥ 0, define theM × 2M shifted Legendre
transform matrix, LT L

M by

LT L
M =

(
AL

0

)t (
BL

0

)t(
AL

1

)t (
BL

1

)t
...

...(
AL

M−1

)t (
BL

M−1

)t

 (3.4)

whereAL
r andBL

r areM-vectors obtained as appropriately sampled versions ofAL
r andBL

r ,
the shifted Legendre polynomials defined in Section 2.3. (i. e.,

[
AL

r

]
k

= AL
r (cosθk), where

θk = π(2k+1)
2M

.)
The Legendre transform (LT) of size M and shift L computed from input data

vectorsz0 andz1 each of lengthM, is the matrix-vector multiplication

LT L
M · Z (3.5)

for Z =
(

z1
z0

)
.

The original Legendre transform of a data vectors of lengthN defined in Equation

(3.1) may be written using Definition 1 asLT 0
N ·
(

s
0

)
with 0 denoting the 0-vector of length

N . This follows from the definitions of the 0-shifted Legendre polynomials (2.13),〈
A0

r , s
〉
+
〈
B0

r , 0
〉
= 〈Pr , s〉 + 0= 〈Pr , s〉 . (3.6)

Likewise, the description of the splitting of the problem into low and high degree
transforms may now be restated formally: the LT of sizeN may instead be computed as
two LTs, each of sizeN/2. In particular, the low and high order transforms are computed as

LT 0
N
2

·
(Ls

L0

)
andLT

N
2

N
2

·
(

Ls
N
2

Ls
N
2 −1

)
, respectively. In this way the original discrete Legendre

transform may be reduced to the computation of two smaller LTs.
In order to actually carry this out, the input for the two smaller LTs must be calculated

(efficiently) from the data for the original full sized problem. To give this step a uniform

description we write the input asZ =
(

s0

s−1

)
=
(

z1
z0

)
with s0 = sands−1 = 0. We define

splitting operators Sε (ε = 0, 1) which appropriately weight and then lowpass the input
to provide the data for the low and high order transforms, respectively according to

Zε = SεZ (3.7)

= (L⊕ L) ·MεZ (3.8)

=

L 0

0 L

 ·

diagA0
ε N

2
diagB0

ε N
2

diagA0
ε N

2 −1
diagB0

ε N
2 −1

 ·

z1

z0

 . (3.9)

FFTs for the2-Sphere–Improvements and Variations 357

Thus, the matrixMε is a 2×2 block matrix withN×N diagonal blocks defined by sampled
values of the shifted Legendre polynomials. By convention,L is theN/2× N lowpass
operator. Notice that whenε = 0, M0 reduces to the identity matrix. Figure 6 represents
this first divide and conquer step.

FIGURE 6 Illustration of the first split. The Legendre transform computed as two half-sized Legendre transforms
of modified data.

To count carefully the number of operations used to accomplish the reduction recall
first thatA0

0 is a vector of all 1’s, whilez0, B0
r and all negative subscripts give 0-vectors.

Using Lemma 2 it is now easy to see that at most 2N+3N logN+3N
2 log N

2 operations are
required. If we stopped subdividing at this point and efficiently completed the computation
by working with the cosine transforms, then assuming that the cosine transforms of the

shifted Legendre polynomials were stored, at most9
4N log N

2 + 3N2

8 −N operations would
be needed to compute in this manner. This is opposed to3

2N logN + N
2 (N − 1) for a

complete semi-naive approach. Hence we obtain an advantage forN ≥ 256. Of course, the
real algorithmic advantage is obtained by performing this split recursively. This is explained
in the next subsection.

Before leaving this subsection, we record the complexity of the application of the
shifted Legendre matrices. It follows from our observations in Section 2 that there is a
semi-naive approach to this calculation, as observed in the following lemma.

Lemma 4.
Assuming that the cosine transformsCAL

r andCBL
r are prestored(0 ≤ r < M), then

an LT of sizeM and shiftL can be computed in at mostM2+3M logM +2M operations.

Proof. Using [64], at most 2· (3
2M logM) operations are needed to compute the DCTs

of z0 andz1. Having done that, an additional 2· M(M+1)
2 are needed to compute the inner

products{〈CAL
r , Cz1〉, 〈CBL

r , Cz0〉
∣∣∣ r = 0, . . . , M − 1} and an additionalM operations to

add together each pair.

Remark. Lemma 4 is precisely the computation of a LT of sizeM and shiftL by the
semi-naive algorithm. Notice that it too may be cast as a particular matrix factorization,

LT L
M · Z =

(
LT L

M(CM ⊕ CM)t
)
· (CM ⊕ CM) · Z (3.10)

recalling that we use the orthogonal matrixCM (2.16) to effect the DCT and assume that
the first factor is precomputed.

358 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

3.3 Recursive Subdivision

For a complete recursive subdivision we need the following lemma.

Lemma 5 (Splitting Lemma).
LetM be a positive integer divisible by two.

(i) A Legendre transform of sizeM can be computed as two Legendre transforms of
sizeM/2. Specifically, multiplication ofLT L

M against a given input can instead be

computed as the separate multiplications ofLT L
M
2

andLT
L+M

2
M
2

against new inputs

obtained from the original input.

(ii) Let Z =
(

z1
z0

)
be the initial data for a LT of sizeM and shiftL. Then at most

8M + 6M logM + 3M log M
2 operations are needed to compute the necessary

inputs for the pair of LTs at sizeM/2 which together, compute the original LT. In

particular, if Zε =
(

zε
1

zε
0

)
(ε = 0, 1) are the necessary input for the half-sized LTs

which compute the low order (ε = 0) and high order(ε = 1) transforms, then

Zε = Sε
L,M · Z (3.11)

= (L⊕ L) ·Mε · Z (3.12)

=

L 0

0 L

 ·

diagAL

ε M
2

diagBL

ε M
2

diagAL

ε M
2 −1

diagBL

ε M
2 −1

z1

z0

 . (3.13)

(iii) The matrixLT L
M has the factorization

LT L
M =

LT

L+M
2

M
2

LT L
M
2

 ·

S1
L,M

S0
L,M

(3.14)

whereS0
L,M andS1

L,M are defined as in (ii).

Proof. The low degree projections in the sizeM problem,〈AL
k , z1〉+〈BL

k , z0〉, 0 ≤ k <

M/2 only involve shifted Legendre polynomials of degree less thanM/2. Consequently,

FFTs for the2-Sphere–Improvements and Variations 359

according to Lemma 1 these inner products may be computed as inner products of the
lowpassed data with subsampled versions of the shifted Legendre polynomials, thereby
reducing it to a LT of sizeM/2.

To reduce the set of high order projections to a LT of half the size, we apply the
recurrence formula (2.12) to obtain

AL
M
2 +k

= A
L+M

2
k AL

M
2
+ B

L+M
2

k AL
M
2 −1

,

BL
M
2 +k

= A
L+M

2
k BL

M
2
+ B

L+M
2

k BL
M
2 −1

.

Consequently, we rewrite the high order transforms as〈
AL

M
2 +k

, z1

〉
+
〈
BL

M
2 +k

, z0

〉
=
〈
A

L+M
2

k , AL
M
2

z1+ BL
M
2

z0

〉
+
〈
B

L+M
2

k , AL
M
2 −1

z1+ BL
M
2 −1

z0

〉
. (3.15)

Since bothA
L+M

2
k andB

L+M
2

k have degree less thanM2 we can lowpass both sides of each
inner product in (3.15) and obtain〈

AL
M
2 +k

, z1

〉
+
〈
BL

M
2 +k

, z0

〉
=
〈
LA

L+M
2

k , L
(

AL
M
2

z1+ BL
M
2

z0

)〉
+
〈
LB

L+M
2

k , L
(

AL
M
2 −1

z1+ BL
M
2 −1

z0

)〉
. (3.16)

This completes the proof of (i). The proof of (ii) follows immediately. The stated form
of Zε follows from simply rewriting the collection of linear equations describing the new
data. The complexity result follows from the fact that application ofMε requires at most
4M operations and application ofL⊕L, an additional 3(M logM + M

2 log M
2) operations

(cf. Lemma 2).
Finally, (iii) is simply a restatement of (ii) in the setting of matrix arithmetic.

Using Lemma 5 we can now describe the full algorithm in a succinct way. Starting
with the original Legendre transform written asLT 0

N , part (iii) implies that this matrix
factors as

LT 0
N =

LT

N
2

N
2

LT 0
N
2

S1
0,N

S0
0,N

. (3.17)

Now we apply Lemma 5 to the half-sized LT matrices,LT 0
N
2

andLT M
N
2

producing the

360 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

factorization ofLT 0
N as

LT
3N/4
N/4

LT
N/2
N/4

LT
N/4
N/4

LT 0
N/4

·

S1
N
2 , N

2

S0
N
2 , N

2

S1
0, N

2

S0
0, N

2

S1
0,N

S0
0,N

.

To keep track of the factorization as we continue splitting, we’ll use a binary tree-based
indexing notation, indicated schematically in Figure 7. Given initial datas of lengthN ,

define the block vector of length 2N , Z =
(

s
0

)
. We will factor the matrixLT 0

N as a product

of logN block diagonal matrices such that for eachk, 1 ≤ k ≤ logN , the kth matrix
has 2k blocks made up of splitting matrices of the type described in the Splitting Lemma
(Lemma 5). These splitting matrices will be indexed by binaryk-tuplesEε = (ε1, ε2, . . . , εk),
Eε ∈ {0, 1}k, denoted asS Eε and defined by

S Eε = (L⊕ L) ·M Eε (3.18)

for

MEε =M(ε1,ε2,...,εk) =

←− 2 · N

2k−1 −→
diagAL(ε1,...,εk−1)

ε
k

N

2k−1
diagBL(ε1,...,εk−1)

ε
k

N

2k−1

diagAL(ε1,...,εk−1)

ε
k

N

2k−1−1
diagBL(ε1,...,εk−1)

ε
k

N

2k−1−1

↑

2 · N

2k−1

↓
. (3.19)

andL(Eε) = L(ε1, ε2, . . . , εm) = ε1
N
2 + ε2

N
4 + · · · + εm

N
2m .

With this notation and Lemma 5 we now have the following.

Theorem 2.
LetN = 2r and lets be any vector of lengthN .

(i) The Legendre transform ofs may be computed fromLT 0
N ·

(
s
0

)
in O(N log2 N)

FFTs for the2-Sphere–Improvements and Variations 361

FIGURE 7 Schematic illustration of the computation of the Legendre transform by recursive splitting.

operations via the factorization:LT 0
N = EFr−1 · · ·F1, where

Fj =

S(1,...,1,1)

S(1,...,1,0)

S(1,...,0,1)

S(1,...,0,0)

. . .

S(0,...,0,1)

S(0,...,0,0)

(3.20)

and the2j splitting matricesS Eε are defined as in(3.18), and

E = LT N−2
2 ⊕ LT N−4

2 ⊕ · · · ⊕ LT 2
2 .

(ii) Assuming the precomputation and storage of the masksMEε [see(3.19)] as well
as the cosine transforms of the shifted Legendre polynomialsA

L(Eε)
r , B

L(Eε)
r , then

the complexity of the Legendre transform ofs is O(N log2 N). More precisely, at
most

8 · N
2
+

r−1∑
a=1

(
2a − 1

) · 2 · 3

2

[
N

2a
log

N

2a
+ N

2a−1
log

N

2a−1

]
+(2a − 2

) · 4 · N

2a−1

operations are needed to compute the Legendre transform ofs.

362 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

Proof. Part (i) follows directly from a recursive application of Lemma 5. As for (ii), the
first term in the computation follows from the fact thatE is block diagonal withN

2 2× 4
matrices on the diagonal, each requiring 8 operations to multiply by a vector of length 4.
The summation which is the second term is the complexity of the successive multiplications
of theFj . This follows directly from the form of theS Eε . In particular noting that in general

(for Eε ∈ {0, 1}a, Eε 6= 0), 2 · 3
2

[
N
2a log N

2a + N

2a−1 log N

2a−1

]
+ 4 · N

2a−1 operations are required

to applyS Eε to an arbitrary input. WhenEε = 0, we may take advantage of the fact that
the lower half of the input vector will be all 0 and that the relevant diagonal blocks ofMEε
will be the identity and all 0’s as well. Summing the complexities at each level gives (ii).

The inductive nature of Theorem 2 shows that the algorithm is simply given by the
successive application of the splitting operators to the (changing) input. In practice, this
splitting is applied as long as it offers computational advantage. At this point the calculation
may be concluded by applying the shifted Legendre matrices according to the semi-naive
algorithm.

4. Fast Fourier Transform, Inverse Transform, and
Convolution for the 2-Sphere

The algorithm presented in the previous section enables us to write a fast algorithm for
the efficient calculation of spherical harmonic expansion, or Fourier transform, of a function
onS2 in terms of its samples on a regular grid. This is readily converted into a fast inversion
algorithm (transforming a set of Fourier coefficients into sample values) improving on the
results of [18]. These two algorithms combine to give an improved convolution algorithm.

4.1 Fast Fourier Transform for S2

Collecting the results of previous sections gives the following theorem.

Theorem 3.
LetB be a power of 2 andn = B2. If f (θ, φ) is in the span of{Ym

` | |m| ≤ ` < B, },
then then Fourier coefficientsf̂ (`, m) for ` < B, |m| ≤ ` can be computed inO(n log2 n)

operations from the4n sampled valuesf ((2j + 1)π/4B, 2πk/2B), 0 ≤ j, k ≤ 2B − 1,
using a precomputed data structure of sizeO(n log2 n).

Proof. From the Sampling Theorem we know that the Fourier transform may be com-
puted by means of finite sums,

f̂ (`, m) =
2B−1∑
j=0

2B−1∑
k=0

a
(B)
j f (θj , φk)Y

m
` (θj , φk)

whereθj = π(2j + 1)/4B andφk = 2πk/2B, and thea(B)
j are as defined in the Sampling

Theorem. Rewriting, we obtain

f̂ (`, m) = qm
`

2B−1∑
j=0

a
(B)
j P m

` (cosθj)

2B−1∑
k=0

e−imφkf (θj , φk) ,

FFTs for the2-Sphere–Improvements and Variations 363

where theqm
` are the normalization coefficients for the spherical harmonics. The inner

sums (defined as̆f (θj , m)) are computed for each fixedj and for allm in the appropriate
range by means of a fast Fourier transform. This will requireO(B2 logB) operations.

It remains to compute

f̂ (`, m) = qm
`

2B−1∑
j=0

a
(B)
j f̆ (θj , m)P m

` (cosθj)

which has the form of an associated Legendre transform for each fixedm. Each transform
can be accomplished inO(B log2 B) operations, and sincem ranges over 2B − 1 values,
the total number of operations needed to compute all values off̂ (`, m) is O(B2 log2 B).

4.2 Fast Inversion

For our purposes, the inverse transform is the map which takes as input a set of
complex numbersc`,m, interpreted as Fourier coefficients in a spherical harmonic expansion
and returns a set of sample values. The discussion is restricted to band-limited functions so
we consider only the case in which thec`,m vanish for` ≥ B for some bandwidthB > 0.

Definition 2. Thediscrete inverse spherical Fourier transformwith bandwidthB =
2b maps a collection of complex coefficientsc`,m, 0 ≤ m ≤ ` < B to a collection of
samples values via the formula

f (θj , φk) =
∑
`≥0

∑
|m|≤`

c`,mYm
` (θj , φk) ,

where the recovery is on the equiangular grid of the sampling theorem,θj = (j+1/2)π
2B

,

j = 0, . . . , 2B − 1; andφk = (k+1/2)π
B

, k = 0, . . . , 2B − 1.

Settingn = B2, this map transforms a collection ofO(n) Fourier coefficients to
O(n) samples of the function with the associated spherical harmonic expansion. Computed
directly, this would requireO(n2) calculations, orO(n3/2) by using a little reorganization
(cf. [18], Theorem 9). Our new result is that in fact, this too may be accomplished in
O(n log2 n) operations.

Theorem 4.
Let B = 2r be a fixed bandwidth. The discrete inverse spherical Fourier transform

for this bandwidth may be computed inO(n log2 n) operations, wheren = B2.

Proof. Let the Fourier coefficientsc`,m, 0 ≤ m ≤ ` < B be given. Our goal is to
compute the collection of samples of the inverse spherical Fourier transform

f (θj , φk) =
B−1∑
`=0

∑
|m|≤`

c`,mYm
` (θj , φk) .

Using the definition of theYm
` we rewrite this as

∑
|m|<B

e−imφj

B−1∑
`=|m|

c`,m qm
` P m

` (cosθk) , (4.1)

364 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

whereqm
` denotes the appropriate normalization constant. Leth(θk, m) denote the inner

sum

h(θk, m) =
B−1∑
`=|m|

c`,m qm
` P m

` (cosθk) .

Computed directly, each of the 4B2 values forh would require a summation ofO(B)

terms for a naive complexity ofO(B3). Instead we show how a simple “adaptation” of
the ideas of Section 3 yields a more efficient algorithm. Observe that the column vector
hm = (h(θ0, m), . . . , h(θ2B−1, m))t is obtained as a matrix-vector product

hm=

h(θ0, m)

h(θ1, m)
...

h(θ2B−1, m)

=

P m
m (cosθ0) · · · P m

B−1(cosθ0)

P m
m (cosθ1) · · · P m

B−1(cosθ1)

...
...

...

P m
m (cosθ2B−1) · · · P m

B−1(cosθ2B−1)

·

cm,mqm
m

cm+1,mqm+1
m

...

cB−1,mqB−1
m

= P̃m
B · c̃m

whereP̃m
B andc̃m are defined by the above equations. Notice that(P̃m

B)t is the Vandermonde-
like matrix for the orderm associated Legendre functions, and as such is the transpose of
the matrix whose application to a fixed set of sample values yields the associated Legendre
transform.

The key observation we now make is that the algorithm described in Section 3 for
computing the Fourier transform gives a factorization of the matrixP̃m

B as a product of
matrices whose structure admit efficient multiplication against an arbitrary vector. More
precisely, Section 3 shows that we have a factorization

P̃m
B =Mr−1 · · ·M1M0

such that a total ofO(B log2 B) operations are required to successively multiply theMi

against an arbitrary vector. A similar complexity result holds if instead, thetranspose
of each of the matrices is considered, and the product is reordered. Since(P̃m

B)t =
Mt

0Mt
1 · · ·Mt

r−1 it follows that the inverse transform may be computed inO(B log2 B)

operations as well.
To complete the computation, an abelian FFT is performed to compute the sums∑

m h(θk, m)e−imφk in O(B logB) operations for eachk, for a total additional cost of
O(B2 logB). Denoting the total number of samples byn = B2, we may write the total
cost asO(n log2 n), as desired.

4.3 A Fast Spherical Convolution Algorithm

Taken together, the fast forward and inverse transforms allow for the convolution of
two band-limited functions inL2(S2) to be computed efficiently—and exactly (in exact
arithmetic).

Defining convolution for two functions inL2(S2) uses the structure ofS2 as a quotient
of the groupSO(3). Generalizing the case of the circle, theleft convolution of h by f for
f, h ∈ L2(S2), is defined as

f ? h(ω) =
∫

g∈SO(3)

f (gη)h
(
g−1ω

)
dg . (4.2)

FFTs for the2-Sphere–Improvements and Variations 365

In (4.2)dg denotes the (essentially) unique invariant volume form onSO(3) andη denotes
the north pole.

By combining the fast expansion and synthesis algorithms of Sections 3 and 4.2, a fast
convolution algorithm is obtained. Given the sample values of two functionsf, g ∈ L2(S2)

of bandwidthB, we now give anO(n log2 n) algorithm (n = B2) to compute the sample
values of the convolutionf ? g thereby improving on theO(n1.5) algorithm in [18].

As in the more familiar case of convolution on the circle via the abelian FFT [8], the
spherical convolution algorithm may be decomposed into three basic steps:

(1) Computation of a forward transform;

(2) Pointwise multiplication of the appropriate transforms;

(3) Computation of the inverse transform of the result of step (2).

We have shown how to accomplish Steps (1) and (3) efficiently. We need only satisfy
Step (2). This uses the following relationship between the transform and the convolution.

Theorem 5 ([18], Theorem 1).
Letf, h ∈ L2(S2). Then

(̂f ? h)(l, m) = 2π

√
4π

2l + 1
f̂ (l, m)ĥ(l, 0) .

In particular, the convolution of functions of bandwidthB, yields a function of band-
width B.

Theorem 6.
Letf, g ∈ L2(S2) such that byf andg are band-limited with bandwidthB. Then the

n = O(B2)sample values of the convolutionf ?g at the points(θj , φk)whereθj = π(j+1/2)
2B

andφk = π(k+1/2)
B

may be computed inO(n log2 n)operations, versus theO(n2)operations
required by direct computation.

Proof. Using the algorithm described in Section 3, compute the Fourier coefficients of
f andg. Compute the pointwise products according to Theorem 5 for the convolutionf ?g

and finally, compute the inverse transform for the Fourier coefficients of the convolution
according to Theorem 4.

5. Variations of the Basic Algorithm

The recursive splitting described in Section 3 computes the discrete Legendre trans-
form of a vector of lengthN in O(N log2 N) operations, assuming that the splitting is
carried out as far as possible, i. e., to logN levels. By applying the analogous algorithms
to the samples of a function onS2 with bandwidthB, for the remaining Legendre func-
tionsP m

` , m 6= 0, the projections onto the spherical harmonicsYm
` , for each̀ in the range

0 ≤ ` < B and|m| ≤ ` are then efficiently obtained. This is the “basic” Driscoll–Healy
algorithm, which we subsequently refer to as theDH algorithm or DH. Our discussion
shows thatDH computes the Fourier coefficients of a function onS2 of bandwidthB in
O(n log2 n) operations forn = B2.

This is an asymptotic result, exact in exact arithmetic. For application to actual
problems of moderate size, we must consider issues of numerical reliability and compu-

366 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

tational efficiency in a floating point implementation. We must also demonstrate that an
implementation can obtain real speed-ups over existing algorithms at useful problem sizes.

We now turn to a discussion of some simple variations of our basic approach which
we use to obtain fast and reliable algorithms at various moderate problem sizes. Again we
specialize to the Legendre polynomial case.

• Variation 1. Using the reverse recurrence: TheDH-Mid algorithm.

This simple variation reduces the complexity by approximately one-half. The three-
term recurrence (2.8) is a forward recurrence. This also gives rise to thereverserecurrence

P`−1(x) = 2`+ 1

`
xP`(x)− `+ 1

`
P`+1(x) . (5.1)

Using (5.1) in a way analogous to the use of (2.8) we may define thereverse shifted
Legendre polynomialsin analogy with the functionsAL

r andBL
r defined for the forward

direction (2.9). For any fixed levelL, iterating the recurrence formula (5.1) backr steps
produces trigonometric polynomialsAL−r andBL−r such that

PL−r (cosθ) = AL−r (cosθ) PL−1(cosθ)+ BL−r (cosθ) PL(cosθ) , (5.2)

for r ≥ 2. This may be used in several ways to reduce computations.
First, this can provide a “balanced” version of the semi-naive algorithm. Section 3

shows that, given the vectorssL−1 andsL, the Legendre coefficient of degreeL+ r can be
computed inO(r) operations by passing to the cosine transform domain and forming the
inner product with the cosine transform vector of the shifted Legendre functions of degree
at mostr. Similarly, the Legendre coefficient of degreeL − r can be computed inO(r)

operations using reverse shifted Legendre polynomials of degree boundr. Again, simply
form the inner products of the cosine transforms ofsL−1 andsL with the cosine transforms
of the reverse shifted Legendre polynomials. In this way, we can compute a semi-naive
algorithm for the Legendre coefficients in the range[L− r, L+ r] which is “balanced” in
the sense that the number of operations required to compute any given transform in this
interval depends only on the distance of the index fromL. Furthermore, only the cosine
transform coefficients ofsL−1 andsL of degreer or less are used to compute these Legendre
coefficients.

We may also use this approach to expedite the splitting steps of the algorithm by
starting in the middle of the sequence and moving out to both the left and right from the
initial data. This is done as follows. From the initial datas0 we compute the lowpassed
subsampled sequencessN/2, sN/2+1, each of lengthN/2. Thens3N/4 and s3N/4+1 are
computed as before, but by using the three-term recurrence in the reverse direction (5.1)
the sequencessN/4 andsN/4+1 can be computed. The additional savings come from using
the initial data to computefour new sequences instead of two.

At the next stage, each of the pairssN/4, sN/4+1 ands3N/4, s3N/4+1 then act similarly
as initial data for obtaining the sequencessj , j = N/8, N/8+ 1, 3N/8, 3N/8+ 1 and
sj , j = 5N/8, 5N/8+ 1, 7N/8, 7N/8+ 1, respectively. The recursion continues down
to some base case. We call this algorithm theDH-Mid algorithm.

Asymptotically and theoretically, a full divide and conquer strategy is optimal. How-
ever, in actual implementations overhead costs can accrue and it is often the case that for
smaller problem sizes divide and conquer is no longer advantageous. Below this “breakeven
point” a more direct approach may be faster. We may successfully address this issue with
some of the simple variants discussed below. This basic idea uses a simple truncation of
the splitting of the basic algorithm at an appropriate level.

FFTs for the2-Sphere–Improvements and Variations 367

• Variation 2. The BoundedDH-Mid Algorithm.

The semi-naive algorithm described in Section 3.2 is quite competitive in speed for
moderate problems (N ≤ 256). We need to take this into consideration when optimizing
algorithms for problems of moderate size encountered in applications (256≤ N ≤ 1024).
In this range, we will find it useful to stop the splitting when the resulting subproblems
reach a given size.

Consequently, in this further variation, we useDH-Mid but only split down to a
fixed levelk, i. e., to a point at which all of the most recently computed sequencessj have
length 2k. At this point we switch over to a semi-naive approach to compute the remaining
Legendre transforms. For example, suppose the recursion halts after we have computed a
group of length 2k sequences which includessr , sr+1 andsr+k, sr+k+1. By using a semi-
naive method and the shifted Legendre and reverse shifted Legendre functions,sr , sr+1 can
be used to compute the vectorssj , j = r−k/2+1, r−k/2+2, . . . , r−1, r+2, . . . , r+k/

2−1. Similarly,sr+k, sr+k+1 can be used to computesj , j = r+ k/2, r+ k/2+1, . . . , r

+k− 1, r + k+ 2, . . . , r + k+ k/2− 1. The value ofk can be chosen for a given problem
size so as to minimize the number of operations.

• Variation 3. Simple split algorithm.

Here the idea is to immediately split the original problem of lengthN into C sub-
problems and run a semi-naive approach on each of the resulting subproblems. The input
data for each of the subproblems is computed directly from the original input data by mul-
tiplying all N samples ofs onto the appropriate samples of the Legendre functionsP`. In
terms of the tree description ofDH or DH-Mid (cf. Figure 7) this simply truncates the
tree immediately by computing only one level. In contrast, the other algorithms we have
described compute reduced size input data vectors for the subproblems recursively from
the coarser splitting at the previous level of the tree.

This has the advantage of simplicity, but at the expense of increased complexity.
Indeed, we shall see that

O
(
N

3
2 log

1
2 N

)
(5.3)

are required for the full transform.
From our description of the backward recurrence given above, we know that, after

computing the cosine transforms of the vectorssL−1 andsL, each of the Legendre coeffi-
cients with degree in the interval[L−r, L+r] can be computed inO(r) further operations.
This is done by forming the inner product against the cosine transform vector of the appro-
priate shifted or reverse shifted Legendre functions, each of which has degree less than or
equal tor. Furthermore, only the cosine transform elements ofsj−1 andsj of degreer or
less are used to compute the Legendre coefficients with degree in the interval[L−r, L+r].
In this way, we can obtain a very simple algorithm by splitting the original problem into
subproblems in which matrices derived from (reverse) shifted Legendre functions are ap-
plied to some fixed numberC of cosine transform vector pairsCsL−1, CsL, whereL is
evenly spaced in the range[0, N − 1]. Using analysis and experimentation, a value ofC

can be chosen which minimizes the execution time.
Specifically, given a fixed value forC, we can evenly space the values ofL by letting

L = (2j + 1)N

2C
+ 1, j = 0, . . . C − 1 . (5.4)

It is easy to see that, givenCsL−1, CsL as well as all of the required cosine transformed
shifted Legendre vectors,CAL

r , CNL
r , (0 < |r| < N

2C
) then

368 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

N2

4C2 + N
2C
− 2

operations are needed to compute the Legendre coefficients〈f, PL+r 〉 for |r| < N
2C

. With
C vector pairs{CsL−1, CsL} the total cost of computing Legendre coefficients using shifted
Legendre functions is

N2

4C
+ N

2
− 2C . (5.5)

Note that the assumption that the data structure of cosine transformed shifted Legendre
vectors is available, i. e., precomputed and stored, does not change the order of complexity

of the algorithm. All of these vectors can be computed inO(N2

C
), and stored in a data

structure of sizeO(N2

C
).

It remains to determine the complexity of computing theC vector pairs{CsL−1, CsL}.
These vectors are obtained by the fast cosine transform off PL, wheref and PL are
sequences of length 2N . Also, only the firstN2C

coefficients of the cosine series are needed.
Using a cosine transform algorithm derived from [64], each vector pair requires

2N log N
2C

multiplications, which gives a total cost for all vector pairs of

2NC log
N

2C
. (5.6)

Combining Equations (5.5) and (5.6) gives the total cost of computing the Legendre coef-
ficients as

N2

4C
+ 2NC log

N

2C
+ N

2
− 2C (5.7)

in terms of the number of multiplications. Minimizing forC in Equation (5.7) gives

C = O

(
N

1
2

log
1
2 N

)
and substituting this value ofC into Equation (5.7) gives

O
(
N

3
2 log

1
2 N

)
(5.8)

for the cost of the algorithm.
This algorithm may be an attractive candidate for parallelization as the computation

of each vector pair, and the Legendre coefficients derived from them, are independent of
other vector pairs, but the same sequence of arithmetic operations is used.

• Variation 4. Hybrid algorithms.

In this approach, the semi-naive algorithm is used to compute Legendre transforms
of degreesm (wherem is the order of the transform) throughr for some fixed boundr and
then the simple-split algorithm is used to compute the remaining Legendre transforms of
degreesr + 1 throughN − 1.

While the order of complexity for this algorithm is greater than theDH variants, the
constants and the overhead are small, and we will show in Section 6 that this algorithm
performs quite well in practice.

FFTs for the2-Sphere–Improvements and Variations 369

6. Numerical Results

We focused our attention on the semi-naive, simple split and hybrid algorithms. Initial
testing of the various, non-direct, algorithms revealed that for moderate problem sizes,
regardless of the platform, the basicDH algorithm was the slowest. Though theoretically
the basic algorithm is optimal, we found the cost of applying the smoothing operator to
be expensive. This was one reason why variations of the basic algorithm were developed.
Another reason, which will be discussed later, concerned stability.

Experiments were performed on a plethora of platforms of various vintages: a DEC
Alpha 500/200, an HP Exemplar X-Class SPP2000/64, a SGI Origin 2000, and a Linux Pen-
tium 3 workstation. Even though the HP and SGI machines both have parallel architectures,
our C code never took advantage of this. All tests were run on a single processor. The code,
freely available for download as the software package SpharmonicKit [61], was compiled
using the native compiler with available optimizations. Furthermore, when testing on all
but the Linux platform, we were able to “patch in” the very efficient FFT and DCT rou-
tines provided by FFTPACK [22] and hence improve the performance of all the algorithms
tested. We were unable to use FFTPACK on Linux because the GNU g77 compiler lacked
the options necessary to properly compile and link the Fortran code with the C code. In all
the results we present, it will be clearly stated which reflect FFTPACK “enhanced” code
and which do not. Of course, we can expect similar improvements in performance, on all
platforms,

The semi-naive algorithm was chosen as the standard against which we would measure
the performance of the variousDH-based algorithms. Previous work [17] has shown the
semi-naive algorithm to be both stable and faster than the direct algorithm.

When conducting timing tests, to average out timing variations due to multiprocessing
and discretization, we would execute the algorithm one thousand times. Unless stated
otherwise, it is the CPU time (in seconds) of the thousand iterations we report. Furthermore,
we assume all precomputation and storage of the cosine transforms of the shifted Legendre
polynomials prior to timing. To measure the error of the various algorithms, we employ the
following procedure:

1. Select a bandwidthB and orderm.

2. Generate a set of random Legendre coefficientsf̂ m
m , f̂ m

m+1, . . . , f̂ m
B−1, normally

distributed with mean 0 and standard deviation 1, using theMathematica© package
NormalDistribution.m.

3. Synthesize the function

f (cosθk) =
B−1∑
l=m

f̂ m
l P̃ m

l (cosθk)

wherek = 0, . . . , 2B − 1 andθk = π(2k+1)
4B

.

4. Apply the algorithm to this synthesized function, generating a new set of Legendre
coefficientsĝm

m, ĝm
m+1, . . . , ĝm

B−1.

5. Compute the error as

max
l

∥∥∥f̂ m
l − ĝm

l

∥∥∥ .

6. Repeat steps 2-5 ten times.

370 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

7. Compute the average and relative error over the ten trials.

The synthesis step (Step 3) will necessarily introduce some error which we have empirically
determined to be on the order of 10−9 in both the mean and standard deviation when
bandwidthB = 1024.

In the matter of the simple-split algorithm, we would always choose the number
of splits which minimized runtimeand average error. This would be determined by trial
and error. The number of splits used would not necessarily minimize the total number
of operations (as discussed in Section 5). A general lesson we learned is that theoretical,
optimal algorithms do not always yield the most cache-friendly algorithms. Inefficient
cache-usage can render “fast” algorithms slow.

With regards to the hybrid algorithm theswitch point of the algorithm, i. e., the degree
sw of the coefficient at which we switched from the semi-naive to simple split algorithm
was determined (after much experimentation) by the formula

sw =
{

m+ B−m
2 m < B

16

m+ 3(B−m)
4 otherwise

wherem is the order of the transform andB ≤ 1024 is the bandwidth of the problem.
Originally, the above formula was used on all platforms and at all bandwidthsB. However,
we discovered that at problem sizeB = 1024 we could increase the simple-split portion
of the hybrid algorithm on the HP, SGI and Linux machines (butnot the DEC) and get a
bigger “win” over the pure semi-naive algorithm. Therefore, we used the following separate
formula when running bandwidthB = 1024 on those non-DEC Alpha platforms:

sw = m+ 1024−m

2
.

Choosing thissw seemed to minimize the runtime. Of course, your mileage may vary.
We first give results for orderm = 0 transforms. In Figure 8 we plot the ratios of

the running times of the various algorithms versus the semi-naive algorithm on the four
platforms. The runtimes themselves are plotted in Figure 9. All but the Linux results in
Figures 8 and 9 reflect use of FFTPACK.

The dependence of an algorithm’s performance on architecture is quite apparent.
On the DEC, the simple-split and hybrid algorithms gain an advantage over the semi-
naive algorithm between bandwidthsB = 256 andB = 512. On the HP and SGI, the
simple-split and hybrid algorithms are competitive with the semi-naive algorithm starting
at approximatelyB = 512. And on the Linux, it’s a definite win for the hybrid and
simple-split algorithms atB = 256. A transform of sizeB = 1024 is necessary for the
basic algorithm to be competitive with the semi-naive algorithm on all platforms. Table 2.1
gives the average and relative errors of the algorithms on the DEC Alpha. These errors are
representative of what was measured on all platforms.

Figure 8 represents remarkable evidence of how computer architecture can effect
performance. Keep in mind that identical C code was compiled on all machines. The C
code was not written to take advantage of any particular architectural features. In fact, the C
code was developed on the DEC.

Next, in Figures 10 and 11 we give the timing results for orderm = B
2 transforms.

As before, all but the Linux results in Figures 10 and 11 reflect use of FFTPACK. Errors
are given in Table 2.2.

FFTs for the2-Sphere–Improvements and Variations 371

FIGURE 8 DLT runtime ratios vs. Semi-naive, Orderm = 0.

When doing transforms of orderm = B/2, the basic algorithm was not tested because
we found it to be numerically unstable at high orders. The shifted Legendre polynomials
proved to be the source of the instabilities. To illustrate, suppose the bandwidth isB = 1024
and the order ism = 512. Using the basic algorithm, the first recursive splitting involves
multiplying the weighted signal by the shifted Legendre polynomialA512

256. As Figure 12
makes clear, multiplying byA512

256would effectively zero out the sample values in the middle
and stretch those near the end points to absurd values. For moderate and larger problem
sizes, beginning at approximately orderm = 4, too great a shift will introduce instabilities.

This is why we do not test the basicDH andDH-Mid algorithms. Their “divide-
and-conquer” structure is not only expensive computationally (as opposed to theoretically
optimal), but it also requires use of shifted Legendre polynomials. At present, the means
to achieve a stableDH and DH-Mid algorithm still eludes us. Of course, one could
use “stability bypass operations,” a technique first developed in [50], or the philosophically
related stabilization procedure proposed in [55], to overcome either algorithm’s instabilities.
However, these techniques degrade somewhat the runtime performance and make them less
competitive than the semi-naive algorithm, at least at the bandwidths we investigated. So

372 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

FIGURE 9 DLT runtimes (in CPU seconds) for 1000 iterations, Orderm = 0.

the moral we take from this lesson is this: to use shifted Legendre polynomials, take care
not to shift too far with them.

The simple split algorithm can still be used with reasonable accuracy. Provided that
enough initial splits are made, the numerically unsound shifted Legendre polynomials can
be avoided. However, while more initial splits imply shifts of smaller distance, they do
come with the penalty of increasing execution time. Recall that more splits require more
discrete cosine transforms, and we have found these to be expensive. This can be seen
in the Figure 10. At orderm = B

2 , the simple-split algorithm takes significantly longer
to run than the semi-naive algorithm. This difference comes completely from the cost of
doing cosine transforms. Profiling the code on the DEC at bandwidthB = 1024 reveals
that the semi-naive algorithm runs in roughly 45% of the time the simple-split algorithm
spends simply doing cosine transforms. To achieve a numerically sound answer with the
simple-split algorithm atB = 1024,m = 512, 32 splits must be performed.

The hybrid algorithm, however, does remains competitive with semi-naive at order
m = B

2 , both in terms of runtime and accuracy, on the SGI and HP platforms atB = 1024,
and atB = 512 on the Linux Pentium. Even though the hybrid algorithm uses shifted
Legendre polynomials, it uses only relatively “nice” shifted Legendre polynomials. The

FFTs for the2-Sphere–Improvements and Variations 373

TABLE 2.1

Orderm = 0 DLT Average (First Row) and Relative (Second Row) Errors on a
DEC Alpha Workstation

Bandwidth Semi-naive Basic Simple split Hybrid
128 5.9138e-11 5.9146e-11 (1) 5.9130e-11 (1) 5.9120e-11 (1)

4.4843e-09 4.4860e-09 4.4802e-09 4.4794e-09
256 2.0897e-10 2.0884e-10 (1) 2.0887e-10 (1) 2.0885e-10 (1)

3.6380e-08 3.6388e-08 3.6230e-08 3.6128e-08
512 5.8493e-10 5.8475e-10 (1) 5.8496e-10 (2) 5.8499e-10 (2)

3.6618e-07 3.6625e-07 3.6670e-07 3.6665e-07
1024 3.0777e-09 3.0760e-09 (2) 3.0764e-09 (3) 3.0771e-09 (3)

6.4634e-06 6.4683e-06 6.4645e-06 6.4639e-06
For the basic algorithm, the number in parentheses refers to how many levels of
recursive splitting were performed. Likewise, for the simple split and hybrid
algorithms, the number in parentheses refers to how many splits were done.

TABLE 2.2

Orderm = B/2 DLT Average (First Row) and Relative (Second Row) Errors on
an SGI Origin Workstation

Bandwidth Semi-naive Simple split Hybrid
128 7.4787e-11 4.5475e-09 (3) 7.4795e-11 (1)

3.9475e-09 1.3638e-07 3.9471e-09
256 2.4867e-10 8.2479e-10 (8) 2.4866e-10 (1)

2.3683e-08 2.2254e-08 2.3683e-08
512 1.1740e-09 5.5436e-09 (16) 1.1755e-09 (2)

8.9257e-08 9.9039e-08 8.9252e-08
1024 4.6725e-09 1.9154e-07 (32) 4.6725e-09 (7)

9.9888e-07 1.4598e-06 1.0024e-06
For the simple split and hybrid algorithms, the number in parentheses refers to
how many splits were done.

rate at which max
x∈[−1,1]

∣∣∣AL
r (x)

∣∣∣→∞ asr → ∞ is slower for large values ofL than for

small. This also holds true forBL
r (x). For example, assuming bandwidthB = 1024 and

orderm = 512, we have the following maximum values:

max
x∈[−1,1]

∣∣∣A768
10 (x)

∣∣∣ ≈ 3612

and

max
x∈[−1,1]

∣∣∣A512
10 (x)

∣∣∣ ≈ 6× 1011 .

This is the case because the initial conditions for the recurrence relations which generate
the shifted Legendre polynomials grow smaller the furtherL is from m. By applying the
semi-naive technique to compute the lower degree coefficients, the hybrid algorithm avoids
precisely those shifted Legendre polynomials which contribute most to error.

374 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

FIGURE 10 DLT runtime ratios vs. Semi-naive, Orderm = B/2.

Since, on the Linux, HP and SGI platforms, the hybrid algorithm is both faster than
the semi-naive algorithm and stable for ordersm = 0 throughm = 512 atB = 1024, a
significant savings can be achieved when performing a forward spherical transform. We im-
plemented a hybrid spherical transform which works as follows. For ordersm = 0 through
m = B/2, the hybrid algorithm is used in performing the discrete Legendre transforms.
For the remaining orders, the semi-naive algorithm is used.

We now present two sets of timing results. First, in Table 2.3 we give running times,
on three different platforms, for the semi-naive and hybrid spherical transform algorithms,
and the freely available software package SPHEREPACK [62]. The semi-naive and hybrid
spherical transform algorithms in Table 2.3 reflect use of FFTPACK. We should note that,
unlike all the algorithms discussed up to this point, SPHEREPACK assumes the function
is sampled (inθ) on the Gaussian points (i. e., Legendre points) and not the Chebyshev

points (i. e., cos
(

π(k+1/2)
2B

)
). Hence, when doing a forward spherical transform of sizeB,

SPHEREPACK expects the function to be sampled on a 2B ×B grid, while the semi-naive
and hybrid spherical transform algorithms require the sampling to be on a 2B × 2B grid.

As the bandwidth increases, the difference between the SPHEREPACK and other
timings grows larger. At bandwidthB = 512, the semi-naive and hybrid algorithms are

FFTs for the2-Sphere–Improvements and Variations 375

FIGURE 11 DLT runtimes (in CPU seconds) for 1000 iterations, Orderm = B/2.

TABLE 2.3

Time (in CPU Seconds) for 10 Iterations of a Forward Spherical Transform on the DEC, HP and SGI; *: Walltime

DEC Alpha SGI Origin HP Exemplar
B SPHEREPACK Seminaive Hybrid Seminaive Hybrid Seminaive Hybrid

128 8.33e−01 6.83e−01 7.67e−01 6.00e−01 6.60e−01 6.30e−01 6.40e−01
256 6.21e+00 4.25e+00 4.20e+00 3.67e+00 3.76e+00 3.52e+00 3.46e+00
512 4.77e+01 2.87e+01 2.79e+01 2.23e+01 2.25e+01 1.99e+01 1.94e+01
1024 NA NA NA 3.21e+02 2.41e+02 2.72e+02 1.77e+02
1024 NA NA NA 3.30e+02* 2.52e+02* 5.16e+02* 3.19e+02*

nearly 40% faster than SPHEREPACK. Although we were not able to test SPHEREPACK
on the Linux, HP or SGI, given the results obtained on the DEC, we believe we could
reasonably expect that SPHEREPACK would run slower than the semi-naive and hybrid
algorithms on these platforms as well.

In Table 2.4, partially as a comparison with Table 2.3, we give results of running the
semi-naive and hybrid spherical transform algorithms on the Linux and SGI, in this case
without taking advantage of FFTPACK in either algorithm. When comparing Tables 2.3
and 2.4, the sensitivity of the SGI to the use (or not) of FFTPACK is quite pronounced.

376 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

FIGURE 12 A512
256: sampled 1024 times in the interval[−1, 1].

Errors are given in Table 2.5.

TABLE 2.4

Time (CPU Seconds) for 10 Iterations of a Forward Spherical
Transform, Without the use of FFTPACK; *: Walltime

Linux Pentium SGI Origin
bw Seminaive Hybrid Seminaive Hybrid
128 6.80e−01 7.00e−01 1.49e+00 1.67e+00
256 3.46e+00 3.51e+00 7.76e+00 9.38e+00
512 2.44e+01 2.30e+01 4.33e+01 5.91e+01
1024 2.36e+02 1.74e+02 5.85e+02 4.88e+02
1024 5.86e+02* 3.29e+02* 5.66e+02 5.43e+02*

Due to local hardware limitations (the source of which will be apparent in the following
sentence), we did not run theB = 1024 forward spherical transform on the DEC. At
B = 1024, the semi-naive spherical transform requires a precomputed data structure on the
order of 1.3 gigabytes. The hybrid spherical transform requires under 0.9 gigabytes. Both
these data structures are far too large to be entirely contained in memory. Therefore we
had to read the precomputed data off disk, and this is why we also report the walltime. We
believe that this is a legitimate quantity to mention because, in practice, we would expect
not toprecompute the data structures every time prior to performing a spherical transform.

For the record, the HP walltime given in Table 2.3 was obtained when the precomputed
data was saved on a disk specially configured to allow 30% faster disk i/o than on a normally
configured disk. Experiments confirmed this when the data was saved on such a “normal”
disk. We note that the CPU time measured in both experiments was virtually identical, as
to be expected.

We emphasize that although the asymptotic optimality of the basic algorithm is a
theoretical result, it establishes the utility of shifted Legendre polynomials in developing
fast algorithms.

FFTs for the2-Sphere–Improvements and Variations 377

TABLE 2.5

Errors, Over 10 Iterations, on the Linux Pentium for the Semi-Naive and
Hybrid Forward Spherical Transforms, for BandwidthB = 512, 1024

B = 512 B = 1024
Seminaive Hybrid Seminaive Hybrid

Average Error 2.2077e-09 2.1003e-09 7.8214e-09 1.8142e-08
Std Dev 1.4125e-10 1.0797e-10 6.5612e-10 2.2814e-09

Relative Error 1.7037e-07 1.2718e-07 6.9960e-06 1.5200e-06
Std Dev 1.0059e-07 5.1994e-08 1.2784e-05 1.1063e-06

7. Two Applications

As stated in Section 1, a fast Fourier transform forS2, as well as a fast convolution
algorithm have many ready-made applications in applied science (see e. g., [52, 38, 59, 12,
48, 29, 28, 43].) In this section we examine in a little more detail two of these, one for the
efficient computation of the bispectrum, potentially of use for image processing insensitive
to rotations, and the other to matched filtering onS2.

7.1 Computation of the Bispectrum and Triple Correlation

The techniques of multiple correlations and higher order spectra have been developed
for nonabelian Lie groups and their homogeneous spaces by R. Kakarala [37]. Of particular
interest is the triple correlation and its associated Fourier transform, the bispectrum.

For functions on the line, the triple correlation is the integral of the product of the
function with two independently shifted copies of itself. The resulting function onR2

determines the original function up to translation. The usefulness of computing the triple
correlation derives from the fact that it is (1) insensitive to additive Gaussian noise; (2) retains
most of the phase information of the underlying signal and (3) is invariant under translation of
the underlying signal. This makes it useful in recovering a signal from multiple observations
in situations in which the signal may be translating on a noisy background.

Kakarala has been able to generalize many of the results for functions on the line to
arbitrary locally compact groups and their homogeneous spaces. For particular examples
of interest such as the sphere, a suitably defined triple correlation of a band-limited function
is again unique up to translation, (assuming that the Fourier coefficients are nonsingular)
and insensitive to additive Gaussian noise. This suggests possible applications for global
rotational motion compensation and Kakarala goes on to suggest possible applications to
imaging the heart [12].

The techniques which we have developed for fast, reliable spherical convolution
admit almost immediate application to fast, reliable computation of the triple correlation or
bispectrum on the sphere. A detailed explanation of this is beyond the intended scope of
this article. However, the following abbreviated discussion should give some indication of
our ideas.

To get to the bispectrum on the sphere we must go through the bispectrum for functions
on its coverSO(3). If f ∈ L2(SO(3)), then the triple correlation off is the function on

378 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

SO(3)× SO(3) given by

a3,f (s, t) =
∫

SO(3)

f (gs)f (gt)f (g) dg

wheredg denotes Haar measure onSO(3). Assumingf is integrable onSO(3), thena3,f

is integrable onSO(3)× SO(3).
The irreducible representations ofSO(3) are naturally indexed by nonnegative inte-

gers, one irreducible of dimension 2l + 1 for eachl ≥ 0, which we denote asρl . Conse-
quently, the irreducible representations ofSO(3)× SO(3) are given by all possible tensor
productsρl ⊗ ρl′ , so are indexed by all pairs{l, l′} with l ≥ l′ ≥ 0.

The Fourier transform off atρl , denoted asf̂ (l) is the integral

f̂ (l) =
∫

SO(3)

f (g)ρl(g)† dg

where † indicates conjugate transpose. The Fourier transform off is the collection
{f̂ (l)}l≥0.

Similarly, the Fourier transform of a function onSO(3)× SO(3) will be the analo-
gously defined collection{f̂ (l, l′)}l′≥l≥0. The bispectrum off is Fourier transform ofa3,f .
In [37] Kakarala shows how the bispectrum may be computed from the Fourier transform
of f ∈ L2(SO(3)). For this we need to introduce one more piece of notation. Notice that
SO(3) has a natural embedding inSO(3)× SO(3) as the diagonal subgroup. Considered
as such, each representationρl′,l when restricted to the diagonal will be equivalent to a
direct sum of appropriateρj . Thus, there exists an invertible matrixCl,l′ such that

ρl,l′(s, s) = Cl,l′
[
ρj1(l,l

′)(s)⊕ ρj2(l,l
′)(s)⊕ · · · ⊕ ρjm(l,l′)(s)

]
C

†
l,l′

for suitable indicesji(l, l
′).

Theorem ([37], Lemma 3.2.3).
With the notation as above,

â3,f

(
l, l′

)= f̂ (l)⊗ f̂
(
l′
)
Cl,l′

[
f̂
(
j1
(
l, l′

))†⊕ f̂
(
j2
(
l, l′

))†⊕ · · · ⊕ f̂
(
jm
(
l, l′

))†]
C

†
l,l′ (7.1)

Whenf ∈ L2(SO(3)) comes from a function on the sphere, (i. e.,f ∈ L2(SO(3))

is rightSO(2)-invariant) then the matrix̂f (l) will have entries all 0 except, possibly, for a
single column which (up to a normalization constant) will contain the associated Legendre
transforms {

f̂ (l,−l), . . . , f̂ (l, 0), . . . , f̂ (l, l)
}

.

Thus, if f is band-limited, then the bispectrum will only involve a finite number
of Fourier transforms. For eachl, l′, â3,f (l, l′) can then be computed directly as follows.
Compute first the spherical harmonic expansion as described in Section 3. This precomputes
all possible Fourier transformŝf (l) for any f ∈ L2(S2). The inner direct sum of the
matrices [

f̂
(
j1
(
l, l′

))†⊕ f̂
(
j2
(
l, l′

))†⊕ · · · ⊕ f̂
(
jm

(
l, l′

))†]
is then constructed by retrieving the appropriate associated Legendre transforms and orga-
nizing them together into a single sparse block diagonal matrix. This is then conjugated by
the precomputed change of basis matricesCl,l′ . Finally the lefthand factor

f̂ (l)⊗ f̂
(
l′
)

FFTs for the2-Sphere–Improvements and Variations 379

simply requires the computation of all possible pointwise productsf̂ (l, m)f̂ (l′, m′) orga-
nized as the appropriate single nonzero column in some suitably defined matrix. These
matrices are then all multiplied together, giving the relevant component of the bispectrum.

7.2 Matched Filters

One simple application of the techniques of this article may be found in certain
problems of detection, estimation, and pattern matching for data defined on the sphere.
This sort of data arises in geophysics, computer vision, or quality assurance for computer
designed and manufactured parts.

A simple problem arising in this area may be stated as follows: Suppose we are
considering a known signal or pattern in the directional data setting, described by a function,
f (ω) on the sphere. In many situations, we are interested in determining the presence or
absence of this signal in data coming from measurements of some real world phenomenon.
This is often made more difficult by the presence of some random interference, or noise, in
the measurements. In the simplest cases, we assume that one of two hypotheses obtains for
the measured data,y(ω):

• H0: y(ω) = n(ω)

• H1: y(ω) = f (ω) + n(ω),

wheren(ω) is a random process on the sphere representing the noise. Our task is then to
devise an algorithm which takes a particular instance of the measured data and returns an
assessment of whether or not the signal is present in the data.

A more interesting version of this problem occurs when, in addition to the additive
noise, the pattern signalf may have undergone a rotation which is unknown to us. That is,
whenf is present, the measured data has the form

y(ω) = 3(g)f (ω)+ n(ω) ,

whereg is an unknown element ofSO(3), and3(g) is the associated operator,3(g)f (ω)

= f (g−1ω). In this case we have the more involved detection and estimation problem;
determine if a rotated version of the pattern is present, and if so, estimate the value of the
rotation parameterg. We will concern ourselves with this question.

The intuitive approach to this involves a template matching operation. That is, one
correlates the data with the pattern one is looking for, which amounts to forming the inner
product of the data with a large number of shifted versions of the pattern. Those shifts which
produce a large inner product, or correlation, between the pattern and the data are regarded
as good indicators that there really is a copy of the pattern shifted to the corresponding
location and buried in the noise. This correlation process is known as matched filtering; it
amounts to computing the function

χ(g) =
∫

S2
y(ω)3(g)f (ω) dω .

This matched filter is also indicated by a standard statistical analysis for these sorts
of problems. This analysis yields optimal detection and estimation solutions involving a
computation of the appropriatelikelihood function,[39, 71, 69]. Basically, for a given
measurement of data, the value of this function gives the likelihood of having made that

380 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

particular observation given a certain hypothesis (signal present or signal absent) or a given
value of the unknown parameter.

For example, suppose we know that a rotated version of the signal is present, in the data
processy(ω), and we wish to know where it is. This is the same as estimating the rotation
parameterg. We assume that the additive noisen(ω) is Gaussian and white. The latter term
refers to the covariance structure of the noise, implying first that the covarianceR(ω1, ω2) =
E[n(ω1)n(ω2)] is actually rotation independent, so thatR(ω1, ω2) = R(gω1, gω2) for any
rotationg ∈ SO(3). This property is sometimes referred to as “stationarity.” A consequence
of stationarity is thatR is determined by the valuesR(ω) = R(ω, η), for η the north pole of
the sphere. White noise is a particular stationary noise with point mass covariance;R(ω)

= σ 2δη(ω). Strictly speaking, this requires the usual sorts of mathematical temporizing
required when dealing with distributions; we’ll assume that is familiar.

The likelihoodL(g) of a particular value of the parameterg given the datay is the
probability density for the random variabley = 3(g)f + n evaluated at the particular
observed measurement valuesyo; this is the same aspy(yo; g) = pn(yo −3(g)f). Using
our assumptions onn and some limiting arguments, we obtain for our likelihood:

L(g) ∝ e
− ||yo−3(g)f ||22

2σ2

∝ e
<yo,3(g)f >

σ2 ,

as the other terms which come from expanding the norm,e
− ||yo ||22

2σ2 ande
− ||3(g)f ||22

2σ2 = e
− ||f ||

2
2

2σ2

are constant, independent ofg. Thus the maximum likelihood estimate ofg is

Arg Maxg∈SO(3)

∫
S2

y(ω)3(g)f ω dω .

Let us consider now a simple case in which the pattern signal is rotationally symmet-
ric. In fact, we takef to be the analog of the normal density on the sphere, the Fisher–von
Mises densityCκ exp(κ cosθ). Here,κ is a concentration parameter,Cκ a normalizing
factor. In this case, the matched filter expression actually reduces to a function defined
on the sphere, rather than the entire group, due to rotation invariance. Below we show the
results of some experiments in whichf is rotated and buried in white noise, and then passed
through a matched filter. The results are shown in Figure 13.

FIGURE 13 (a) The pattern signalf (ω) is the Fisher–von Mises densityCκ exp(κ cosθ), with concentration
parameterκ = 64, and rotated by an arbitrary rotationg on the sphere; (b)3(g)f (ω) has been buried in additive
white noisen(ω) to simulate noisy measured datay(ω); (c) The likelihood functionL(g) computed by using the
fast convolution algorithm to convolvey(ω) with a matched filter. The positiongmax of the maximum value of
L(g) indicates the maximum likelihood estimate of the position of the pattern signalf (ω).

FFTs for the2-Sphere–Improvements and Variations 381

8. Summary and Future Directions

We have presented a divide-and-conquer algorithm for the efficient and exact com-
putation of the forward and inverse Fourier transform of a band-limited function on the
2-sphere, which in addition provides a fast algorithm to compute the exact convolution of
two such functions. We give evidence that by fine-tuning different variations of the basic al-
gorithm, highly efficient and numerically reliable implementations can be obtained. These
algorithms have a wide range of applicability in a great range of scientific disciplines.

We view this work as another step in the still nascent development of algorithms and
applications for efficient nonabelian harmonic analysis. Given the small ratio of nonabelian
to abelian articles, it seems that there are still many potentially fruitful directions to pursue
(see also [47, 36]).

1. Fine-tuning. It is clear that there are many parameters to vary over a range of “simple-
split-like” algorithms. The forthcoming article [32] explores some of these variations and
gives strong indications that highly stable and efficient implementations of this recurrence-
based exact approach are feasible. Beyond that it is also clear that the execution time
is architecture dependent. It would be of interest to pursue in this setting the sort of
architecture-optimization analysis shown to be so effective in the abelian FFT case [4].

2. Vector and tensor harmonic expansions.For various applications in meteorology, it is
also important to compute the expansions of vector and tensor fields in terms of vector and
tensor harmonics. With an appropriate definition, this may be reduced to the computation
of several individual Fourier transforms on the 2-sphere, so that our algorithms may be
applied [42].

3. Parallelizabilty. The divide-and-conquer nature of the basic algorithm indicates that ef-
ficient parallel implementations may be possible. The technical report [30] was a first step in
this direction. Recently, Inda et al. develop and discuss an efficient parallel implementation
of the basic algorithm based on polynomial arithmetic [36].

4. Improved complexity. Our algorithms only use one of the recurrences satisfied by the
Pm

` . Perhaps through the use of other recurrences the overall complexity can be reduced to
O(n logn).

5. Other compact groups and their quotients. Due to its applicability, we have con-
centrated our efforts on developing algorithms for the 2-sphere. The basic ideas shown
here work (in theory) for any compact group and its quotients (cf. [44, 45, 47]). Recent
work explores implementations for the full orthogonal group as well as higher orthogonal
groups [41]. Identification of new applications in this setting would probably dictate the
priorities of related software development. The articles [33, 31, 58] give some indication
of the wide variety of applications being found for these generalized FFTs.

6. Noncompact groups.G. Chirikjian and his collaborators (esp. A. Kyatkin) have been
pursuing an active program developing FFTs for noncompact nonabelian groups, especially
the Euclidean motion groups in two and three dimensions. Algorithms and implementa-
tions have been developed for use in areas such as motion planning for robotics, pattern
recognition. This is an exciting new direction of work with many opportunities for both
theoretical and practical development. See the book [13] for both a development of the
theory as well as an encyclopedic collection of references.

7. Quantum analogues.Our algorithm is effectively a sparse structured unitary matrix

382 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

factorization. As such, it could permit an efficient “quantum” implementation (see e. g.,
[35] for descriptions of quantum FFTs for finite noncommutative groups). It would be of
interest to pursue this.

Acknowledgment

We have benefited greatly from close contact with the National Center for Atmo-
spheric Research (NCAR). We thank NCAR’s Scientific Computing Division for their
hospitality on several occasions and access to their HP Exemplar, a machine named Sioux.
In particular, we thank Mark Taylor for helping to educate us in the ways of scientific com-
puting for climate modeling and helping us to run our comparisons against SPHEREPACK.
Thanks also to Paul Swarztrauber for helpful discussions and encouragement.

References

[1] Ahmed, N., Natarajan, T., and Rao, K.R. (1974). Discrete cosine transforms,IEEE Transactions on Com-
puters,23, 90–93.

[2] Aho, A., Hopcroft, J., and Ullman, J. (1976).The Design and Analysis of Computer Algorithms,Addison-
Wesley, Reading.

[3] Alpert, B. and Rokhlin, V. (1991). A fast algorithm for the evaluation of Legendre transforms,SIAM J. Sci.
Statist. Comput.,12, 158–179.

[4] Auslander, L., Johnson, J.R., and Johnson, R.W. (1996). Multidimensional Cooley–Tukey algorithms re-
visited,Adv. in Appl. Math.,17(4), 477–519.

[5] Auslander, L. and Tolmieri, R. (1979). Is computing with the fast Fourier transform pure or applied math-
ematics?,Bulletin of the American Mathematical Society,(N. S.),1, 847–897.

[6] Barrucand, P. and Dickinson, D. (1968). On the associated Legendre polynomials, inOrthogonal Expansions
and their Continuous Analogues,Southern Illinois University Press, Carbondale.

[7] Biedenharn, L.C. and Louck, J.D. (1981).Angular Momentum in Quantum Mechanics,Addison-Wesley,
Reading.

[8] Borodin, A. and Munro, I. (1975).The Computational Complexity of Algebraic and Numeric Problems,
Elsevier, New York.

[9] Boyd, J. (1989).Chebyshev and Fourier Spectral Methods,Lecture Notes in Engineering, Vol. 49, Springer-
Verlag, NY.

[10] Bshouty, N., Kaminski, M., and Kirkpatrick, D. (1988). Addition requirements for matrix and transposed
matrix products,J. of Algorithms,9, 354–364.

[11] Calvetti, D. (1991). A stochastic roundoff error analysis for the fast Fourier transform,Math. Comput.,
56(194), 755–774.

[12] Chen, C.W. and Huang, T.S. (1990). Epicardial motion and deformation estimation from coronary artery
bifurcation points, inProc. of Third. Int. Conf. on Comp. Vision, Dec. 4-7, 1990,IEEE Press, 456–460.

[13] Chirikjian, G.S. and Kyatkin, A.B. (2000).Engineering Applications of Noncommutative Harmonic Anal-
ysis: With Emphasis on Rotation and Motion Groups,CRC Press.

[14] Cooley, J.W. and Tukei, J.W. (1965). An algorithm for machine calculation of complex Fourier series,Math.
Comput.,19, 297–301.

[15] Cormen, T.H., Leiserson, C.E., and Rivest, R.L. (1990).Introduction to Algorithms,MIT Press.

[16] Diaconis, P. (1980). Average running time of the fast Fourier transform,J. Algorithms,1, 187–208.

[17] Dilts, G.A. (1985). Computation of spherical harmonic expansion coefficients via FFTs,J. of Computational
Physics,57(3), 439–453.

FFTs for the2-Sphere–Improvements and Variations 383

[18] Driscoll, J.R. and Healy, D. (1989/1994). Computing Fourier transforms and convolutions on the 2-sphere,
(extended abstract) inProc. 34th IEEE FOCS,344–349;Adv. in Appl. Math.,15, 202–250.

[19] Driscoll, J.R., Healy, D., and Rockmore, D. (1997). Fast discrete polynomial transforms with applications
to data analysis for distance transitive graphs,SIAM J. Comput.,26(4), 1066–1099.

[20] Duncan, B.S. and Olson, A.J. (1993). Approximation and characterization of molecular surfaces,Biopoly-
mers,33, 219–229.

[21] Elliot, D.F. and Rao, K.R. (1982).Fast Transforms: Algorithms, Analyses, and Applications,Academic
Press, New York.

[22] FFTPACK is a freely available collection of FORTRAN programs for computing one-dimensional fast
Fourier transforms developed at NCAR by Paul Swarztrauber.

[23] FFTW is a C subroutine library for computing the Discrete Fourier Transform (DFT) in one or more
dimensions, of both real and complex data, and of arbitrary input size. FFTW is a freely available at
http://www.fftw.org .

[24] Freeden, W. (1980). On integral formulas of the (unit) sphere and their application to numerical computation
of integrals,Computing,25, 131–146.

[25] Gallagher, N.C., Wise, G.L., and Allen, J.W. (1978). A novel approach for the computation of Legendre
polynomial expansions,IEEE Transactions on Acoustics, Speech, and Signal Processing,vol. ASSP-26(1),
105–106.

[26] Gilbert, F.A. (1971). Inverse problems for the earth’s normal modes, inMathematical Problems in the
Geophysical Sciences,Vol. I, American Mathematical Society, Providence.

[27] Greengard, L. (1994). Fast algorithms for classical physics,Science,265, 909–914.

[28] Healy, D. and Kim, P. (1996). An empirical Bayes approach to directional data and efficient computation
on the sphere,Ann. Stat.,24(1), 232–254.

[29] Healy, D., Hendriks, H., and Kim, P. (1993). Spherical deconvolution with application to geometric quality
assurance, Technical Report, Department of Mathematics and Computer Science, Dartmouth College.

[30] Healy, D., Moore, S., and Rockmore, D. (1994). Efficiency and stability issues in the numerical convolution
of Fourier transforms and convolutions on the 2-sphere, Technical Report PCS-TR94-222, Department of
Computer Science, Dartmouth College.

[31] Healy, D., Olson, T., Rockmore, D., and Mirchandani, G. Wreath products for image processing, inPro-
ceedings of 1996 ICASSP, Vol. 6, 3582–3585.

[32] Healy, D., Rockmore, D. and Kostelec, P. Stabilized algebraic FFTs on the 2-sphere, preprint.

[33] Healy, D., Rockmore, D., and Moore, S. An FFT for the 2-sphere and applications, inProceedings of 1996
ICASSP, Vol. 3, 1323–1326.

[34] Heideman, M.T., Johnson, D.H., and Burrus, C.S. (1985). Gauss and the history of the fast Fourier transform,
Arch. for History of Exact Sciences,34(3), 265–277.

[35] Høyer, P. (1997). Efficient quantum transforms, Los Alamos preprint quant-ph/9702028, February.

[36] Inda, M.A., Bisseling, R.H., and Maslen, D.K. (2001). On the efficient parallel computation of Legendre
transforms,SIAM J. on Scientific Computing,23(1), 271–303.

[37] Kakarala, R. (1992). Triple correlation on groups, Ph.D. thesis, Dept. of Math., University of California,
Irivine.

[38] Kanatani, K. (1990).Group-Theoretical Methods in Image Understanding,Springer-Verlag, NY.

[39] Kay, S. (1993).Fundamentals of Statistical Signal Processing,Prentice-Hall, Englewood Cliffs, NJ.

[40] Kobayashi, K. (1985). Solution of multi-dimensional neutron transport equation of the spherical harmonics
method using the finite Fourier transformation and quadrature formula,Transport Theory and Stat. Phys.,
14, 63–85.

[41] Kostelec, P., Rockmore, D., Maslen, D., and Healy Jr., D.M. FFTs on the rotation group, in preparation.

[42] Kostelec, P., Maslen, D., Rockmore, D., and Healy Jr., D.M. (2000). Computational harmonic analysis for
tensor fields on the two-sphere,J. Comp. Physics,162, 514–535.

[43] Martyna, G.J. and Berne, B.J. (1989). Structure and energies of Xe−
n : Many body polarization effects,J.

Chem. Phys.,90(7), 3744–3755.

[44] Maslen, D. (1993). Fast transforms and sampling for compact roups, Ph.D. thesis, Department of Mathe-
matics, Harvard University.

384 D.M. Healy, Jr., D.N. Rockmore, P.J. Kostelec, and S. Moore

[45] Maslen, D. (1998). Efficient computation of Fourier transforms on compact groups,J. Fourier Anal. Appl.,
4(1), 19–52.

[46] Maslen, D. and Rockmore, D. (2001). The Cooley–Tukey FFT and group theory,Notices of the AMS,
48(10), 1151–1160.

[47] Maslen, D. and Rockmore, D. (1997). Generalized FFTs, inGroups and Computation II,DIMACS Series
in Discrete Math. and Computer Science, Vol. 28, Finkelstein, L. and Kantor, W., Eds., 183–237.

[48] Miller, M., Joshi, S., Maffitt, D., McNally, J., and Grenander, U. (1994). Membranes, mitochondria and
amoebae: shape models, inAdvances in Applied Statistics,137–159.

[49] Mohlenkamp, M.P. (1999). A fast transform for spherical harmonics,J. Fourier Anal. Appl.,5(2-3), 159–
184.

[50] Moore, S. (1994). Efficient stabilization methods for fast polynomial transforms, Ph.D. thesis, Department
of Mathematics and Computer Science, Dartmouth College.

[51] Moore, S., Healy, D., and Rockmore, D. (1993). Symmetry stabilization for polynomial evaluation and
interpolation,Lin. Alg. Appl.,192, 249–299.

[52] Peng Oh, S., Spergel, D.N., and Hinshaw, G. (1998). An efficient technique to determine the power spectrum
from cosmic microwave background maps, preprint.

[53] Oppenheim, A. and Schafer, R. (1989).Discrete-Time Signal Processing,Prentice-Hall, NJ.

[54] Orzag, S.A. (1986). Fast eigenfunction transforms, inScience and Computers,Academic Press, Orlando.

[55] Potts, D., Steidl, G., and Tasche, M. (1998). Fast and stable algorithms for discrete spherical Fourier
transforms,Linear Algebra Appl.,275/276, 433–450.

[56] Potts, D., Steidl, G., and Tasche, M. (1998). Fast algorithms for discrete polynomial transforms,Math.
Comp.,67, 1577–1590.

[57] Ramos, G.U. (1971). Roundoff error analysis of the fast Fourier transform,Math. Comp.,25, 757–768.

[58] Rockmore, D. (1997). Some applications of generalized FFTs, (Appendix with D. Healy), inGroups and
Computation II,DIMACS Series in Discrete Math and Computer Science, Vol. 28, Finkelstein, L. and
Kantor, W., Eds., 329–369.

[59] Schwartz, J.T. (1985). Mathematics addresses problems in computer vision for advanced robotics,SIAM
News,18(3).

[60] Swarztrauber, P. (1993). The vector harmonic transform method for solving partial differential equations
in spherical geometry,Monthly Weather Review,121(12), 3415–3437.

[61] SpharmonicKit is a freely available collection of C programs for doing Legendre and scalar spherical
transforms. Developed at Dartmouth College by S. Moore, D. Healy, D. Rockmore and P. Kostelec, it is
available at www.cs.dartmouth.edu/ ∼geelong/sphere/ .

[62] SPHEREPACK is a freely available collection of FORTRAN programs that facilitates computer modeling
of geophysical processes developed at NCAR by John Adams and Paul Swarztrauber.

[63] Spotz, W.F. and Swarztrauber, P.N. (2001). A performance comparison of associated Legendre projections,
J. Comp. Physics,168(2), 339–355.

[64] Steidl, G. and Tasche, M. (1991). A polynomial approach to fast algorithms for discrete Fourier-cosine and
Fourier-sine transforms,Math. Comp.,56, 281–296.

[65] Swarztrauber, P.N. and Spotz, W.F. (2000). Generalized discrete spherical harmonic transforms,J. Comp.
Physics,159(2), 213–230.

[66] Temperton, C. (1991). On scalar and vector transform methods for global spectral models,Mon. Wea. Rev.,
119, 1303–1307.

[67] Vaidyanathan, P.P. (1993).Multirate Systems and Filter Banks,Prentice-Hall, Englewood Cliffs, NJ.

[68] Van Loan, C. (1992). Computational framework for the fast Fourier transform,SIAM,Philadelphia.

[69] Van Trees, H. (1968).Detection, Estimation and Modulation Theory,Vol. I, Wiley, New York.

[70] Vilenkin, N.J. (1968).Special Functions and the Theory of Group Representations,American Mathematical
Society, Providence.

[71] Woodward, P.M. (1980).Probability and Information Theory, with Applications to Radar,Artech House,
Dedham, MA.

FFTs for the2-Sphere–Improvements and Variations 385

Received October 18, 2001

Revision received February 04, 2002

Mathematics Department, University of Maryland, College Park, MD 20742-4015

Department of Mathematics, Dartmouth College, Hanover, NH 03755
e-mail: rockmore@tahoe.cs.dartmouth.edu

Department of Mathematics, Dartmouth College, Hanover, NH 03755

Cetacean Networks, Inc, 100 Arboretum Drive, Suite 301, Pease International Tradeport,
Portsmouth, NH 03801-6815

