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ABSTRACT
The vast majority of advances in sensor network research
over the last five years have focused on the development of
a series of small-scale (100s of nodes) testbeds and special-
ized applications (e.g., environmental monitoring, etc.) that
are built on low-powered sensor devices that self-organize
to form application-specific multihop wireless networks. We
believe that sensor networks have reached an important cross-
roads in their development. The question we address in this
paper is how to propel sensor networks from their small-
scale application-specific network origins, into the commer-
cial mainstream of people’s every day lives; the challenge
being: how do we develop large-scale general-purpose sen-
sor networks for the general public (e.g., consumers) capable
of supporting a wide variety of applications in urban set-
tings (e.g., enterprises, hospitals, recreational areas, towns,
cities, and the metropolis). We propose MetroSense, a new
people-centric paradigm for urban sensing at the edge of
the Internet, at very large scale. We discuss a number of
challenges, interactions and characteristics in urban sens-
ing applications, and then present the MetroSense architec-
ture which is based fundamentally on three design princi-
ples: network symbiosis, asymmetric design, and localized
interaction. The ability of MetroSense to scale to very large
areas is based on the use of an opportunistic sensor network-
ing approach. Opportunistic sensor networking leverages
mobility-enabled interactions and provides coordination be-
tween people-centric mobile sensors, static sensors and edge
wireless access nodes in support of opportunistic sensing, op-
portunistic tasking, and opportunistic data collection. We
discuss architectural challenges including providing sensing
coverage with sparse mobile sensors, how to hand off roles
and responsibilities between sensors, improving network per-
formance and connectivity using adaptive multihop, and im-
portantly, providing security and privacy for people-centric
sensors and data.
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1. INTRODUCTION
To date, the bulk of work in the wireless sensor network

space has focused on environmental, agricultural or indus-
trial monitoring. Networks of static sensing elements are
either physically placed or randomly distributed across a
target area of interest, with a focus on application-specific
deployments. A substantial body of literature exists ad-
dressing a wide spectrum of issues in such sensor networks.
Such networks are of utility and offer research challenges
to scientists and engineers, but do not currently directly
benefit the general population. Furthermore, humans are
disengaged bystanders in the sensing and communication
processes, passively waiting on the fringe of the network for
data to appear. In this paper, we move away from the tradi-
tional focus of wireless sensor networks and propose a new
people-centric sensing paradigm for urban sensing at very
large scale. While traditional sensor networks target remote
and unattended deployments we target the urban setting,
an environment possessing a rich diversity of lifestyles, ac-
tivities, and thus potential applications.

As our focus is on enabling human-centric applications,
requirements on the architectural solution include the abil-
ity to sense people and characteristics of their immediate
surroundings, and the ability to sense data related to in-
teractions between people and interactions between people
and their surroundings. These requirements are made more
challenging by human and vehicle mobility (e.g., cars, buses,
bikes). Furthermore, the people-centric nature of the data
collected implies a requirement for privacy beyond what is
present in traditional wireless sensor network application
targets such as forest microclimates. In addition, the urban
environment presents a host of challenges absent, or only
partially present in other sensing domains. The architec-
tural solution must scale at least across a large metropoli-
tan area, must be able to handle a diversity of hardware
platforms, application heterogeneity, interactions between a



multitude of administrative domains, and a highly dynamic
environment.

To meet these requirements and challenges a number of ar-
chitectural alternatives are possible, including the Ubisense
[1] approach (i.e., a provisioned, managed, single-hop hierar-
chical UWB networks targeted towards enterprise installa-
tions), tiered sensor networks, and sensor meshes. However,
by considering the cost and fidelity trends of each as the net-
work scales to metropolitan dimensions, we see that these
approaches are not feasible. Cost includes the monetary ex-
pense of sensors and network access (e.g., gateways, sensor
readers) and infrastructure (e.g., running wires to deploy-
ment points) to deploy the sensor network. Fidelity refers
generically to the amount of data collected from the sensor
field and delivered to an interested user (i.e., information
sink) within a given time period. The exact notion of fidelity
is application-specific. For example, for event-based appli-
cations fidelity can mean receiving enough packets to detect
features of interest in a given event. For periodic monitoring
applications, fidelity can be characterized in terms of data
stream continuity. Figure 1 illustrates qualitatively how ex-
isting networks scale in terms of cost and delivered fidelity
if deployed at increasing scale. Ubisense [1] represents the
most costly deployment scenario but might continue to pro-
vide high fidelity as the network scales up. However, the cost
of doing this is prohibitively high when considering complete
coverage across an urban area. In addition, the Ubisense [1]
platform is not programmable and only supports one sens-
ing modality. Tiered static mesh networks such as ExS-
cal [2], Tenet [3], and Siphon [4] all add hierarchies of pow-
erful nodes with secondary radio overlays (e.g., WiFi). This
allows the network designers to better provision the network
to offer better fidelity in comparison to non-tiered multihop
networks. However, the coverage and communication cost
of deploying these static sensor and WiFi overlay networks
is also considerable for large areas. In addition, while multi-
hop WiFi networks offer considerably more bandwidth than
sensor radios they still lead to similar scaling problems albeit
at higher throughput. Non-tiered mesh networks present a
lower investment cost but the fidelity of these network does
not scale because of link unreliability [5], congestion [6], and
the funneling effect implicit [4] in many-to-one multihop sen-
sor networks.

We propose MetroSense, a network architecture for urban-
scale people-centric sensing with a design goal of broad ap-
plication and sensor heterogeneity support. MetroSense pro-
vides the network architecture that is lacking in current
urban-scale pervasive systems. MetroSense has a symbi-
otic relationship between itself and the human community
it serves, leveraging existing infrastructure and human mo-
bility to opportunistically sense and collect data about peo-
ple for people. MetroSense trades off real-time fidelity for
improved cost and coverage, enabling sparse sensing across
large areas using potentially very large communities of re-
chargeable people-centric mobile sensors (e.g., motes [7],
sensor-enabled cell phones [8]). In so doing MetroSense hits
the architectural sweet spot (see Figure 1) that provides rea-
sonable fidelity at low cost at urban deployment scale. The
network architecture is designed with the specific require-
ments of urban sensing in mind; it is not intended to be a
general purpose communications infrastructure, but rather
an extension from it - a new sensing edge network for the
Internet.
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Figure 1: The Cost/Fidelity vs. Scalability Design
Space

MetroSense assumes the ability of sensors to be recharged
regularly like cell phones or PDAs of today. Thus, in com-
parison to embedded static sensor meshes and MANETs,
MetroSense is less energy constrained and therefore targets
a network lifetime of years rather than weeks or months.
Furthermore, unlike static sensor meshes that leverage deep
multi-hop, MetroSense adaptively limits multi-hop radio in-
teractions in an effort to reduce complexity and wireless
packet loss. MetroSense enables the general purpose pro-
gramming of the infrastructure with the goal of supporting
the execution of multiple applications in parallel across the
network. The ability of MetroSense to scale to very large ar-
eas is based on the use of an opportunistic sensor network-
ing paradigm. Opportunistic sensor networking leverages
mobility-enabled interactions and provides coordination be-
tween people-centric mobile sensors, static sensors, and edge
wireless access nodes in support of opportunistic sensing,
opportunistic tasking, and opportunistic data collection.

In the next section, we outline our vision of the present
and future of urban sensing, including descriptions of some
practical leading edge applications whose requirements drive
the design of MetroSense. In Section 3, we present an over-
view of the hardware and software architectural components
of MetroSense, and discuss a number of design principles
that underpin the MetroSense architecture. Section 4 pro-
vides focus on fundamental issues in the opportunistic sensor
networking paradigm, namely, sensing coverage via mobil-
ity of sparse mobile sensors, selective responsibility transfer
between sensors, sensor tasking and data collection. Sec-
tion 5 addresses the important issue of security in a people-
centric urban-scale sensor network. Section 6 discusses the
gap between the work done by the sensor network and ubiq-
uitous/pervasive computing communities that is bridged by
MetroSense, before we conclude in Section 7.

2. URBAN SENSING
What is urban sensing? There are many elements that

comprise the urban landscape, e.g., buildings, people, vehi-
cles. We adopt a people-centric view of urban sensing where
attributes of people, the immediate surroundings of people,
and the way people interpret and interact with their sur-
roundings become important. We view urban sensing as a
departure from existing thinking on sensor networks because
people are no longer just consumers of sensed data about
some natural phenomenon or ecological process. Rather
data about people is now sensed and collected such that the
sets of producers and consumers of sensed data now overlap;



people are “in the loop” and may participate in both roles.
In the following we outline our vision of the future of ur-
ban sensing, including likely interactions between elements
of an urban sensor network. Issues that arise and the appli-
cations that are enabled as a result of these interactions are
also discussed.

2.1 Present and Future Drivers
Currently, small areas of the urban landscape are sensed.

Isolated deployments of private, static, application-specific
sensor networks exist [9], focusing on the sensing of indus-
trial or municipal infrastructure. For example, factories of-
ten monitor equipment health [10] as part of a preventative
maintenance strategy. Municipal governments embed sen-
sors in critical infrastructure to improve safety. For example,
wired cameras are co-located with stoplights to detect/deter
traffic violations and to support traffic congestion pricing
strategies [11] and wireless vibration sensors are employed
to monitor the structural integrity of bridges [12]. Such ap-
plications have successfully demonstrated the utility of wire-
less and wired sensor networking in the urban domain, but
are designed to capture information about the infrastructure
rather than people. Furthermore, existing deployments are
mostly static and relatively small scale.

We feel this situation is likely to change, and that sensor
data from a broader cross-section of the urban landscape will
become available. Installations of traditional static wire-
less/wired sensor networks will continue to proliferate. Ve-
hicles will be equipped with wireless sensors in an effort to
capture information about air quality and traffic patterns.
People will carry cell phones and other popular devices that
are equipped with embedded sensors (e.g., temperature, ac-
celeration, humidity) [8] and an ability to tag sensed data
with location information. People may even carry key chain
or vest pin wireless sensing platforms [7], motivated by the
desire to be part of an interactive individual [13] or social [14]
activity (e.g., real-time exercise analysis, sensor enhanced
Instant Messenging), or to log the activities of a day for
future playback [15]. Static sensing webs under different
administrative domains will be integrated with a dynamic
fluid of mobile sensors, forming a cooperative network. De-
pending on the application, sensed data will flow via gate-
ways to back haul network infrastructure, or be processed
in-network, possibly triggering immediate actuation (e.g.,
sound, light output).

2.2 Interactions and Characteristics
In an urban environment rich with sensor platforms of

various types, with different mobility patterns, a number
of interactions are likely to occur among these sensors, their
custodians, their surroundings, and sensor network gateways
to back end infrastructure or the Internet. In what follows,
we list these interactions and their characteristics.

Static Sensor Peering. Following the paradigm of static
wireless sensor networks, sensors are likely to establish long-
term relationships to solve application-specific problems. For
example, a static network may use a multi-hop routing tree
to forward data to an information sink. In this case inter-
actions are based on permanent physical proximity. Due to
the static nature of the sensors and the resultant long term
nature of relationships, extensive state exchange is feasible.

Mobile Sensor Peering. Sensor platforms carried by
people are likely to interact as a result of interactions be-

tween humans themselves. The human interactions could be
intentional like friends meeting according to plan, or unin-
tentional like two people passing each other on the sidewalk
or in the mall. The human interactions allow sensor interac-
tions facilitating, for example, the exchange of sensed data
between sensors for data muling [16], or the exchange of
application/control information. Similarly, mobile sensors
affixed to vehicles (e.g., cars, buses, bicycles) interact when
vehicles pass each other on the roadway. People-mounted
and vehicle-mounted sensors can also interact. A fundamen-
tal concern with mobile sensor peering interactions is the
likely limited rendezvous duration that limits the amount of
information that can be exchanged.

Static Sensor ←→ Mobile Sensor. A number of in-
teractions are possible between static and mobile sensors. A
mobile sensor can act as a data mule between isolated static
sensors and a gateway. A mobile node can “visit” a gateway-
anchored static sensor web in order to deliver sensed data or
pickup application or configuration instructions. A mobile
node can “reside” in a static sensor web for a time to par-
ticipate in a collaborative application. However, recall that
in general a mobile sensor platform has no control over the
mobility of the human or vehicle custodian. Therefore, the
terms “visit” and “reside” are qualitative descriptions of the
interaction duration and do not imply intent on the part of
the mobile sensor.

Static Sensor ←→ Gateway. Interactions between sen-
sor network gateways and static sensors can be categorized
as tasking interactions, or collection interactions. Tasking
interactions arise when a sensor network user must convey
instructions to the static sensor web about what activity
to commence. Such instructions pass through the gateway.
Sensor reprogramming, and the passing of system control
messages fall into this category. On the other hand, sensed
data must often be forwarded to a network user via the net-
work gateway, either directly or indirectly via interactions
with another static sensor or a mobile sensor. This activity
is a collection interaction.

Mobile Sensor ←→ Gateway. Similar to the interac-
tion between static sensors and gateways, interactions be-
tween a mobile sensor and a gateway include tasking in-
teractions and collection interactions. Possibilities include
delivery of sensed data for conveyance to an information
sink, where the sensed data may be locally generated by the
mobile sensor, or muled and delivered on behalf of another
sensor. Programming, control and configuration operations
also occur. Note that like other interactions involving a mo-
bile sensor, the limited rendezvous duration implied by the
mobility constrains the extent of possible interactions.

Gateway Peering. Gateways may be static or mobile.
Static gateways, associated with static sensor webs, and mo-
bile gateways form an overlay network that provides both
the mobile and static sensors with a back end towards the
Internet. Gateways interact, either directly or via an in-
termediary, to share information about collected data, and
tasks currently running on mobile and static sensors.

Commonalities Across Interaction Classes. There
are a number of practical issues that become important for
all types of interactions. The owners/providers of sensing
infrastructure are likely to be members of different admin-
istrative domains and may or may not trust each other.
Furthermore, subsets of the sensing infrastructure may be-
long to economic competitors. Thus, the nature of interac-



tions between sensors may be affected by constraints beyond
those imposed by physical proximity. For example, owners
of static sensor webs and gateways may allow the “visiting”
nodes just to share the sensed data with the local nodes,
participate in the sensing activity of the “visited network”
or become part of the visited network itself.

Aside from visitation rights, interactions between elements
of the sensing infrastructure may require a set of resource
discovery mechanisms so that the interacting principals can
negotiate, for example, sensing roles in a peering applica-
tion, or security parameters to use in subsequent communi-
cations. In fact, given the people-centric nature of the sensed
data, protection, secure access and secure transport of data
become main concerns of the urban sensing deployment.

Finally, achieving reliable transfer of data, whether it is
related to tasking or sensed data collection, is of importance
for all interactions between elements of the sensing infras-
tructure. Achieving adequate fidelity, in terms of the quan-
tity of information delivered about an object or event to a
sink, is an important challenge of people-centric sensing in
the urban setting due to widespread mobility.

2.3 Enabled Applications
A city is more than buildings, people and vehicles. There

are a large number of processes that govern a city and many
ways of interacting with those processes. Those processes
will change with time and location and can benefit from
sensing and communications. Thus, wireless sensors will be
woven into the fabric of existing processes as well as enabling
new applications. It is too early to predict what application
or class of applications may become popular or be of greatest
utility or impact to society in the future. In what follows,
we speculate on a mix of new urban sensing applications
and how wireless sensor technology may be integrated with
existing urban applications, both personal and public.

Personal Health Systems. By carrying/affixing one or
more personal sensors people can monitor certain aspects of
their own body. Sensors embedded in the home or public
infrastructure can provide information about the environ-
ment surrounding people. Data collected from both personal
body sensors and environmental sensors can be correlated to
provide a trace of context-rich personal health information.
This information can be monitored in real time or stored
for longer term trend analysis. Particular applications in-
clude providing a digital memory assistant for the forgetful,
recording activity/exercise level to estimate caloric expendi-
ture [17] and joint stress, and detecting behavioral changes
with health implications such as keeping the room warmer,
stumbling more often, or a reduced activity level. A num-
ber of academic and industry projects have recently started
up in this domain. These include Code Blue [9] and Alarm
Net [18].

Pulse of the City. People like to know what’s hot, where
the crowds are, what’s happening, what isn’t. Data from
mobile sensor nodes can be used to map crowds and infer
activities. People themselves could also use a button on
their mobile node to vote on the popularity of a location
or event. How many people are watching the basketball
game going on at “the Cage” at 4th Street/6th Ave street
court where future professionals sometimes play? Is there an
interesting street performer in Washington Square Park? Is
that nut David Blaine’s human aquarium stunt at Lincoln
Center drawing a big crowd? How long is the queue for

the Liberty/Ellis Island Ferry? Urban scale people-centric
sensing can be combined with human activity inferencing to
generate a general purpose location-based markup of a city,
allowing various groups to map information of interest based
on input from the people. Bar crawlers can mark the best
bars, nirvana seekers can mark the best spots for mediation,
and families can mark the best places to take children.

London Congestion Pricing. London Congestion Pric-
ing [11] uses a network of wired cameras to sense a perimeter
boundary around a central area of London, England. The
goal of the system is to reduce automobile traffic conges-
tion in this central area by charging drivers a fee to enter
the central area during peak congestion periods. The system
photographs the license plate of each car as it crosses the es-
tablished perimeter. The image is processed to extract the
license plate number, and levies the fee against the account
of the car’s owner. The system has been effective, markedly
improving traffic conditions in the central area [11]. An
evolution of this system might utilize wireless sensor tech-
nology to expand the scope and improve event detection,
and might also provide finer-grained perimeter definition.
For example, the wired camera network could be replaced
with a network of wireless gateways, while cars could be
equipped with smart tags. Tags could store status infor-
mation about car and owner including inspection expiration
date and registration status. Such a tag would replace the
need for windshield/bumper stickers that currently display
the same information. Tags could send periodic beacons,
or respond to explicit queries to share information with the
base stations as they near each other. This new system could
handle not only the responsibilities of the existing system,
but could eliminate the need for urban traffic policing by
monitoring speed, illegal parking, expired inspection or reg-
istration and automatically issuing tickets to the owners of
the car. Furthermore, unlike the current camera-based sys-
tem, the wireless system would not be susceptible to visual
obstructions such as pedestrians blocking the license plate.

Urban Planning and Usage Analysis. Assuming a
future when both people and vehicles are equipped with
mobile sensors, and wireless gateways are deployed at each
intersection, a wealth of data is available. Aside from log-
ging pedestrian and vehicular traffic flows [19], sound sensors
can map noise levels in the urban environment [20] while air
pollution levels can be mapped with more specialized sen-
sors. Even with just these two sensors and the radio, anal-
ysis of collected data can be used to measure the wear and
tear on infrastructure (roads, sidewalks), map urban area
air pollution levels with fine spatial granularity and gauge
how people “vote with their feet”. Real estate businesses
and municipal planners can make good use of the pedes-
trian and vehicle traffic flow data to learn of problem areas
(e.g., congestion), evaluate business locations for foot and
street traffic potential, and aid in establishing list value of
property. Knowledge of air and noise pollution could aid
buyers in choosing homes, and perhaps motivate municipal-
ities to make quality of life improvements in neighborhoods
that have consistently poor ratings.

3. METROSENSE ARCHITECTURE
Motivated by the promise and utility of the types of ap-

plications mentioned in the previous section we have de-
signed the MetroSense architecture that meets the require-
ments (low cost, scalable, etc.) of the problem space and



takes advantage of the types of interactions between hu-
mans/sensors/environment that we envision. This section
provides an overview of the physical and main software com-
ponents included in MetroSense. We start by presenting a
set of design principles on which MetroSense is founded.

3.1 Design Principles
Network Symbiosis. New sensing infrastructure and

service deployment should leverage existing traditional net-
working infrastructure and services. The symbiosis between
networks should be managed to maximize the benefit to the
participants of all associated networks.

In a symbiotic relationship between two networks, at least
one member benefits from the association. A sensor net-
work architecture can benefit from the existing power and
communications physical infrastructure, and from existing
network services such as routing, reliable transport, and se-
curity. Paralleling the relationship between biological organ-
isms, the symbiotic association between the sensor network
and the traditional network may be parasitic, commensal or
mutualistic. This means the traditional network may be in-
jured, relatively unaffected or benefits, respectively, through
the association. While there are inherent limitations in the
services sensor networks can provide and in the processing
and communications capabilities of the elements that com-
pose them, we advocate mitigating these limitations through
use of the capabilities of established networks to provide
useful sensing services to the community. Relationships be-
tween networks and their constituents can be as defined by
contractual policy or evolve in an ad hoc manner (e.g., via
on-line cost/benefit analyses). Users of the established net-
works should experience minimal service degradation (e.g.,
through resource sand boxing) and may be provided service
enhancements due to the association.

Asymmetric Design. Resource asymmetry that exists
among members of the sensor network should be exploited
by pushing computational complexity and energy burden
to more capable nodes, while maintaining flexibility in the
sensing applications that can be supported.

Network elements are classified into architectural tiers ac-
cording to available computational, communications, sens-
ing and energy resources. Service implementations should
be aware of, and take advantage of such resource asymme-
try that exists between the tiers by requiring the higher-
capability tiers to handle tasks that consume more resources,
or require a broader view of the network status. Leveraging
resource asymmetry may result in sub-optimal process flow
in the provision of a particular service or operation. How-
ever, we are willing to accept this sub-optimality for the
benefits of a simplified service model and a network that is
easier to manage. An architecture should push this trade off,
while maintaining the ability to support the requirements of
its target application classes.

Localized Interaction. Network elements should pos-
sess a highly constrained “sphere of interaction” within which
they communicate with other network elements. We believe
the loss of flexibility imposed by requiring localized interac-
tions is outweighed by the increase in service implementation
simplicity and communications performance.

Given the ephemeral nature of element rendezvous in a
mobile network it is expensive and complex to maintain ex-
tended multihop interaction between elements. Even in a
static network unlimited multihop is known to lead to poor

communications performance. To keep interactions simple
and efficient we advocate an adaptive multihop approach to
communication, where a node’s sphere of interaction grows
and shrinks according to network conditions, rather than
attempting to maintain continuous reachability of all ele-
ments. We rely on a probabilistic notion of reachability via
opportunistic (mobility-enabled) interactions between nodes
in the field.

3.2 Tiered Physical Architecture
While the MetroSense architecture does not define any

particular set of hardware platforms, we do specify a three
tier physical architecture based on a minimum required set
of capabilities at each tier. We label these the Server Tier,
the SAP (Sensor Access Point) Tier and the Sensor Tier.
Members of the Server Tier are Ethernet-connected servers
equipped with practically unbounded storage and computa-
tional power. These generic servers provide important ser-
vice support to the architecture, as described in Section 3.3.
In what follows, we describe the members of the lower ar-
chitectural tiers, i.e., the SAP Tier and Sensor Tier.

SAP Tier. A SAP offers high performance, high relia-
bility, and secure gateway access to MetroSense services for
sensor tier elements while in range. SAPs provide secure,
trusted interaction with the sensor tier. When sensor tier
elements are not under a SAP then there are little or no
such assurances given. A SAP performs the role of sensing,
acts as a sink point for data gathered by the sensor tier and
programs sensors by loading small application components
onto them. Following the design principle of network sym-
biosis, we envision many SAP implementations will exploit
readily available infrastructure such as WiFi access points,
PCs/laptops, cell phones [8]. Network symbiosis raises a
number of interesting challenges. For example, how can we
exploit existing infrastructure without inhibiting or degrad-
ing its default operations? There is a need to design effective
resource partitioning schemes to prevent the donor network
being overwhelmed.

Sensor Tier. A mobile sensor is a wireless sensor de-
vice entrusted to a custodian, such as a person or a vehicle.
These agents act as custodians of the device with the sensor
device performing application functions as the agent moves
within the sensor field. A static sensor (SS) is a wireless
sensor device placed at a fixed location in the sensor field,
typically to instrument infrastructure such as machinery or
at specific locations to extend SAP coverage where wired
SAPs are not possible. Mobile sensors (MSs) support sens-
ing of the sensor custodian via applications run on behalf
of the custodian or others, and provide sparse sensing via
mobility. Examples of sensors in MetroSense are Zigbee-
compatible motes [7] and sensor-equipped cellular phones [8]
supporting a common protocol stack (e.g., Sensornet Proto-
col [21]. The key operations of a sensor are to collect sensed
data and upload the data to a target data collection entity
opportunistically. This is often a SAP, but could also be
a sensor to which the SAP has delegated its collection re-
sponsibility for given data. Sensors also support muling [16]
amongst each other to improve the delay and reliability of
getting sensed data to a SAP and into the repository. Like
any generic sensor used in sensing, sensors under MetroSense
are capable of running peering applications such as tracking
or other distributed multi-sensor applications where the sen-
sors communicate on a hop-by-hop basis. MetroSense pro-
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Figure 2: MetroSense Software Architecture

motes the use of small interpreted language applications [22]
to reduce programming time. We believe like the Tenet [3]
project that split applications may lead to greater efficiency
for many applications. However, implementation of peering
applications in this manner can be inefficient so we do not
force this asymmetric execution model as Tenet does [3].

3.3 Software Architecture
At a high level, MetroSense can be viewed as comprising

three classes of software components: common, core, and
resource. To make clear when we are discussing implemen-
tation versus design, in the following we use the term Metro
to describe an implementation and deployment of the Met-
roSense architecture. As such a Metro comprises a number
of resource components each logically associated to a set of
core components. Multiple Metros collectively can share the
common components. A Metro tasks resource components
to meet application requirements, with the core components
internal to the tasking Metro providing management over-
sight. Common components are communal assets used to
store and process the data output of sensing applications.
The MetroSense software architecture is shown in Figure 2,
where MS and SS represent mobile sensors and static sen-
sors, respectively.

3.3.1 Core Components
The core components of a Metro are admission control,

system state repository, localization and synchronization, and
ground truth. These compose the central functionality of
a Metro, enabling tasking and collection from the physical
components, and supporting inter-Metro cooperation. Im-
plementation of these services is distributed as appropriate
across the physical architecture. Admission control supports
a notion of fairness, and very loose service guarantees among
multiple concurrent user applications. To support these fea-
tures, admission control uses a hybrid soft/hard allocation
of sensing resources (mobile sensors and static sensors), lazy
tasking (see Section 4.3.2, and policy-driven resource recla-
mation. Furthermore, admission control protocols support
execution of applications across multiple independent Met-
ros. The system state repository contains both static (e.g.,
sensor physical address, sensor sensing capabilities, sensor
custodian information) and dynamic (e.g., last known po-

sition of a mobile sensor, SAP load average, mobile sensor
task set) state information. The information kept by the
system state repository allows for proper allocation of mo-
bile and static sensor resources to admitted applications,
enables application fairness, facilitates inter-metro resource
sharing, and supports a number of other network operations.
The synchronization and localization component provides a
consistent Metro-wide notion of time, and traces the mo-
bility of each mobile sensor. Mobile sensor tracking allows
for potentially smarter allocation of sensor resources to geo-
graphic sensing applications via mobility prediction. Sensed
data is stamped with time and location information before
storage in the sensor data repository so that sensed data is
analyzed in both space and time. The “ground truth” data
stream runs as a background process on each SAP to provide
a steady trace of data from the SAP’s on-board sensors col-
lected from its own static field of view. Due to the wired na-
ture of the SAP, collection of this ground truth data stream
is nearly error-free. The data collected from the stream can
be used by applications to augment data collected by mo-
bile and static sensor resources. Furthermore, the Metro
can use data from the ground truth stream for mobile and
static sensor data integrity checking, sensor calibration, and
sensor fault detection.

3.3.2 Common Components
The common components, shared across any number of

Metros, are the spaces directory system, sensor data reposi-
tory, sensor data mining and sensor data anomaly detection.
These deal with name resolution and data storage and pro-
cessing and in contrast to the core components possess few
characteristics specific to sensor networks. In a Metro, users
submit applications that collect data about spaces. A space
describes the target of interest to the application (e.g., a ge-
ographic region, a demographic cross-section). Each Metro
internally keeps a list of spaces it supports (e.g., defined by
a system administrator). A record in this list comprises a
descriptive string, and a list of resources (i.e., SAPs, static
sensors, mobile sensors) that when tasked are most likely to
return data consistent with the string descriptor. For exam-
ple, a space entry that supports tasking of sensors whose cus-
todians are University engineering students might look like
{”University engineering students”; EngineeringBldg.SAP-
1, EngineeringBldg.SAP-9, EngineeringBldg.SAP-10}. In-
ternally, a query against a supported space string initiates
tasking of the associated resources. Externally, the spaces
directory system maintains a hierarchical mapping of space
strings to the addresses of Metros that support the spaces
(e.g., the IP address of the web server that accepts applica-
tion submissions). The spaces directory system is updated
in a like manner to the domain name system in the Inter-
net. Users query the spaces directory system to discover
which Metros support the spaces about which their appli-
cation is designed to collect data. A more detailed usage
case for application submission is described in Section 3.3.4.
The sensor data repository provides a location for the com-
munal amalgamation of collected data from one or more
Metro. The sensor data repository may be realized by a
physical centralized database, or virtually through the def-
inition of appropriate mutual access policies to physically
distinct databases maintained by each Metro. Such a com-
munal resource provides the ability to users to analyze data
from a broader set of results than would be otherwise pos-



sible. User access to particular data is a matter of user
and repository policy negotiated by the constituent Met-
ros. Sensor data mining and sensor data anomaly detection
are services provided both to the core components and to
the users. Sensor data mining implements a set of stan-
dard statistical functions a user can call by name to analyze
repository data. Using these functions users can build inter-
face applications to manage data retrieval and presentation.
Sensor data anomaly detection implements a suite of algo-
rithms in an effort to determine if a given data sample or
set of samples lies outside the norm. This service is used,
for example, by processes predicting data integrity that run
in each Metro as part of the data collection process.

3.3.3 Resource Components
The resource components of a Metro are defined by the

SAP and sensor software sub-architectures. Here we high-
light primary elements of these sub-architectures with refer-
ence to Figure 2. MetroSense requires a programming model
that supports multiple classes of applications, provides sim-
ple interfaces to application developers, whose runtime en-
vironment supports multiple simultaneous applications, and
allows for light-weight tasking of sensors. Use of application
specific virtual machines (ASVMs) [23] is one possible solu-
tion to meet these needs. These allow applications, trans-
mitted as VM byte code, to remain small (tens of bytes).
The approach provides a flexible and extensible environment
for application developers, who may use instructions within
an existing ASVM to construct applications, or can create
ASVMs themselves tailored to the needs of a new class of
application not previously supported. Three types of data
exchange occur in the SAP and sensor sub-architectures: re-
tasking exchange, muling exchange, and delivery exchange.
In retasking exchange new application code is delivered from
a tasking entity (e.g., a SAP) to a sensor; in muling ex-
change sensed data is transferred between sensors outside of
the sphere of influence of the target data collection entity
(e.g., SAP) to aid its progress; in delivery exchange sensed
data is uploaded from a sensor to a target data collection
entity (e.g., SAP). We present initial solutions to each of
these activities in Sections 4.3.1, 4.3.2 and 4.3.3.

3.3.4 Usage Case: Running Applications
in MetroSense

The MetroSense design is application agnostic and al-
lows multiple applications to simultaneously share sensor
resources. We believe use of an ASVM programming sub-
strate on sensor resources is a promising approach to allow
for flexibility and extensibility in developing and deploying
applications.

Application Development and Submission. We en-
vision that a standard set of ASVMs are supported by all
nodes within a Metro. Developers are aware of these sup-
ported forms of ASVMs and can develop for the VM that
is most appropriate for their requirements. Each ASVM is
based on a master template VM that incorporates manda-
tory MetroSense “operations” (e.g., data buffer exchange,
localization, synchronization, re-tasking exchanges, data mul-
ing exchanges, authentication and encryption). Once the
application is written against the appropriate ASVM, a de-
veloper (more generally a user, post-development) deploys
an application by constructing an application bundle and
submitting it for execution, e.g., via a web-based portal.

An application bundle is composed of a Space-time descrip-
tor, a VM capsule and a Spec file containing the necessary
parameters to fully specify the resource requirements of the
application. The Space-time descriptor specifies the sensing
target and the time window of interest. A space can have
geographic-centric or people-centric semantics, or both. A
User interested in sensing a particular space accesses the
Spaces Directory System to determine the Metro or set of
Metros that contain the sensing target of interest. If the
target space is a single human, the resource requirements
are unambiguous, the system must task the mobile sensor
carried by that human, or sensors nearby. If the target space
is “professors at Dartmouth”, and the application is sensing
the temperature of this space, the Spec file must specify that
a temperature sensing instrument must be present on tasked
sensor. Furthermore, the Spec file may specify a number of
sensors to task, if the number is not implied by the Space
definition. We are developing a small number of web-based
user interface tools in support of application submission and
a sensing description language to specify the requirements
(e.g., space, time, tasking/sensing pre-conditions) of an ap-
plication.

Admission Decision and Resource Selection. Ad-
mission control in MetroSense is based on target space va-
lidity and resource availability. If the space descriptor speci-
fied in the application bundle is not supported by the Metro
then the application bundle is rejected and the user is noti-
fied. To check the availability of resources that match the
requirements of the application, the Metro uses its internal
Spaces directory to map the Space-time descriptor submit-
ted in the application bundle to a list of candidate resources.
These candidate resources (i.e., SAPs and MSs/SSs) are fur-
ther filtered by additional requirements, such as sensor type,
that may be included in the Spec file. To balance quality
of service concerns with the ability to admit new applica-
tions, we use a hard/soft resource allocation negotiation.
The system accepts the application if it has resources to
meet the hard threshold immediately, and commit to trying
to meet the soft threshold over time. Otherwise, the applica-
tion is rejected with a notification of the current maximum
hard threshold it can support. In this way, we aim to main-
tain system stability and provide a loose notion of fairness
to multiple simultaneous applications. Because of the dy-
namism of the system, the admission and resource selection
control is distributed across elements of both the Server and
SAP tiers of the architecture.

4. OPPORTUNISTIC SENSOR
NETWORKING

In MetroSense, we leverage the uncontrolled mobility pat-
terns of mobile sensors, mobility that comes at no cost to
the sensing/communication infrastructure, to bridge gaps
in static sensor coverage. This mobility gives rise to a suite
of opportunistic processes that facilitate urban-scale sens-
ing. In this section, we discuss opportunistic sensing, op-
portunistic delegation, opportunistic tasking, opportunistic
collection, and adaptive multihop.

4.1 Opportunistic Sensing
In order for a given sensing operation to be successful it is

necessary that a particular sensor has the right instruments
(e.g., temperature sensing device) for the required sensing



Figure 3: Coverage comparison of mobile and static
sensor networks.

task, is loaded with the appropriate application, and has mo-
bility characteristics that bring the sensor within the target
area during the time window of interest. In an environment
like MetroSense where most interaction between nodes is
based on uncontrolled mobility we term the situation where
the aforementioned requirements are met as opportunistic
sensing. Strategies on how to task a sensor with a given
instrument set to support a given application, and how to
assign applications to sensors based on mobility characteris-
tics are presented in Section 4.3. In what follows we discuss
the ability of a network of mobile sensors to cover a sensor
field so that properly tasked sensors may probabilistically
be in the right place at the right time to sense the item of
interest.

In our people-centric architecture, we are likely to have
sensor coverage of our mobile sensor custodians, and swaths
of coverage along their mobility paths. In contrast, a fully
static network has a fixed coverage area determined by the
initial deployment pattern. We conjecture that a sensor net-
work founded on people-centric sensing, can provide a level
of sensing coverage that can approximate that of a dedicated
static network for many urban applications. In addition, we
conjecture that without ubiquitous deployment (too expen-
sive) static networks can not approximate the mobile sens-
ing capability or fidelity of a people-centric sensor network.
As an initial test of this conjecture we simulate (using NS-
2) the complete Dartmouth Campus placing the data col-
lection points on the actual positions of the Aruba WiFi
access points we intend to use as part of our future SAP
deployment strategy. We simulate a population of mobile
sensors that periodically sense their environment (every 2
minutes) as they move around campus. The mobile sensors
traffic patterns are based on actual traces from WiFi users
on the Dartmouth Campus [24]. Mobile sensors deliver de-
layed data when they come across the simple data collection
points. We unrealistically assume infinite buffering on each
mobile sensor and a perfect wireless channel. We consider
the sensing coverage area is 5m and the transmission range
of each mobile sensor and data collection point is 40m. Fig-
ure 3 shows the percentage of the Dartmouth Campus area
covered for varying numbers of mobile sensors (MSs) and
collection points (CPs). It also shows two static sensor net-
work deployments that are used as baseline comparisons,
where 35% and 53% of the full campus area can be covered
by 10,000 and 15,000 static sensors, respectively. Because
NS-2 is not designed for such a large number of mobile nodes
when using the wireless extension we ran the simulation for

only a 20 minute simulation time. The important result
shown in Figure 3 is that 750 collection points and 3750
mobile sensors are capable of covering the equivalent sens-
ing area of a 15,000 static sensor network. The plot also
shows the cross over point where a static network of 10,000
static sensors and {250 CPs, 2250 MSs} have roughly equiv-
alent coverage after only 20 minutes. The observation from
this simple simulation is that mobile sensors are effective at
covering sensing areas over time and can match the cover-
age of static nodes with considerably fewer mobile sensors.
A similar conclusion based on analysis for a random initial
deployment strategy and a random mobility model is found
in [25] However, what we do not characterize here is the de-
lay cost. We are studying the relationship between coverage
and delay through analysis and simulation, and plan to col-
lect trace data from large-scale experimentation as part of
future work.

4.2 Opportunistic Delegation Model
In what follows, we introduce the opportunistic delegation

model used to coordinate the interactions between static and
mobile elements in the network, allowing sensing to scale
across very large networks in terms of both area and number
of elements.

4.2.1 Model Definition
In any network architecture, principals have a set of des-

ignated responsibilities. Opportunistic delegation refers to
the limited transfer of a subset of these responsibilities, when
the transfer yields some advantage. Sensors may delegate re-
sponsibilities related to sensor tasking, and data collection.
The transfer is limited in the sense that responsibilities are
only delegated for a limited time or to perform a specific
objective. The opportunistic element of the delegation is
introduced by sensor mobility.

To make the notion more concrete, the following example
presents a scenario where opportunistic delegation is used to
extend the effective sensing range of a static sensor. Suppose
an application requires data of type γ from region A of the
field in the time interval [t1, t2]. Suppose, by some previous
assignment, static sensor y has the responsibility to acquire
this data, but its γ sensor range is such that region A is out
of range. However, a mobile sensor z possessing a γ sensor
exists with a motion vector vz that intersects region A in the
time interval [t1, t2]. Ideally z rendezvous with y prior to the
intersection of vz with A. In such a case, y delegates the tar-
get sense responsibility directly to z. Otherwise, “indirect
delegation” can be used, whereby y delegates a third sensor
w with the responsibility to task an appropriate sensor to
execute the sensing. w, which can be a mobile or static sen-
sor, in turn delegates the responsibility to sense the target to
mobile sensor z. Such indirect delegation chains can grow as
long as required. Assuming z is delegated to do the sensing
in region A in time, it will acquire the γ data. At this point
it is the responsibility of z to return the sensed data to the
collection entity, say y. This responsibility can be fulfilled
by z itself, or delegated to other sensors in a manner similar
to the sensing responsibility just described.

4.2.2 Model Characteristics
The alternative to delegation is direct responsibility, where

a sensor with a given objective does its best to achieve the
objective without involving other participants. In what fol-



lows, we describe the advantages and disadvantages of op-
portunistic delegation in comparison to direct responsibility,
with reference to the example presented in Section 4.2.1.

Sensing Coverage. Opportunistic delegation provides
only a probabilistic notion of sensing coverage, due to its
strong dependence on both the temporal and spatial aspects
of mobility. In particular, in the context of the example from
Section 4.2.1, a suitable sensor z (γ sensor equipped, vz in-
tersects A) for delegation must be available to y at the right
time (relative to the intersection time of vz with A) for the
sensing delegation to be successful. Then, the data must
make the return trip from z to the collection point, possibly
using delegation. In contrast, with the direct responsibil-
ity approach, if the target region A is in range of sensor
y the objective is successful (ignoring wireless channel loss
for the sake of this discussion). Otherwise, y fails to ac-
quire the desired data for the application. In cases where
delayed data delivery is tolerable, the probabilistic notion
of extended sensing coverage provided by opportunistic del-
egation provides an advantage over the direct responsibility
approach.

Sensor Selection. In the previous example, sensor y

may have several candidate sensors {z1, ..., zn} for delegation
of a given sensing task. In the general case, characteristics of
the candidate sensor are not known to y, and consequently
y may choose its delegate poorly. Section 4.3.2 discusses
techniques that can be used to cull the candidates for del-
egation. However, if y is allowed to choose more than one
delegate, the success probability of the objective goes up.
In fact, when such multiple delegation is combined with del-
egate chaining, a larger platoon of sensors can be assigned
any particular objective, increasing the fault tolerance of the
data sensing and collection effort, if desired. A more typical
case might involve a constant or linearly growing platoon.
In contrast the direct responsibility approach assigns a sin-
gle sensor or cluster of sensors responsibility to sense a given
region; sensor loss has a permanent effect on sensing fidelity.

Sensor Data Collection. Opportunistic delegation in
the data collection process, though semantically different,
is functionally equivalent to data muling. As with muling,
data delivery is likely to have a higher average delay with
opportunistic delegation than a static network using direct
responsibility for data collection. On the other hand, dele-
gation in the collection process may enable collection where
it is otherwise impossible (e.g., an isolated sensor). The best
collection delegate at a given point is difficult to determine,
yet the choice strongly impacts the ultimate success of the
collection objective. Section 4.3.3 proposes a mechanism to
improve the probability of success.

Sensor Data Fidelity. The impact of opportunistic del-
egation on the fidelity of the sensed data is related to the
sensitivity of the sensing instruments (e.g., motion detec-
tor range) on the sensor. Mobile sensing delegates may be
forced, due to mobile sensor custodian mobility, to acquire
data at a distance from the intended target beyond the opti-
mal sensitivity threshold of the sensing instrument. In this
case the quality of the sensed data often decreases monotonic
with the sensor’s distance from the target. Static networks
are often deployed to provide complete sensing coverage over
all regions of interest. However, this is not feasible at urban
scale. In this case, if the direct responsibility approach is
followed, an out-of-range target region has no chance to be
sensed and thus any data collected has null fidelity.

4.2.3 Opportunistic Delegation Primitives
Opportunistic delegation is a general purpose paradigm

for mobile and static sensor coordination, using responsibil-
ity transfer to improve success probability for a given ob-
jective. The general model gives rise to a number of primi-
tives of use in supporting applications that run in mobility
heterogeneous networks. In what follows, we describe four
primitives that we believe will be commonly adopted by ap-
plications.

Virtual Sensing Range. The ability to sense any arbi-
trary region within the sensor field is a fundamental require-
ment of a sensor network. Any mobile or static sensor has a
sensing coverage area limited by the sensitivity of the sens-
ing instrument. Application requests to acquire sensor data
will sometimes exceed these limits. The opportunistic dele-
gation example in 4.2.1 describes the interactions required to
extend the sensing range of a mobile or static sensor to meet
the application request. We refer to this extended sensing
range as the virtual sensing range.

Virtual Collection Range. Some applications may im-
pose a temporal filter on received data such that data re-
ceived with a delay greater than the threshold is ignored.
The virtual collection range primitive increases the proba-
bility of timely data collection by effectively increasing the
size of the collection “target”. The physical collection en-
tity, e.g., a static sensor y, opportunistically delegates its
collection responsibility to other sensors for a given data set.
Upon collecting the data, the delegate then either directly
or indirectly (using opportunistic delegation) communicates
the data to y. Unlike the virtual sensing range which can be
said to extend to the target region, there is no such equiva-
lent limit to the virtual collection range.

Virtual Static Sensor. Many existing sensor network
applications are designed for use in a static sensor network.
The virtual static sensor primitive allows a completely mo-
bile or hybrid mobile/static network to emulate a static net-
work via opportunistic delegation. This primitive can estab-
lish an arbitrary number of virtual sensors at arbitrary loca-
tions. Virtual static sensors are realized by first partitioning
the sensor field into subfields of interest at the resolution
necessary to meet the requirements of the application. If a
physical static sensor exists in partition pi, it becomes the
“virtual static sensor” for partition pi. Otherwise, as mobil-
ity brings mobile sensors into partition pi, these temporarily
act as the virtual static sensor for pi. Mobile sensors leav-
ing pi delegate the responsibility to function as the virtual
static sensor for pi to other sensors entering pi, exchanging
state as required, in a best effort manner. Data collection
from virtual static sensors occurs via delegated collection, if
necessary.

Virtual Mobile Sensor. In people-centric sensing, when
the sense target is a mobile sensor custodian, depending on
the type of sensor it may be easy to achieve sensor cover-
age of the target. When a human (or other mobile) target
is not a sensor custodian the virtual mobile sensor primi-
tive allows best effort coverage of the target. This primitive
can be viewed as a generalization of the virtual static sensor
primitive. Partitioning and delegation proceeds in a similar
manner, except that with the virtual mobile sensor primi-
tive a partition pi moves around the field with the mobile
target to which it is associated. The effectiveness of mobile
sensor emulation is much more challenging than the static
case, particularly because the motion of the mobile target is



 0.1

 0.2

 0.3

 0.4

 0.5

 10  20  30  40  50  60  70  80

T
as

ki
ng

 P
ac

ke
ts

 R
ec

ep
tio

n 
R

at
io

 [T
P

R
R

]

Packets/sec/MS

5 MSs
10 MSs
15 MSs

Figure 4: Tasking packet reception ratio (TPRR)
versus load.

not known a priori and can only be predicted based on past
history.

4.3 Opportunistic Tasking and Collection
Tasking of an appropriate mobile sensor for a given ap-

plication by a particular SAP requires both that the mobile
sensor moves within the sphere of interaction (e.g., radio
range) of the tasking entity (e.g., a SAP, a mobile or static
sensor that has been delegated the responsibility to task),
and that the sensor remains within this sphere long enough
for the tasking packet transfer to complete. Similarly, up-
load of a mobile sensor’s data to a particular collection point
(e.g., a SAP, a sensor acting as a data mule, a sensor with
a multihop path to a SAP, a sensor that is in network end
point or aggregator of particular data) requires both that
the mobile sensor moves within the sphere of interaction of
the SAP, and that the sensor remains within this sphere long
enough for the data upload to complete. We introduce the
terms opportunistic tasking and opportunistic collection to
refer, respectively, to the methods by which sensor tasking
and data upload can be completed in the face of uncon-
trolled sensor mobility. In this section, we discuss the effect
of uncontrolled mobility on tasking and data collection op-
erations and strategies to respond to this effect.

To evaluate the impact of sensor mobility on tasking and
collection operations, we study the ability of a SAP net-
work to authenticate, retask, and upload sensed data from
groups of real people-centric sensors using an Aruba WiFi
Access Point 70 as a SAP (running the OpenWRT cus-
tomized Linux distribution [26]) connecting the Zigbee Sky
Mote into the AP’s USB port. A four SAP network on one
floor of the Sudikoff Computer Science building at Dart-
mouth provides sparse coverage with a 30-40m coverage area
per SAP. Data is collected for three experiments where mo-
bile sensor groups (viz. 5, 10, 15) cross coverage areas at
human walking speed at various trajectories. Mobile sen-
sors upload traffic at 5 pkts/s while two static motes provide
background traffic at various rates (viz., no, low, medium,
high). Traces for each of the three group sizes and four
loading conditions are collected. We use PSFQ [5], a reliable
transport protocol, for authentication and retasking and un-
reliable communication for data upload to the SAP. Figure
4 shows TPRR, the ratio of tasking packets sent by the SAP
that are received by the mobile sensors (MSs), against load
for 5, 10, and 15 MSs. Even under no background traffic
load the best results are only between 30-45% completion

of the retasking activity. Once a sensor has authenticated
(90% of sensors authenticate across all experiments) PSFQ
attempts to reliably transfer an ASVM component (four-
teen 36-byte packets). Under no load conditions only the
5-sensors group completes the retasking process. Increasing
load gives poorer results. From these preliminary exper-
iments we observe that sensor mobility reduces the likeli-
hood that a sensor will complete a data upload operation
(data omitted due to space constraints) or that a SAP will
complete a tasking operation (Figure 4) in a single “ses-
sion” before moving out of range, even for relatively small
tasking payloads (e.g., ASVM application byte code). Mo-
bility implies a relatively short rendezvous duration, chang-
ing multipath characteristics, and hidden terminal effects.
Additionally, the relationship between body and sensor po-
sitioning has a mobility-dependent effect on radio signal at-
tenuation due to shielding by human body parts. It is clear
that a naive approach to tasking and collection when sen-
sors are mobile is insufficient. This motivates the design of
additional strategies to increase the probability that sensor
tasking is successfully completed, the correct sensor is cho-
sen for tasking, and that sensor data can be uploaded to
the SAPs. Sections 4.3.1 through 4.3.4 discuss a number of
promising strategies.

4.3.1 Lazy Uploading
Sensed data is collected in a delay tolerant manner. It is

clear that depending on mobility patterns and buffering of
muled and locally-sensed data mobile sensors may not be
able to upload all buffered data to the target data collection
entity in one session, i.e., before moving out of range. Fur-
thermore, inter-contact times between mobile sensors and
the target collection entity can vary considerably depending
on mobility patterns [27]. Reliable upload of sensed data
from the mobile sensor is thus problematic. Again, accord-
ing to the particulars of the scenario, the target data col-
lection entity could be a SAP, or a mobile or static sensor
to which the collection responsibility has been delegated for
given data. We introduce the notion of lazy uploading to fa-
cilitate sensor data upload across multiple collection entity
visitations. When a mobile sensor enters a radio coverage
zone (e.g., a SAP is the common case) of a collection en-
tity zone it authenticates to establish a trust association.
During a given established session, data upload occurs via a
reliable point-to-point transport between the mobile sensor
and the collection entity. Note that this could be tunneled
over multiple hops in the case of adaptive multihop (see
Section 4.3.4). We propose a transport protocol that uses a
selective negative acknowledgment system with an unlimited
window size. The collection entity with the support of the
system state repository keeps state on the progress of the
data transfer, allowing a mobile sensor to move away from
a collection entity without worrying about first filling gaps
in packet reception. When a mobile sensor authenticates
with a new collection entity it receives a selective negative
acknowledgment as part of its authentication process which
allows it to continue its upload from the point where the
system has received data, and requiring the mobile sensor
to retransmit packets the system is missing. In this way,
the need for any other wireless state exchange between mo-
bile sensors and collection entities during the sensor data
uploads is eliminated.



4.3.2 Lazy Tasking
In MetroSense, in the best case, the mobility of mobile

sensors is such that reprogramming can be completed while
the mobile sensor is in range of a particular tasking en-
tity (e.g., a SAP is the common case). However, as dis-
cussed in Section 4.3, this will often not be the case. There-
fore, MetroSense includes a lazy tasking mechanism similar
to the Lazy Uploading strategy discussed in Section 4.3.1.
The SAP tier and involved sensors keep state on active in-
complete tasking operations should the tasking operation
be incomplete when the mobile sensor leaves the range of
the tasking entity. In this way, the architecture is able to
“pause” and “resume” the tasking as a mobile sensor moves
in and out of SAP coverage areas. According to the partic-
ulars of the scenario, the tasking entity could be a SAP, or
a mobile or static sensor to which the tasking responsibility
has been delegated. MetroSense uses a mobile sensor’s direc-
tion, speed, and location with respect to the tasking entity
with which the mobile sensor is currently interacting as an
input to the candidate selection algorithm. This algorithm
determines which mobile sensors to task and when, based on
current application requests in the system. We have identi-
fied a number of heuristics for mobile sensor selection. For
example, we might choose a momentarily stationary mobile
sensor (longer rendezvous duration for programming) that
will exit the tasking entity’s zone of influence in the direc-
tion of the intended sensing space. Other policies include
programming mobile sensors when they first associate with
the tasking entity and allowing them to remove the task if
they do not exit the zone of influence in the correct direction
- we call this early tasking. A variant of early tasking has
the mobile sensor informing the tasking entity that they are
candidates for retasking. Here the tasking entity gives the
mobile sensor the coordinates of the sensing space. Mobile
sensors then elect themselves as candidates for retasking in
an autonomous manner. An alternative is to wait until the
tasking entity knows that the mobile sensor is a strong can-
didate based on its apparent exit trajectory - we call this
late tasking.

4.3.3 Direction-based Muling
Mobile sensors are capable of picking up sensed data from

static sensors that do not have a static single- or multi-hop
connection to the target data collection entity (e.g., a SAP
is the common case), and from other mobile sensors that it
may encounter. The goal of muling in MetroSense is to get
data to the target data collection entity in a timely man-
ner. According to the particulars of the scenario, the target
data collection entity could be a SAP, or a mobile or static
sensor to which the collection responsibility has been dele-
gated for given data. To improve performance we exploit
the predictable nature of human mobility in a Metro (e.g.,
students walking across campus following a daily class sched-
ule). In direction-based muling a mobile sensor determines
prior to a reliable exchange which candidates are likely to be
heading in the direction of the target collection entity. The
direction-based muling transport works as follows. Once a
source mobile sensor has sufficient data to mule (e.g., an
event packet or set of event packets) it uses a mule discov-
ery protocol. The protocol solicits muling services via ren-
dezvous. It broadcasts a mule solicitation message with its
data muling needs, its direction and speed and last location
of the data collection point it encountered. Mobile sensors

that hear the request only respond if they are either head-
ing in opposite or orthogonal directions from the soliciting
mobile sensor and they have sufficient buffering to carry the
data. If this is the case then the candidate mules respond. If
candidate mobile sensors overhear more than an a threshold
number of responses they drop their response. A number
of heuristics are possible to select the best mule candidate.
For example, we may choose a mobile sensor whose motion
vector compared to the advertising sensor gives the trans-
port more time to complete. Alternatively, we may chose
the sensor whose selection is likely yield the lowest delay
data delivery given a predicted trajectory towards a SAP.
Since there is no way to know exactly where mobile sensors
may go in the future and where the target collection entities
are, the best approach (with respect to reliability and time-
liness of delivery) is to have multiple mules with the same
data spread out in different directions. Many data muling
proposals exist (e.g., exploring data replication strategies,
choosing the best mule), a number of which are mentioned
in the related work (Section 6).

4.3.4 Adaptive Multihop
Adaptive multihop is a mechanism that can improve the

delay performance of both sensor tasking and data upload-
ing by increasing the probability that these activities can
complete in a single SAP session. Due to the increased
complexity and probability of loss inherent therein, when
considering a very large scale sensor network deployment
we are strongly motivated to find solutions for sensed data
transport and network retasking that do not rely on wire-
less multihop. However, under some conditions multihop
may improve performance and/or enable necessary func-
tions. When a mobile sensor’s mobility pattern brings it
within the radio reception range of a target data collection
entity, data uploading may begin. Here, according to the
particulars of the scenario, the target data collection entity
could be a SAP, or a mobile or static sensor to which the
collection responsibility has been delegated for given data.
Single hop upload is preferable because of the reduced prob-
ability of packet loss. However, in sparse regions of a Met-
roSense deployment it may be advantageous to increase the
size of the collection target by delegating collection respon-
sibility to neighbors of the target collection entity. A col-
lection entity whose average load (e.g., packets received per
time interval, mobile sensors seen per time interval) remains
below a value Load.Thresholdmin for N time epochs may
attempt to grow its collection boundary by a single wire-
less hop. Several factors contribute to the decision of which
collection entity neighbors become data collection delegates,
including physical distance from the target collection entity,
link quality with the target collection entity, and anticipated
mobility pattern. For example, a target collection entity
might select neighbors that are maximally distant from itself
and each other, that possess link quality > LQ.Threshold,
and that are likely to be stationary in the near future (e.g.,
Mobility.Factor < Mobility.Threshold).

On the tasking side, the requirements of a given appli-
cation indicate which characteristics a mobile sensor must
have to be a candidate for tasking with a given application.
The pool from which candidates are chosen for tasking com-
prises static and mobile sensors within communication range
of a tasking entity. Note that according to the specifics of
the scenario, the tasking entity could be a SAP, or a mo-



bile or static sensor to which the tasking responsibility has
been delegated. Normally, direct communication is desired
since sensor tasking requires a reliable transfer of application
code, and multihop wireless transfers increase the probabil-
ity of packet loss. If requirements for a given application are
particularly limiting, or if few mobile sensors happen to be
within direct communication range with a tasking entity at
a given time, it may be preferable to expand the search pool
by relaxing the direct communication constraint. However,
selecting a candidate from Pool.expanded−Pool.initial in-
troduces additional complexity because it requires a multi-
hop tasking capability.

Other scenarios arise. Assume that a successful tasking
for a given application requires the download of K pack-
ets from the tasking entity to the mobile sensor. If a mo-
bile sensor moves out of direct range after K − i packets
have been successfully received the system must make a
choice: purge state and start over with a new candidate;
cache the state for the programming session and wait for
the partially-programmed mobile sensor to come back into
range to complete the download. Both of these options are
unsatisfactory; the first wastes the resources of the tasking
entity and mobile sensor already expended in partial pro-
gramming, while the second ties up memory at the tasking
entity. Allowing for multihop tasking provides the possi-
bility to complete the download of the i remaining packets
before the mobile sensor moves out of the multihop range
of the tasking entity. Research questions here include how
many hops to extend the tasking boundary, and which neigh-
bors to choose as tasking delegates. Physical distance from
the primary tasking entity, link quality with the primary
tasking entity, and anticipated mobility figure prominently
into tasking delegate selection.

5. PEOPLE-CENTRIC SECURITY
AND PRIVACY

Given the people-centric nature of the data handled by
MetroSense, protecting the security and privacy of the sen-
sor tasking and data collection processes is of great impor-
tance. Initial work on providing security for static sensor
meshes (e.g., [28] [29]) provides promising leads, but many
open problems exist. Characteristics of sensing in the ur-
ban environment such as mobility and issues related to in-
teractions across multiple administrative domains introduce
further complexity. The overall security solution in Met-
roSense includes a number of general approaches, including:
incorporating the use of trusted platform modules (TPMs)
in the construction of sensors to provide hardware support
for security; mechanisms to recover sensors once they are
compromised; leveraging the capabilities of the SAPs and
the server tier to detect problems; leveraging the people-
centric nature of the network by including humans as part
of the anomaly detection strategy; using human custodians
to periodically refresh (e.g., plug in to PC) the sensor to
a known good state; and managing data access via data
creation, transport, and storage policies. Due to space con-
straints, we forego a treatment of these general approaches.
Rather, in this section, we describe how the MetroSense
brings one specific approach, the opportunistic delegation
model (discussed in Section 4.2, to bear on the problems of
security and data privacy. We first describe how the model
offers a measure of protection by construction, followed by

two active techniques that can provide additional assurances
within the model’s framework.

5.1 Intrinsic Security Properties of
Opportunistic Delegation

The opportunistic delegation model offers forms of pri-
vacy and security protection due to its reliance on uncon-
trolled sensor mobility. Operations such as opportunistic
tasking, opportunistic sensing and opportunistic collection
thus lack the determinism of the direct responsibility model
(discussed in Section 4.2.2. The uncertainty introduced by
uncontrolled mobility results in an intrinsic robustness to
potential attacks, and an increased notion of privacy, as de-
scribed in the following.

Fault Tolerance. In a virtual static sensor grid no one
single sensor is exclusively responsible for a specific geo-
graphic region pi. Delegation occurs only as allowed by the
unpredictable mobility of custodians. This results in a con-
stant churn of responsibilities among sensors. Thus attacks
that focus on capturing or otherwise limiting the capability
of individual sensors to perform their responsibilities (e.g.,
sensing) have a limited effect on the sensor grid coverage.
Performance degrades gracefully as a smaller set of mobile
sensors opportunistically continue to cover region pi in lieu
of captured or disabled nodes. This is in contrast to a purely
static sensor network where the ability to provide geographic
coverage is tied to a specific set of sensors.

The same form of robustness extends to performing people-
centric sensing when using the virtual mobile sensor prim-
itive. By employing opportunistic delegation the ability to
sense the individual is not tied deterministically to a specific
mobile sensor but can be achieved opportunistically by the
collective abilities of all sensors in the network.

Privacy. A mobile sensor custodian k may worry that her
activities could be inferred based on a trace of the responsi-
bilities her sensor assumes. The use of opportunistic delega-
tion primitives acts to decorrelate responsibilities assumed
by a particular sensor with potentially identifying character-
istics of the sensor custodian (e.g., mobility pattern). Dele-
gation depends not only on custodian k’s mobility but also
on the mobility of potentially all other custodians. This,
combined with the ever changing set of requirements dic-
tated by sensing applications, weakens possible inferences
as to the exact activities of any particular custodian.

5.2 Security-aware Delegation
We envision an urban sensor network comprising a collec-

tion of heterogeneous sensing devices, each with potentially
different capabilities to provide forms of privacy and secu-
rity protection. Some devices have stronger means at their
disposal for instance due to their location (e.g., a SAP lo-
cated in a bank) or special hardware (e.g., incorporate TPM
in a mobile sensor). However, a chain of security is only as
strong as its weakest member.

To achieve a specified level of security, in the course of
opportunistic delegation potential target sensors are filtered
according their security capabilities. For instance, in es-
tablishing a delegation chain to perform data collection of
particularly sensitive sensed data, delegation could be lim-
ited to only those sensors with trusted hardware. Given that
the construction of such a chain relies on the opportunistic
rendezvous of sensors that meet specified security require-
ments, performance in terms of delay is likely to worsen.



Furthermore, additional overhead is required to verify po-
tential delegates have the necessary security characteristics
(e.g., trusted hardware).

5.3 Privacy-aware Delegation
Privacy-aware delegation aims to limit the extent of in-

formation known about a particular sensor by inverting the
opportunistic delegation procedure. In a typical opportunis-
tic delegation interaction, a responsibility is delegated from
a sensor x to a sensor y. In this case, x has information
about the future objectives of y, and may be able to infer
information about the custodian of y. This is particularly so
if y happens to encounter x again in the future and shares
information about the results of the previously delegated ob-
jective. One approach that reduces the information x knows
about y is for the delegate sensor y to choose (e.g., at ran-
dom) the responsibility it will assume (e.g., from a list of
responsibilities outstanding at x) rather than x delegating
the responsibility. This approach maintains a level of pri-
vacy at y but may seem to compromise that of x. However,
this is not so if the list of responsibilities at x is also accu-
mulated with the same privacy-aware delegation procedure.

Allowing the candidate sensor to choose the responsibil-
ities has consequences for system performance. While in-
creased signaling is required, the primary impact results
from a possible tension between optimal responsibility dele-
gation and custodian privacy. In particular, to increase the
privacy of its custodian a sensor may choose a responsibility
it is ill-equipped to fulfill while forgoing another that is may
be uniquely positioned to fulfill. At critically large scale,
such suboptimal system behaviour is probabilistically mit-
igated by the diversity of custodian privacy aims, though
the fundamental trade off between privacy and performance
remains.

6. RELATED WORK
To date, no published work presents a network architec-

ture solution suitable for general purpose urban scale sens-
ing. Proposals in the areas of tiered sensor networks, delay
tolerant sensor networks, and sensor network and ubiqui-
tous computing middleware architectures represent the most
closely related work, and are discussed below.

Tiered Sensor Networks. ExScal [2] seeks to maintain
delay performance at scale in classic static sensor networks
using radio network tiering techniques. Others have pro-
posed tiering (e.g., [4] [30]) to address different concerns in
large scale static sensor networks. However, these proposals
do not handle mobility and thus are not adequate to han-
dle urban sensing. Tenet [3] is an architectural approach
in which tiering extends even to the application execution
model. While the strict approach is beneficial for some oper-
ations like aggregation, the rigidity of the model makes peer-
ing applications inefficient since all peer interactions are me-
diated by a higher tier proxy. We posit Tenet can not scale
to urban area sensing because of the performance limitations
imposed by the strict tiering model. Furthermore, [3] [2] [4]
and [30] are all targeted at static sensor networks, and are
thus inadequate to handle the dynamics of mobility in the
urban sensing environment.

Delay Tolerant Sensor Networks. A number of projects
propose the use of delay-tolerant networking via data muling
within the context of sensor networks (e.g., [31] [32] [33]).
However, proposals like [31] and [33] do so only to address

partitions in the network with regards to the radio com-
munications, neglecting the equally important challenges of
sensor tasking and sensing coverage in the urban landscape.
In [32], the authors discuss human-oriented sensing to im-
prove fidelity, but present a limited solution space, exploring
only efficient flooding variants. In MetroSense, communica-
tion, tasking and sensing are all addressed with a unified
solution via the opportunistic interactions we have defined
under the umbrella of what we call opportunistic sensor net-
working (Section 4).

Software Architectures. The software agent-based Iris-
Net [34], the Hourglass overlay model [35] and the stream-
focused SONGS architecture [36] are representative of soft-
ware architectures that attempt to address the challenges
of coordinating data from heterogeneous sensor networks at
large scale. These proposals begin with the assumption that
the sensors and sensor networks necessary for application
deployment and data collection already exist. Gaia [37],
Aura [38], Endeavor [39] and Oxygen [40] are representative
of the pervasive networks approach to systems architecture.
These present middleware solutions to facilitate the dynamic
negotiation between devices such as discovery and localiza-
tion. The pervasive systems architectures again assume the
presence of an enabling underlying network architecture for
the urban environment at large scale. Achieving data col-
lection of adequate fidelity in the urban environment is no
small task, and this goal is not met with existing proposals.
There is a need for new architecture solutions to fill this gap.
MetroSense embodies a comprehensive solution that targets
scalability of the network by proposing opportunistic sens-
ing and communication infrastructure and mechanisms that
are designed for scale, from the bottom-up.

Context-Aware Ubiquitous Systems. A number of
people-centric pervasive sensing systems are notable suc-
cesses. Examples of such work include, Sentient Comput-
ing [41], Active Badge [42], Ubisense [1], Cricket [43] and
P3 Systems [44]. These projects focus on localizing peo-
ple and objects in a defined environment to enable context
aware applications. In such projects, the notion of sensing
is confined to supporting location-based context-awareness;
a more general architecture to support the diversity of ap-
plications and hardware platforms that are likely across a
network spanning an urban environment is lacking.

7. CONCLUSION
We believe urban sensing is an important new research

area with many interesting architectural challenges and prob-
lems to solve. Two principle trends support the move toward
urban sensing, the integration of sensors into everyday per-
sonal devices [8] and the emerging recognition of the value of
people-centric sensing in urban environments [45] [9]. The
demands of urban sensing are distinct from the set of as-
sumptions that underpin existing sensor network research.
As a consequence the infrastructure to support applications
of this type will bear little resemblance to the conception of a
sensor network discussed in the literature to date. Recently,
at the Urban Sensing Summit [46], a cross-disciplinary group
of researchers and technologists have been discussing a broad
agenda for citizen-initiated sensing in support of future civic,
cultural, and community life in cities. In this paper, we pro-
posed a wireless sensor edge for Internet based on a people-
centric opportunistic sensor networking approach in support
of urban sensing applications.
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