

What hacker research
 taught me

Sergey Bratus
Dartmouth College

What this is about
● A personal rant / ”quest”
● The fun and huge presumpion of

defining ”hacking” :-)
● An excuse for citing Phrack, Uninformed,

Defcon/Recon/Shmoocon/Toorcon/...

● Realization that ”hacking” goes to the
heart of fundamental Computer Science
problems

”Hackers!”

● The Adversary

● Harbingers of Future Technologies

● Engineers / researchers of a unique
specialization (not yet formally defined)

– ”What kind of engines?”

”Hackers!”

● The Adversary
– Media + politicians

Notice how they are always selflessly
saving us from something or other?

– ”We may need to forego certain freedoms to
make the Internet a safer place”

John Markoff, NYT, 2009

– Enough said :-(

”Hackers!”
● Harbingers of the Future

– Hackers realized the potential of universal,
ubiquitous, cheap connectivity long before
actual technology owners
 Emmanuel Goldstein, Toorcamp '09

– Phone companies initially expected their
revenues to come from ”customers”
connecting to (for-pay) ”services”, not
subscribers talking with other subscribers
 Andrew Odlyzko (AT&T Research)
 ”Why content is not King”

”Hackers!”
● Engineers of a unique kind / not yet formally

defined discipline of engineering
● ”What kind of engines?”

”Hackers!”
● Engineers of a unique kind / not yet formally

defined discipline of engineering
● ”What kind of engines?”

– What kind of fundamental, hard problems
are they up against?

● E.g.: energy to motion is hard,
 storing energy is hard, etc.

– What laws of nature are involved?
● E.g.: Newtonian conservation laws,

laws of thermodynamics, P != NP (?), ...

The defining challenges

● Something really, provably hard (as in ”NP”,
RSA, other ”God's own math”)

● Something really human, what we must do
every day

The defining challenges

● Something really, provably hard (as in ”NP”,
RSA, other ”God's own math”)

● Something really human, what we must do
every day

Composition

The defining challenges of
Hacking as a discipline

● Something really, provably hard (as in ”NP”,
RSA, other ”God's own math”)

● Something really human, what we must do
every day

Composition

Trust

Composition is hard
● Informally: even if non-trivial properties of

parts are known, the same properties of the
combined system cannot be deduced by
any general formal algorithm

● A.k.a. ”Security is not composable”
● Kind of formally:

 Rice's Theorem ~ Halting problem
● There is a reason why humans don't deal

well with complexity

Trust is crucial to human activities

● Economies and ways of life are defined by
levels of trust

– ”High Trust” vs ”Low Trust” societies theory

– Personal experience :-)

● FX, Bratzke @ SiS '07:
Pragmatically, InfoSec is about ”working
towards computer systems we can finally
trust”

The discipline of hacking
at a glance

Composition
complexity

TrustHacking

Lofty theory Everyday practice

Hacking as R&D

Hacking (n.):

the capability/skill set to question and verify

trust (security, control) assumptions

expressed in complex software and hardware

(as well as in human-in-the-loop processes

that use them)

Lesson 1: Look across layers

● Humans aren't good at handling complexity
● Engineers fight it by layered designs:

”main”

Libc, lib*

sys_call_table

VFS / sys_*

Driver interfaces

Layers are magical

● They just work, especially the ones below
● One layer has proper security =>

 the whose system is trustworthy

Layers are magical

● They just work, especially ones below
● One layer has proper security =>

 the whose system is trustworthy

NOT! ;-)

Layers are magical

● ”They just work, especially ones below”
● ”One layer has proper security =>

 the whose system is trustworthy”
● In real life, layer boundaries become

boundaries of competence

Layers are magical

● ”They just work, especially ones below”
● ”One layer has proper security =>

 the whose system is trustworthy”
● In real life, layer boundaries become

boundaries of competence
● Hacker methodology in a word:

 cross-layer approach

Best OS course reading ever :-)

● Phrack 59:5, palmers@team-teso
 ”5 Short Stories about execve”,
 ”Deception in depth”

Loader, binfmt

Dynamic linker!

sys_call_table

VFS

FS

sys_execve, ”The Classic”

do_execve, ”The Obvious”

open_exec, ”The Waiter”

load_binary, ”The Nexus”

mmap/mprotect, ”The Lord”

”Cross-layer approach” in action

● Phrack 59:5, palmers@team-teso
 ”5 Short Stories about execve”,
 ”Deception in depth”

Loader, binfmt

Dynamic linker!

sys_call_table

VFS

FS

sys_execve, ”The Classic”

do_execve, ”The Obvious”

open_exec, ”The Waiter”

load_binary, ”The Nexus”

mmap/mprotect, ”The Lord”

Lesson 2: Composition is Weird

Any complex execution
environment is actually
many:

One intended machine,
endless weird machines

Exploit is ”code” that
runs on a ”weird
machine”, in its ”weird
instructions”

Exploitation is ...

● Programming the ”weird machine” inside
your machine (via crafted input)

● One case study:

 from return-into-libc (1997?) to
 ”return-oriented programming” (2008)

Exploitation is ...

● Programming the ”weird machine” inside
your machine (via crafted input)

● In 2008, academia calls this threat
”malicious computation” vs ”malicious code”

– Hacker publications and countermeasures:
1997-- (Solar Designer, Wojtczuk, …)

– Phrack 58 #4 (Nergal, 2001) spells it out

– CCS 2008, it gets the cool name
”return-oriented programming”

Phrack 58 #4

Sequence stack frames (pointers & args) just
so that existing code fragments are chained
into programs of any length:

f
1
(args)

f
2
(args)

...

Phrack 58 #4
● Sequence stack frames (pointers & args)

just so that existing code fragments are
chained into programs of any length

– Just like TCL or FORTH programs

– Pointers to functions can be provided by
OS's dynamic linker itself

● Another elementary instruction
 of the ”weird machine”,
 called through PLT:
 ”return-into-DL”

DL

Case study timeline
● Solar Designer, "Getting around non-executable stack (and

fix)", 1997

● Rafal Wojtczuk, "Defeating Solar Designer non-executable
stack patch", 1998

● Phrack 58:4 (Nergal), 59:5 (Durden)

● Shacham et al., 2007-2008

– ”The geomerty of innocent flesh on the bone”, 2007

– ”Return-Oriented Programming: Exploits Without
Code Injection”, 2008

● Hund, Holz, Freiling, ”Return-oriented rootkits”, 2009

– Actual ”compiler” to locate and assemble return-
target code snippets into programs

”PaX case study”
ASLR activity

So we are waiting for...
● Double-free –oriented programming? :-)
● DL-malloc –oriented programming? :-)
● In each case, the original code contains

snippets usable as ”instructions” of a ”weird
machine” that can be composed together

”OMG, it's
Turing-complete!”

Hacking and Multi-level Security
DoD idea of Trusted Systems

● Mandatory access control
– Each principal is labeled

● All data is labeled
– ”Everything is a file”

● Labels are checked at each
operation by a reference
monitor

– Most trusted part of OS,
”trusted code base”

The ”Orange Book”

Bell-LaPadula Formalism (1973)

Goal: coltrol information flow, protect secrets
 from colluding malicious users

Secret

Public

● ”No read up”
 (can't read higher
 privs' data)

● ”No write down”
 (can't willfully
 downgrade data)

a principal

Biba integrity model (1977)

Goal: prevent integrity violations by and
 through lower level users

Most critical

Least critical

● ”No read down”
(let untrusted stuff
 alone)

● ”No write up”
 (can't clobber
 higher layers)

a principal

”It's a lattice out there!”

● Partial order on all labels
– Some are not comparable and will not

interact directly

● Every pair has a unique ”join” and ”meet”

A
B

join(A,B)

meet(A,B)

Common admin context
for A and B

Shared data/results
of A and B

Once there was hardware...

● The general ”Orange Book” approach:
– System objects get labeled according to

parts they play security-wise

– Labeling enforced by OS and/or HW

● Tagged
architectures

● MMU memory
segmentation

...time passes...

● The general ”Orange Book” approach:
– System objects get labeled according to

parts they play security-wise

– Labeling enforced by OS and/or HW

● Being executable – ”code” vs ”data” – is
a most fundamental trust-wise distinction
between ”bunches of bytes” in RAM

– Code runs, does stuff

– Data kind of sits there

...epic fail...

● Being executable – ”code” vs ”data” – is
a most fundamental trust-wise distinction
between ”bunches of bytes” in RAM...

...and yet commodity systems ignored it!

Epic FailEpic Fail

Enter hacker patches
● Label x86 pages as non-executable
● Emulate absent NX trapping bits to enforce

● PAGEEXEC
– Overload PTE's Supervisor bit,

in conjunction with split TLB

● SEGMEXEC
– Map code and data twice, via

different x86 segments

– Instruction fetches from data-
only segment will trap

CS

Data segms

ITLB

DTLB

This is Beautiful
● ”Like Xmas for trust engineering”
● ”Hackers keep the dream alive!”

● Labels (NX) are kept as close
to their objects as possible –
right where they belong!

● Enforcement is by trapping –
as efficient as it gets

● Page fault handler is a part of
the ”reference monitor”

Why stop at pages?

● We want to label objects not pages !
● ELF describes many objects, inter-related

● Objects have intimate & exclusive
code–data relationships

.plt .text .fini.init .rodata .dtors.ctors .data .bss
g
o
t

What I hope to see:

● The Return of the Lattice, on ELF objects
● Why shoudn't the loader know what the

linker knows?
● ELF Sections table already describes trees

of datastructures (e.g., _DYNAMIC)
● We could enforce granular code–data

”ownership” through the MMU trapping!
– Like Biba MLS for code and data units

within a process virtual address space

Learning about ABI? Rant.
● One (!) accesible ”non-hacker” book on ABI:

– John Levine, ”Linkers & Loaders”

● Everything else worth reading and
available is hacker sources.

– Silvio Cesare (Phrack 56:7, etc.)

– Phrack 61–63 (including Elfsh > ERESI)

– ”Cheating the ELF”, the grugq

– ”ELF virus writing HOWTO”

– Uninformed.org (”Locreate”, ...)

Lesson 3: Trapping is King
● Traps shape enforcable policies
● A policy must prevent reaching ”untrusted

states” from ”trusted states”

S1 S2 S3

S4

Event1 Event2

Event3 Policy goals are expressed in terms of states.
 Policy checks are in terms of events/transitions.
 Event system determines policy design,

mechanism & policy language.

Trapping is overloaded

● It makes paging-based security work
– Page Fault handler isn't just for swapping :-)

– PaX, OpenWall, KnoX, ...

● It makes virtualization work
– Multiplexes physical devices, IO, ...

● It makes OS-level isolation work
– ”Virtual machines, VMMs for security”

● It makes debuggers work

Thou shalt know how thy
debugger works

● Hackers are leading makers of debuggers
● ”Unconventional” debugging

– Dum(b)ug

– Rr0d Rasta debugger

– RE:Trace, RE:Dbg
● Uses DTrace

– OllyBone (”special trap” case)
● Traps on ”instr fetch from

a page jsut written”

Debugging ~ Trust ~ Security

● Trust is ”relying on an entity to behave
as expected”

● Debugging is an activity that links
expected behavior with actual behavior

● So does security policy enforcement!
● Hacker debugger use is like a full-fledged

programmable, scriptable environment
– ”An interpreter for C and kernel”

”The march of debuggers”

Expressive power

Knowledge
of expected

program
behaviors

Debug
regs

IDA+PaiMei, Immunity;
RE:Trace, SystemTap?, ...x86

MMU
hacksPaging Kprobes

Lesson 4: Follow trust relations

Trust (-relationship) mapping of networks:
 industry created by hacker tools.

Thank you!

● I think I learned more about the real
challenges of CS from hacker research
than from any other source

● ”Hackers are a national resource”
 Angus Blitter

● Security does not get better until hacker
tools establish a practical attack surface

 Joshua Wright

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

