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We describea computationaltechniquefor authenticating

works of art, speci�cally, paintings and drawings, from

highresolutiondigital scansof theoriginal works.Thisap-

proachbuildsa statisticalmodelofan artist fromthescans

of a setof authenticatedworks,againstwhich new works

are then compared. Thestatisticalmodelconsistsof �rst-

andhigher-orderwaveletstatistics. We showpreliminary

resultsfromour analysisof thirteendrawingsthat haveat

varioustimesbeenattributed to PieterBruegelthe Elder,

whichcon�rm expertauthentications.Wealsoapplythese

techniquesto the problemof determining the numberof

artists that mayhavecontributedto a painting attributed

to Peruginoand againachievean analysisagreeingwith

expertopinion.

1 Introduction

It probably wasn't long after people beganpaying money

for art that a lucrative businessin forging art was born.

And it probably wasn't too much later that techniques

for detecting art forgeries emerged. Even today, the

early techniques for authentication remain pre-eminent.

By and large these are based on “connoisseurship”

and so rely upon the discerning eyesof a few experts

who are steeped in the work and life of the artist in

question. Their opinion may be informed by the cat-

alogueraissonwhich is the current acknowledged au-

thoritative work on the artist's œuvre. Other desider-

ata may include provenance which might be traced

back to the artist's circle or his collectors and makes
y Correspondence should be addressed to H. Farid. 6211
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possible the comparison of the work's implicit biogra-

phy with the histories of related works, or even a de-

tailed analysis of any signature that may be present.

(See[19] for a survey of current techniques.)

In addition to the relianceon the human actor, quan-

titative methods can be brought to bear. X-ray analy-

sis can reveal a painting beneath a painting that can

shed light on its origins. Surfaceanalysis of the paint-

ing materials is another approach,most famously ap-

plied in the investigation of the famous “van Meerghen

forgeries.” In this case, the forgery of paintings at-

tributed to Vermeer was con�rmed by dating the paint-

ings according to the proportion of a certain lead iso-

tope in the lead-basedpaint. An elementary applica-

tion of dif ferential equations allows for the actual iso-

tope content to be compared with the expected con-

tent had the work beenpainted in Vermeer's day [10].

This marks a �rst useof mathematics in the serviceof

authentication.

With the advent of powerful digital technology, com-

putational tools may be able to provide new insights

and techniques into the art and scienceof art authen-

tication. For example, a fractal analysis of Jackson

Pollock's drip paintings has revealed interesting rela-

tions between the evolution of Pollock's aestheticand

the fractal dimension of his work [21, 20]. The anal-

ysis also raises the possibility of using fractal dimen-

sion to help authenticate Pollock. Various techniques

from machine learning have beenapplied to the anal-

ysis and classi�cation of craquelure – the crack lines

that appear over time in a painting [2].

In this paper we presenta new computational tool

for analyzing prints, drawings and paintings for use

in authentication. Speci�cally , we perform a multi-

scale, multi-orientation image decomposition

(e.g.,wavelets) of a collection of high-r esolution dig-

ital scansof a drawing or painting. This decompo-

sition changesthe basisfrom functions maximally lo-

calized in space(pixels) to one in which the basisfunc-

tions are localized not only in space,but also in ori-

entation and scale. A familiar analogy comes from

sound, where the original sound might betransformed
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into a vector of local frequency information which re-

�ects how much of eachfrequencycomprisesthe orig-

inal sound over a short time window . We construct

a compact model of the statistics from such a multi-

scale,multi-orientation image decomposition, and look

for consistenciesor inconsistenciesacrossdif ferent draw-

ings or paintings, or within a single work. The latter is

the so-called “pr oblem of many hands” in which we

try to determine the regions of a collaborative work

that have beenaccomplished by a single artist.

Theanalysis produceslocal oriented spatial frequency

data, and so suggests that the accompanying model

captures the subtle pen and brush strokes character-

istic of an artist. Although an imitation 1 may be per-

ceptually similar to an original (i.e., very much in the

“style of the master”), the subtle dif ferencesin stroke

can reveal the presenceof an imitation. In a sense

this work is a natural successorto the mathematical

techniques used for graphology, or handwriting anal-

ysis (see e.g., [11]), distilling not just the character-

istic lines and curves of a painter 's literal signature,

(which is often part of the processof authentication)

but even more, moving towar d a characterization of

the artist's aestheticsignature,resident within the line

and curve of his or her work.

Analogous techniqueshave already made their way

into the literary world, where they fall within the dis-

cipline of stylometry[8]. The problem of classi�cation

has been applied to divvying up the attribution of

the Federalist papers between Madison and Hamil-

ton (see e.g., [13]) and the determination of the au-

thorship of the �fteenth book in the Oz series[3]. Sta-

tistical approaches to the question of authentication

have surfaced in the analysis of Shakespeare's son-

nets [22]. The problem of many hands �nds its mirr or

in a study of the conjectured multiple authorship of

the Old Testament [7].

We begin by applying our analysis to the problem

of authentication of a collection of thirteen drawings

1 Henceforth we will give the bene�t of the doubt to the imitator

and use the terminology “imitation” rather than the more charged

“for gery.”

MMA

Cat. No. Title Artist

3 Pastoral Landscape Bruegel

4 Mountain Landscapewith Bruegel

Ridge and Valley

5 Path through a Village Bruegel

6 Mule Caravan on Hillside Bruegel

9 Mountain Landscapewith Bruegel

Ridge and Travelers

11 Landscapewith Saint Jermove Bruegel

13 Italian Landscape Bruegel

20 Reston the Flight into Egypt Bruegel

7 Mule Caravan on Hillside -

120 Mountain Landscapewith -

a River, Village, and Castle

121 Alpine Landscape -

125 Solicitudo Rustica -

127 Rocky Landscapewith Castle Savery

and a River

Figure 1: Authentic (top) and imitations (bottom).
The �rst column corresponds to the Metropolitan
Museum of Art (MMA) catalog number in [14].

that have at one time or another been attributed to

the famous draughtsman Pieter Bruegel the Elder. We

then follow with a “many-hands” analysis of a por-

trait by the great Renaissancepainter Perugino. We

closewith a synopsis of the tools used in the analysis

and describethe underlying statistical model. Wecol-

lect someof the more technical points in an appendix.

2 Bruegel

The Flemish painter and draftsman, Pieter Bruegel

the Elder (1525/30-1569)was among the greatestartists

of the sixteenth century. Of particular beauty and

fame are Bruegel's landscape drawings. Over time

he acquired many imitators, some undoubtedly sim-

ply eager to work in the style of the great master,
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while others surely hoping to pass off their work as

Bruegel's for monetary gain. Someof thesefollowers

and imitators were expert enough that after being un-

masked (or discovered) they becamefamous in their

own right e.g., JacobSavery. Bruegel's work has re-

cently been the subject of renewed study and inter-

est [12, 14, 15]. As a result many drawings formerly

attributed to Bruegel are now attributed to others.

Thedelicate line and shading comprising theseworks

suggeststhat their classi�cation according to awavelet-

like analysis may be both appropriate and fruitful.

For our analysis we digitally scanned (at 2400 dpi)

eight authenticated drawings by Bruegel and �ve ac-

knowledged Bruegel imitations from 35mm color slides,

Figure 1(slides wereprovided courtesy of the Metropoli-

tan Museum of Art [14]). Thesecolor (RGB) images,

originally of size 3894� 2592, were cropped to a cen-

tral 2048� 2048pixel region, converted to grayscale 2

(gray = 0:299R + 0:587G + 0:114B), and autoscaled to

�ll the full intensity range [0; 255]. Shown in Figure 2

are examples of an authentic drawing and an imita-

tion.

Each digital image was then subdivided into 64

non-overlapping 256� 256pixel regions. Eachof these

subimages was then transformed using a �ve-level,

three-orientation wavelet-like decomposition (seeSec-

tion 4 for details). From this decomposition, a 72-

length feature vector of coef�cient and error statistics

is extracted for eachsubimage (Section4.) Eachdraw-

ing now corresponds to a set of points in this 72-D

space.Authentication is indicated by the distance be-

tween these point clouds, with the belief that works

by the same artist will be close together, irr espective

of content, and an imitation will be relatively far from

the authenticated Bruegels. Thus, we �rst computed

the Hausdorf f distance [9] between all pairs of im-

ages(Appendix A). The resulting 13� 13distancema-

2 While converting from color to grayscaleresults in a signi�cant

loss of information, we did so in order to make it more likely that

the measured statistical featuresand subsequentclassi�cation was

more likely to be based on the artist's strokes, and not on simple

color dif ferences.

Figure 2: Authentic #6 (top) and imitation #7 (bot-
tom), seeTable 1.

Figure 3: Results of analyzing 8 authentic Bruegel
drawings (blue circles) and 5 imitations (red
squares). Note how the imitations lie signi�cantly
outside of the bounding sphere of authentic draw-
ings.
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trix was then subjected to a multidimensional scaling

(MDS) [5] (Appendix B). Shown in Figure 3 is the re-

sult of visualizing the original 13 images in a lower -

dimensional spaceasdetermined by a MDS analysis.

The blue circles in Figure 3 correspond to the authen-

tic drawings, and the red squares to the imitations.

For purposes of visualization the wir e-frame sphere

is rendered at the center of massof the eight authen-

ticated drawings and with a radius set to fully en-

compassall eight data points (in sodoing, we assume

knowledge of the authenticated Bruegels). Note that

all �ve imitations fall well outside of the sphere. The

distances from the authenticated Bruegels to the cen-

ter of the sphere are 0:34, 0:35, 0:55, 0:90, 0:56, 0:17,

0:54, and 0:85. The distances from the imitations are

considerably larger at 1:58, 2:20, 1:90, 1:48, and 1:33

(the meansof thesetwo distance populations are sta-

tistically signi�cant: p < 1� 5 (one-way anova)). Even

in this spaceof reduced dimension, there is a cleardif-

ferencebetween the authentic drawings and the imi-

tations.

3 Perugino

Pietro di Cristofor o Vannucci (Perugino) (1446-1523)

is well known asa portraitist and a frescopainter, but

perhaps he is best known for his altarpieces. By the

1490sPerugino maintained a workshop in Florence

aswell asin Perugia and was quite proli�c. Shown in

Figure 4 is the painting Madonna With Child by Pe-

rugino. As with many of the great Renaissancepaint-

ings, however, it is likely that Perugino only painted

a portion this work - apprenticesdid the rest. To this

end, we wonder ed if we could uncover statistical dif-

ferencesamongst the facesof the individual charac-

ters.

The painting (at the Hood Museum, Dartmouth

College) was photographed using a large-format cam-

era(8� 10 inch negative) and drum-scanned to yield a

color 16; 852� 18; 204pixel image. As in the previous

section this image was converted to grayscale. The

621
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Figure 4: Madonna With Child by Perugino. How
many hands contributed to this painting?

5

2

4

1
3

6

Figure 5: Results of analyzing the Perugino paint-
ing. The numbered data points correspond to the
six faces(from left to right) in Figure 4. Note how
the three left-most faces(1-3) cluster, while the re-
maining faces are distinct. This clustering pattern
suggeststhe presenceof at least four distinct hands.
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facial region of each of the six characters was man-

ually localized. Each face was then partitioned into

non-overlapping 256 � 256 regions and auto-scaled

into the full intensity range [0; 255]. This partitioning

yielded (from left to right) 189, 171, 189, 54, 81, and

144regions. The sameset of statistics as described in

the previous section was collected from eachof these

regions. Also as in the previous section, we com-

puted the Hausdorf f distance (Appendix A) between

all pairs of six faces.The resulting 6 � 6 distance ma-

trix was then subjectedto MDS (Appendix B). Shown

in Figure 5 is the result of visualizing the original six

facesin a lower -dimensional spaceas determined by

a MDS analysis.

The numbered data points correspond to the six

faces (from left to right) in Figure 4. Note how the

threeleft-most facescluster, while the remaining faces

are distinct. The averagedistance between faces1 � 3

is 0:61, while the average distance between the other

facesis 1:79. This clustering pattern suggeststhe pres-

enceof at least four distinct hands, and is consistent

with the views of someart historians [1].

4 Methods

Our methodology makesuseof a decomposition of

imagesusing basisfunctions that are localized in spa-

tial position, orientation, and scale (e.g., wavelets).

Thesesorts of expansionshave proven extremely use-

ful in a range of applications (e.g., image compres-

sion, image coding, noise removal, and texture syn-

thesis). One reason for this is that such decompo-

sitions exhibit statistical regularities that can be ex-

ploited (e.g., [17, 16, 4]). Described below is one such

decomposition, and a set of statistics collected from

this decomposition. 3

3 We also have experimented with both Laplacian and steerable

pyramid decompositions. Results from a steerablepyramid (with

eight orientation subbands) were similar to the results included

above (which use only three orientation subbands). Furthermor e,

the Laplacian pyramid generally gave poor results. So while it

wx

wy

Figure 6: An idealized multi-scale and orientation
decomposition of frequency space. Shown, from
top to bottom, are levels 0,1, and 2, and from left
to right, are the lowpass, vertical, horizontal, and
diagonal subbands.

The decomposition is based on separable quadra-

ture mirr or �lters (QMFs) [23, 24, 18]. As illustrated

in Figure 6, this decomposition splits the frequency

spaceinto multiple scalesand orientations. This is ac-

complished by applying separablelowpass and high-

pass �lters along the image axes generating a verti-

cal, horizontal, diagonal and lowpass subband. For

example, the horizontal subband is generated by con-

volving with the highpass �lter in the horizontal di-

rection and lowpass in the vertical dir ection, the diag-

onal band is generated by convolving with the high-

pass �lter in both dir ections, etc. Subsequent scales

are created by subsampling the lowpass by a factor of

two and recursively �ltering. The vertical, horizon-

tal, and diagonal subbands at scalei = 1; :::; n are de-

noted as Vi (x; y), H i (x; y), and D i (x; y), respectively.

Shown in Figure 7 is a three-level decomposition of

seems that oriented subbands are necessary, it also seemsthat a

�ner tuning of orientation is not necessaryfor this particular task.
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Figure 7: Shown on the right are the absolute values of the subband coef�cients at threescalesand threeorientations
(the residual lowpass subband is shown in the upper-left corner) for the Perugino (left).

the scannedPerugino, shown in the same�gur e.

Given this image decomposition, the statistical model

is composedof the mean,variance,skewnessand kur -

tosis of the subband coef�cients at each orientation

and at scales i = 1; :::; n � 2. These statistics char-

acterize the basic coef�cient distributions. In order to

capture the higher-order correlations that exist within

this image decomposition, these coef�cient statistics

are augmented with a setof statistics basedon the er-

rors in an optimal linear predictor of coef�cient mag-

nitude.

As described in [4], the subband coef�cients are

correlated to their spatial, orientation and scaleneigh-

bors. For purposes of illustration, consider �rst a ver-

tical band, Vi (x; y), at scale i . A linear predictor for

the magnitude of these coef�cients in a subset of all

possible neighbors may be given by:

jVi (x; y)j = w1 jVi (x � 1; y)j + w2 jVi (x + 1; y)j

+ w3 jVi (x; y � 1)j + w4 jVi (x; y + 1)j

+ w5 jVi +1 ( x
2 ; y

2 )j + w6jD i (x; y)j

+ w7 jD i +1 ( x
2 ; y

2 )j; (1)

where wk denotes scalar weighting values, and j � j

denotes magnitude. This particular choice of spatial,

orientation, and scaleneighbors was employed in our

earlier work on detecting traces of digital tampering

in images[6]. Herewe employ an iterative brute-for ce

search (on a per subband and per image basis) for the

set of neighbors that minimizes the prediction error

within eachsubband.

Consider again the vertical band, Vi (x; y), at scalei .

We constrain the search of neighbors to a 3 � 3 spatial
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region at eachorientation subband and at threescales,

namely, the neighbors:

Vi (x � cx ; y � cy ); H i (x � cx ; y � cy );

D i (x � cx ; y � cy );

Vi +1 ( x
2 � cx ; y

2 � cy ); H i +1 ( x
2 � cx ; y

2 � cy );

D i +1 ( x
2 � cx ; y

2 � cy );

Vi +2 ( x
4 � cx ; y

4 � cy ); H i +2 ( x
4 � cx ; y

4 � cy );

D i +2 ( x
4 � cx ; y

4 � cy );

with cx = f� 1; 0; 1gand cy = f� 1; 0; 1g,and, of course,

excluding Vi (x; y). From these80possible neighbors,

the iterative search begins by �nding the single most

predictive neighbor (e.g., Vi +1 (x=2 � 1; y=2)) 4. This

neighbor is held �xed and the next most predictive

neighbor is found. This processis repeated �ve more

times to �nd the optimally predictive neighborhood.

On the kth iteration, the predictor coef�cients (w1; :::; wk)

are determined as follows. Let the vector ~V contain

the coef�cient magnitudes of Vi (x; y) strung out into

a column vector, and the columns of the matrix Q con-

tain the chosen neighboring coef�cient magnitudes

also strung out into column vectors. The linear pre-

dictor then takes the form:

~V = Q~w; (2)

where the column vector ~w = ( w1 : : : wk )T , The

predictor coef�cients are determined by minimizing

the quadratic error function:

E( ~w) = [~V � Q~w]2: (3)

This error function is minimized by dif ferentiating with

respectto ~w:

dE( ~w)=d~w = 2QT [~V � Q~w]; (4)

setting the result equal to zero, and solving for ~w to

yield:

~w = (QT Q) � 1QT ~V: (5)

4 Integer rounding is used when computing the spatial positions

of a parent, e.g.,x=2 or x=4.

The log error in the linear predictor is then given by:

~Ev = log2(~V ) � log2(jQ~wj): (6)

Once the full set of neighbors is determined addi-

tional statistics are collected from the errors of the �-

nal predictor - namely the mean, variance, skewness,

and kurtosis. This entire processis repeated for each

oriented subband, and at each scale i = 1; :::; n � 2,

where at eachsubband a new setof neighbors is cho-

senand a new linear predictor estimated.

For a n-level pyramid decomposition, the coef�-

cient statisticsconsistof 12(n� 2) values, and the error

statistics consist of another 12(n � 2) values, for a to-

tal of 24(n � 2) statistics. Thesevalues represent the

measured statistics of an artist's style and are used to

classify or cluster drawings or paintings.

As stated above, following the computation of the

feature vectors multi-dimensional scaling (MDS) was

employed to project the original 72-D feature vectors

into a 3-D subspace.Featureswith no discriminating

power (e.g., the means)will therefore play no role in

the lower -dimensional embedding.

5 Discussion

We have presenteda computational tool for digitally

authenticating or classifying works of art. This tech-

nique looks for consistenciesor inconsistenciesin the

�rst- and higher-order wavelet statisticscollected from

drawings or paintings (or portions thereof). Weshowed

preliminary results from our analysis of thirteen draw-

ings either by, or in the style of, Pieter Bruegel the

Elder as well as a painting by Perugino. We expect

thesetechniques, in collaboration with existing phys-

ical authentication, to play an important role in the

�eld of art forensics.
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Appendix A: Hausdorf f Distance

The Hausdorf f distance is a distance metric de�ned

on two setsof vectors, X and Y. The metric, H (�; �) is

de�ned as:

H (X ; Y) = max(h(X ; Y); h(Y; X )) ;

where h(�; �) is de�ned as:

h(X ; Y ) = max
~x 2 X

�
min
~y2 Y

d(~x; ~y)
�

:

Here d(�; �) can be any distance metric de�ned on the

vector spacesubsuming X and Y . In our case,we use

Euclidean distance d(~x; ~y) = (~x � ~y)T (~x � ~y).

Appendix B: Multidimensional

Scaling

Multidimensional scaling (MDS) is a popular method

to visualize high dimensional data. Given n vectors

f ~x1; � � � ; ~xn g, where ~x i 2 R m , the goal of MDS is to

�nd a lower -dimensional embedding for these data

that minimally distorts their pairwise distances. De-

note the n � n distance matrix as D ij = d(~x i ; ~x j ),

where d(�; �) is a distance metric in R m . The most

common such metric is Euclidean distance de�ned as

d(~x i ; ~x j ) = (~x i � ~x j )T (~x i � ~x j ).

Given the pairwise symmetric distance matrix, the

classic(metric) MDS algorithm is given by the follow-

ing steps:

1. Let A ij = � 1
2 D 2

ij .

2. Let B = H AH , where H = I n � 1
n ~u~uT , I n is a

n � n identity matrix, and each component of

the n-dimensional vector ~u is 1.

3. Compute the eigenvectors, ~e1; � � � ; ~en , and cor-

responding eigenvalues,� 1; � � � ; � n , of matrix B ,

where � 1 � � 2 � � � � � � n .

4. The new, lower -dimensional, representation of

the original data, ~x i , are then given by
~x0

i = ( ~e1(i ) ~e2(i ) � � � ~em 0(i ) ), where ~ek (i )

denotes the i th component of the vector, and in

our examplesm0 = 3.
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