
Securing Web Servers against Insider Attack

Shan Jiang
shan.jiang@alum.dartmouth.org

Sean Smith
sws@cs.dartmouth.edu

Kazuhiro Minami
minami@cs.dartmouth.edu

Department of Computer Science/Institute for Security Technology Studies ∗

Dartmouth College

Abstract

Too often, “security of Web transactions” reduces to
“encryption of the channel”—and neglects to address what
happens at the server on the other end. This oversight forces
clients to trust the good intentions and competence of the
server operator—but gives clients no basis for that trust. In
this paper, we apply secure coprocessing and cryptography
to solve this real problem in Web technology. We present a
vision: using secure coprocessors to establish trusted co-
servers at Web servers and moving sensitive computations
inside these co-servers; we present a prototype implemen-
tation of this vision that scales to realistic workloads; and
we validate this approach by building a simple E-voting ap-
plication on top of our prototype.

By showing the real potential of COTS secure coprocess-
ing technology to establish trusted islands of computation in
hostile environments—such as at web servers with risk of in-
sider attack—this work also helps demonstrate that “secure
hardware” can be more than synonym for “cryptographic
accelerator.’

1 Introduction

In the area of Web security, despite strong encryption on
the browser-server channel, Web users still have no assur-
ance about what happens at the other end. We present a se-
curity application that augments Web servers with trusted
co-servers composed of high-assurance secure coproces-
sors, configured with a publicly known guardian program.
Web users can then establish their authenticated, encrypted
channels with a trusted co-server, which then can act as a
trusted third party in the browser-server interaction.

∗This work was supported in part by by the U.S. Department of Jus-
tice, contract 2000-DT-CX-K001, and by Internet2/AT&T. However, the
views and conclusions do not necessarily represent those of the sponsors.
Preliminary versions of portions of this paper appeared as IBM Research
Report RC-21851 and Dartmouth CS Technical Report TR2001-410.

General Scenario. Consider services where the user (or
other parties) depends on the confidentiality or integrity of
computation/data storage occurring at the server—but the
server operator may benefit from violating these properties.

How can the client have any assurance that these proper-
ties still hold? The only feasible solutions require moving
this critical computation to a trusted third party.

In our approach, we use the enabling technology of se-
cure coprocessors to build this trusted third party at the
server’s own site. The tamper resistance and authenticatable
execution establish that the alleged computation is really oc-
curring, but beyond the reach of even the server operator to
subvert (except, of course, to destroy). In the dominant SSL
framework of server-side authentication, users trust a CA to
bind a server identity to a public key. In our framework,
users would also need to trust a CA to bind a public key to a
particular guardian program (either as an identity certificate
or an attribute certificate)—and to have suitably evaluated
that program. The guardian program, executing inside the
coprocessor, would act as a trusted third party in the inter-
action. The underlying secure coprocessor technology we
use permits a CA to make this authentication, and permits
both CA and user to trust that this guardian can in fact as a
trusted third party.

If deployed in the real world, this work can address
a core trust problem in the Web. What’s more, this
work would also provide a practical demonstration of the
potential of secure coprocessing to resolve difficult trust
problems—with real code, for real problems, with a feasible
commercial and technological path to broader deployment.

We have been calling this project WebALPS: Web Appli-
cations with Lots of Privacy and Security.1

Prior Work Prior work in secure coprocessing has es-
tablished how to build tamper-responding secure hard-
ware [17]; how to use this tamper-response technology (and

1This name emerged at lunch one day, partly in jest: since it connotes
“little Switzerlands”: little neutral areas distributed on the Web.
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many other techniques) to build general-purpose secure co-
processors, that can be trusted to carry out their computa-
tion correctly despite attempts to physically attack or mod-
ify this computation [16]; and how to use secure hardware
for some individual specialized applications [19, 20].

Related work has also examined the use of secure hard-
ware as SSL cryptographic accelerators for Web servers (al-
though, with rare exception [8], most discussions of this ap-
plication overlook the uncertain role of physical security in
contexts where the server must be trusted anyway).

Our Project The WebALPS project unifies and moves
beyond all of these, by using secure coprocessors to es-
tablish trusted third parties at Web servers. These trusted
co-servers can then bring many additional security and pri-
vacy properties to a wide range of Web applications. Basing
this work on having clients establish an SSL session into an
application running inside the secure hardware at the Web
server (instead of just using secure hardware to speed cryp-
tography) provides a systematic way to enhance the security
of a broad family of Web-based services, without requiring
a substantial change to the currently deployed Web infras-
tructure.

We stress that, although some prior work discusses “se-
cure web servers,” we believe that we are unique in exam-
ining web servers that are secure against insider attack.

This Paper Section 2 presents some background on se-
cure coprocessing and on SSL. Section 3 presents the Web-
ALPS vision, and how can address the Web manifestation
of a basic trust problem. Section 4 describes our imple-
mentation and testing of a prototype WebALPS co-server.
Section 5 describes our building a simple application on top
of this prototype. Section 6 presents our conclusions and
list some of the future research directions.

2 Background

2.1 Secure Coprocessing

The technology of high-performance, high-assurance
programmable secure coprocessors enables the WebALPS
project.

Motivation Distributed computation (and even central-
ized computation, with multiple parties) introduces a funda-
mental problem: distribution dissociates dependency from
control. Consider a basic scenario: Alice and Bob partic-
ipate in some computational activity. Alice’s interests I
depends on some correctness and/or privacy properties P
of some computation X at a computer that Bob controls.
Consequently, Alice must depend on Bob to preserve and

protect her interests. However, Bob may have no motiva-
tion to do this; and, in fact, Bob’s interests may conflict
with Alice’s, and motivate him to actively subvert Alice’s
computation.

This scenario characterizes many real-world scenarios.
In basic examples, Alice incurs a dependency on Bob that
she would rather not have. However, it is enlightening to
consider other dependency scenarios. For example, Alice
may incur a dependency on Bob that Bob would rather not
have. For example, consider a commerce application where
Bob is a service provider. An ability to assert “customers
can trust my service because they do not have to trust me”
can be an effective marketing tool. Furthermore, an inabil-
ity to fraudulently manipulate the service might preserve
Bob from various litigation and legal hassles.

Secure Coprocessing as a Solution The technology of
secure coprocessors has long been proposed as a founda-
tion to address these problems. Quickly defined, a secure
coprocessor is a general-purpose computer (possibly with
cryptographic support) that is secure against all foreseeable
physical and logical attacks (except, of course, denial of ser-
vice stemming from actions such as complete destruction).
Secure coprocessors can augment the security of an other-
wise untrusted host computer, because the relevant parties
have the potential to trust that the computation and data stor-
age occurring in the coprocessor have been unmolested by
adversaries with direct physical access to the machine.

Programmable, trusted secure coprocessors could enable
systematic solutions to scenarios such as those sketched
above. If X occurred in a secure coprocessor at Bob’s ma-
chine, and Alice was able to authenticate that X was oc-
curring there, beyond Bob’s control, and Bob’s ability to
manipulate his host and its network connections could not
subvert P , then Alice can trust that the important properties
P still hold of X , despite Bob’s potential attacks. Figure 1
sketches this revised scenario.

Some individual examples of these trust problems may
be solvable—perhaps at a significant performance cost–via
special cryptographic protocols (such as secure multiparty
computation or encrypted functions). However, we still be-
lieve that only secure coprocessing can enable a systematic
approach to practical, high-performance solutions.

The Enabling Platform The platform that enables practi-
cal realization of WebALPS is the IBM 4758 secure copro-
cessor2 [16] The device provides a general-purpose comput-
ing environment for third-party code, with hardware sup-
port for cryptographic applications. Continuously active
tamper-detection circuitry monitors tamper detectors and,

2Note that it important to distinguish the 4758 secure coprocessor plat-
form from the IBM CCA application that many users install on it.
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Figure 1. With secure coprocessing, Alice can
trust the critical correctness properties of X,
even if Bob may have motivation to subvert
them. Here, by moving the computation on
which Alice depends from Bob’s machine to a
secure coprocessor added to Bob’s machine,
Alice no longer incurs a dependency on Bob.

in case of physical attack, destroys sensitive secrets in se-
cure memory before an adversary can access them. Code
signing and a layered software architecture permits instal-
lation and maintenance of security control code, operating
system, and application software. Hardware locks protect
the keys and code of more critical layers from possibly ma-
licious or faulty code, preserving the ability of each device
to properly authenticate its configuration, and preventing a
device with a rogue application from impersonating other
devices and applications. The literature describes both this
overall architecture [2, 16] as well as its independent vali-
dation at FIPS 140-1 Level 4 [15].

However, in order to support networked applications
such as WebALPS, a secure coprocessor platform also must
provide outbound authentication. Not only must Alice be
able to publish an application and Bob install it in his
coprocessor—Charlie, on the other side of the net, must be
able to verify it’s really that application, in an untampered
device. In the 4758, the initial version of security software
generates a keypair which is certified by the factory. If the
security software replaces itself, the old version generates
and certifies a keypair for the new version, and destroys the
old private key. When the security software installs or up-
dates the OS or application layers, it generates and certifies
a new keypair for the OS layer (and destroys the old private
key). The OS layer then uses its keypair to generate and
certify keypairs, and provide private key service, for the ap-
plication layer. At each step in this process, the certificates
identify (e.g., via software version and layer owner) the cer-
tifier and the certified. The private keys stay within memory
protected both against physical tamper, as well against ac-
cess from less-trusted software layers.

By building this internal PKI, this approach (further dis-
cussed in [13]) permits Charlie to draw conclusions about
an entity that allegedly is a particular application in an un-
tampered card, but enables these conclusions to be consis-
tent with Charlie’s own beliefs about which software and
layer owners can be trusted.

2.2 SSL

Readers not familiar with SSL might benefit from a
quick introduction.

As commonly practiced, SSL permits the client to estab-
lish a shared symmetric key with a specific authenticated
server through the Handshake protocol—one of the SSL
components. The server has a private-public key pair, and
a certificate from some CA attesting to something vague
about the entity owning this public key. The client browser
has some notion of which CA root keys it recognizes as
valid. When a client opens an SSL connection, it verifies
that the certificate from the server is correctly signed by a
CA root that the client’s browser currently recognizes as
legitimate. The client and server then carry out a key gen-
eration/exchange protocol that ensures that the client, and
a party which knows the private key matching the server’s
public key, share a symmetric key—that is (theoretically)
shared by no one else, not even an adversary observing the
messages between the client and server.

The remainder of the SSL session is then encrypted
with this session key through the Record Layer protocol—
another SSL component. Encryption (and MACs) with keys
obtained this way provides several properties, including pri-
vacy and integrity of data along the channel, and the fact
that each party can trust that, throughout the session, the
entity claiming to be on the other end is the same entity that
started the session (or, at worst, a colluding partner).

For protocols details, we refer the reader to the literature
(e.g., [11]) or the specification itself (e.g., [3]).

3 Insider Attack at Web Servers

The previous section presented how secure coprocessing
can address the question of trusting what happens at a a
remote site. In this section, we now present the WebALPS
vision: how secure coprocessing can address the the basic
trust problem in the context of insider attack at Web servers.
(However, this work did not remain a vision; in Section 4
and Section 5, we discuss our completed prototypes.)

3.1 Fundamental Trust Problem

The World Wide Web is the grounds where, on a broad
scale, our society’s business, government, and personal ser-
vices are migrating and growing. As a basic model, a large
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population of clients with browsers obtain services from
a smaller population of service providers operating Web
servers.

However, for each critical service that takes root in the
Web (and arguably for many purely recreational services
as well), the financial and personal interests of the clients
forces them to trust the integrity and privacy of the compu-
tation and data storage at the service providers. But with
the current state of deployed technology (i.e., SSL), all the
client can be sure of is what the CA claims was the identity
of the entity who originally possessed the public key in that
server’s certificate.3

At best, this identity establishes good intentions—if the
alleged service provider has a pre-existing reputation that
makes this hypothesis plausible. On the other hand: a ser-
vice provider with an unknown reputation might be down-
right malicious; any service provider may have good inten-
tions, but may be careless with general site security; the
entity with which the client is currently interacting may not
even be this original service provider, but rather an impostor
who has learned the private key.

The threat that arises from this uncertainty is amplified
by the Web’s distribution of computation from server to
client: via Java and Javascript, and also via more subtle
executable content, such as Word documents infected with
Macro viruses.

Furthermore, many interactions involve more parties
than just the client and server—and these additional parties
are also forced to trust the server integrity.

This situation leads to a fundamental trust problem:

Participants in distributed Web services are forced
to trust server integrity, but have no basis for this
trust.

This problem threatens a wide variety of Web appli-
cations. For one example, the current Web infrastructure
provides no means for a server operator to plausibly deny
that they (or adversaries who have compromised their ma-
chine) are not monitoring all client interactions for credit
card numbers, passwords, personal profiles, and other sen-
sitive data. If it exists in plaintext on the server at any point
in time, then a rogue server operator has access. A compan-
ion paper [14] catalogs Web applications affected by this
trust problem, including areas of non-repudiation and other
issues.

3.2 The WebALPS Approach

To solve these problems, we need a systematic way for
clients to trust the computation and data storage that occurs
at a Web service provider of unknown credibility.

3Unfortunately, some recent Web spoofing work in our group [21] casts
doubt even on this claim—in many scenarios, the client cannot even be sure
of the fact an SSL session exists, let alone what the certificate really says.

What we propose is adding a secure coprocessor to the
existing service provider infrastructure, as a trusted co-
server, installing one of a well-defined, reasonably small
set of guardian programs at the trusted co-server; training
clients to use SSL to open an authenticated connection to
the WebALPS guardian program at the co-server, not to
the server directly; and changing the secure client-server in-
teraction to center on client-co-server interaction, and then
only bringing in the server as appropriate.

3.2.1 Properties

The WebALPS guardian program on the trusted co-server
becomes a trusted “neutral” participant in the client-server
interaction. (However, co-location at the server site allows
us to have a “trusted third party” without actually having a
third player, and should allow higher performance and eas-
ier integration than a remote third party would permit.)

By proper design of guardian program and server inter-
action, we can address the fundamental web security prob-
lem by raising the trust level of the computation and data
storage at the server.

• The WebALPS guardian can witness the authenticity
of certain data coming back to the client. This data can
include assertions from the trusted guardian about the
server content and configuration.

• The WebALPS guardian can provide privacy of data
going back to the server, by keeping it encrypted
between the client and the guardian, and then re-
encrypting it before inserting it into the server.

• The user can trust the integrity of the computation oc-
curring at the WebALPS guardian—even if the server
operator might be motivated to subvert it.

• For computation relevant to third parties who may also
have an interest in the client-server interaction, Web-
ALPS provides a haven that all parties can trust to bal-
ance their interests.

Naively, one could also address such trust problems
by putting the entire back-end service operation inside a
coprocessor—-but this would probably not constitute an ef-
fective solution in general, due to performance and main-
tenance reasons. The WebALPS approach avoids the prob-
lems of this naive straightforward approach.

Size The computational power, performance, and storage
requirements for many Web servers probably exceed that
provided by the 4758 platform. With WebALPS, rather than
putting the entire server back-end into a coprocessor, we’re
only putting a small guardian.

Appeared at the 17th Annual Computer Security Applications Conference, Dec 2001. 4



Legacy Even if we could fit entire operations inside a co-
processor, such solutions would require substantial changes
to existing e-merchants and service providers, who already
have existing back-end systems. With WebALPS, rather
than replacing the legacy server back-end, we’re merely
adding an additional component.

Authentication In order for the client to trust the server
operations occurring in a secure coprocessor, the client has
to be able to authenticate that the operation really is occur-
ring in that type of system. Otherwise, we’re back to “good
intentions” again. With WebALPS, the proposed location
of the guardian lets it easily use the existing server-side au-
thentication features of the current infrastructure.

Usability Suppose we could fit the service software in-
side a coprocessor and could alter the client infrastructure
so that clients could authenticate it really was that software.
Each service provider potentially has their own software
configuration. How could clients make any practical trust
judgments about the server based solely on the identity of
that software? With WebALPS, by limiting ourselves to a
set of well-defined guardian programs, users do not need to
make a new trust decision for each server configuration—
but, rather, for each guardian program (as testified by the
WebALPS CA).

Trusted Computing Base By minimizing what we put
inside the coprocessor, we also minimize the computing
base that stakeholders are forced to trust.

3.2.2 Architecture

When deployed in the real world, WebALPS will consist of
a well-defined class A of guardian types, each denoted by
a human-understandable name; a trusted WebALPS Certifi-
cate Authority; and some mechanism in client browsers to
clearly indicate: which portion of the browser window ex-
clusively renders material from the other entity in this SSL
session; when an SSL session has been established from
a certificate signed the WebALPS CA; the identity of the
member of A to which this certificate belongs. (Unfortu-
nately, the reality of Web spoofing raises some challenges
to this assumption; we revisit this topic later.)

Certification Figure 2 shows an example process for a
server operator to use a high-end secure coprocessor plat-
form (such as the 4758) to install and certify a trusted co-
server.

The operator first obtains a secure coprocessor platform
and uses its software configuration architecture to install co-
server application software A ∈ A from a co-server soft-
ware vendor into this device. The co-server application then

generates a new key pair KP. The server operator uses the
co-server application’s ability to authenticate itself (via the
coprocessor’s outbound authentication API) to prove to the
satisfaction of the WebALPS certificate authority that the
new key pair KP belongs to an installation of A securely
running on an untampered secure coprocessor platform at
this server. Having evaluated the correctness of this co-
server application software, the WebALPS Certificate Au-
thority then issues an SSL-compatible certificate attesting to
the public key of KP and the entity (WebALPS application
A, running inside this secure coprocessor at this server) to
which it belongs. The WebALPS application stores this cer-
tificate, and is then ready to participate as a trusted co-server
to server operator’s web application on his web server).

SSL A remote client using her Web browser initiates an
SSL session with the co-server application within the secure
coprocessor at the web site maintained by this server oper-
ator. Because the client’s web browser indicates that the
co-server application suitably demonstrates knowledge of
the private key matching the public key in this application’s
SSL-certified key pair, the client can reasonably conclude
that:

• server-client communications within this SSL session
originated within the trusted co-server, and that

• client-server communications terminate inside the
trusted co-server.

Since the private key in KP is safely confined inside the
coprocessor, the server operator cannot know the session
key and thus cannot eavesdrop or forge communications be-
tween the browser and the co-server.

The co-server can then work with the host Web server to
provide enhances service to the remote client.

3.3 Solving the Fundamental Problem

Integrating WebALPS into the Web infrastructure solves
the basic problem of how clients can establish trust in the
computation and data storage at servers of otherwise un-
known credibility.

We enumerate the (informal, for now) trust assertions.
Because of the security architecture of the tamper-

responding secure coprocessors, the client Alice can trust
that the only entities who can authenticate themselves as an
instance of a particular type of WebALPS guardian are in
fact bona fide WebALPS guardians of that type.

In particular, note that the server operator cannot obtain
the WebALPS private key, since this is generated and pro-
tected inside the coprocessor.

Because she trusts the WebALPS Certificate Authority
to do its job, the client Alice can trust that the only entity
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Figure 2. This figure sketches an example WebALPS installation and certification scenario. The
server operator obtains a coprocessor from the coprocessor vendor, and the desired WebALPS
guardian program (with all the necessary signatures) from the software vendor. The coprocessor’s
security configuration software installs the guardian, which then generates an SSL key pair KP and
uses the coprocessor’s outbound authentication to prove, to the CA, that this genuine guardian know
the private key in this pair. The CA then issues an SSL-compatible certificate for the public key in
KP.

possessing a private key matching the public key in a Web-
ALPS certificate for a member of A is a bona fide Web-
ALPS guardian of that type as well as the correctness of the
services offered by this WebALPS guardian. (Essentially,
to simplify the authentication process, Alice delegates the
details of authenticating a tamper-responding coprocessor
in a particular software configuration to the CA.)

Because of the nature of the SSL protocol, the client Al-
ice can trust that, when she opens an SSL session to some
entity, she has established an encrypted channel between
her browser and an entity that possesses that private key.

Because her browser tells her unambiguously that this
entity had an SSL certificate signed by the WebALPS CA,
the client Alice can trust that this entity is a WebALPS
guardian of that type.

Because a well-defined portion of her browser window
exclusively renders material from that SSL entity, Alice can
trust that the data she receives and sends via this window
passes through this encrypted channel to a bona fide Web-
ALPS guardian of that type.

Weaknesses Potential weaknesses of the system include
compromise of the WebALPS CA that certifies the co-

server’s SSL key pair, and of the factory CA that certifies
the coprocessor. Compromise of the code-signer key pairs
are also a weakness, although the 4758 outbound authen-
tication scheme would eventually allow rejection of com-
promised co-servers, should the code-signer compromise be
discovered.

The existence of a trusted path from the co-server to
the user is an also an issue. As noted earlier, in a related
project [21], we have demonstrated the ease with which a
malicious server can spoof the existence of an SSL session,
as well as the certificate data allegedly supporting such a
session. We are exploring countermeasures [18]; in the
meantime, prudent users should disable Javascript.

Of course, the guardian program itself needs to be suffi-
ciently small and simple that its behavior can be reasonably
verified by the WebALPS CA, and trusted by the user and
other stakeholders.

Using WebALPS For each type of Web-based application
that is at risk from insider attack, we can design a particular
type of WebALPS guardian. For just one example, services
which require clients to input sensitive data—passwords,
credit card numbers, etc.—can have WebALPS strip out and
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Figure 3. SSL Handshake process with WebALPS co-server. In this figure, strings that contain
random characters such as “*&ˆ%$#@!” are used to denote illegible ciphertext and bold arrows are
used to denote an established secure and authenticated communication channel. client Random, Server
Random, and Premaster Secret are the three elements used in the shared-secret-generation process.

work with the sensitive data, before it goes to the server.

Through the above trust assertions, Web clients can val-
idate the existence of the guardian programs and establish
well-founded trust on the services provided by the servers
with the help of WebALPS guardians.

4 Prototype

However, this paper does not just present a vision: we
have implemented and tested this idea.

To provide secure and trustworthy Web services to Web
clients, the WebALPS guardian programs have to commu-
nicate with clients through secure and authenticated chan-
nels. We designed and implemented a prototype Web-
ALPS co-server that makes use of SSL protocol to estab-
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lish such channels. We used a 4758 Model 2 platform,
with the CP/Q++ system software, installed on a Linux
host. The system we chose for the web server is Apache
(v1.3.14)/mod ssl (v2.7.1)/OpenSSL (v0.9.6). We used the
Apache Web server because of its popularity and also be-
cause it is open-source. We tested the performance of our
WebALPS-enabled Apache server and compared it with the
performance of a normal SSL-enabled Apache server.

For the testing purpose of this prototype, there is no com-
pelling reason to go through the trouble of using a real-
istic Web Certificate Authority. Instead, we modified the
certificate-generation facility offered by the OpenSSL li-
brary to create a temporary certificate attesting to a tem-
porary key pair generated inside the secure coprocessor for
the WebALPS co-server.

Full details of the prototype can be found in [6].

4.1 SSL Sessions with Co-Servers

Handshake Process Figure 3 illustrates the handshake
process with the participation of the WebALPS co-server.

Interactions between co-servers and servers are added
to accomplish two goals: authenticating the co-server to
the client, and establishing a shared secret between the co-
server and the client. To achieve the first goal, the certificate
message from the server to the client now contains the cer-
tificate for the WebALPS co-server generated by the secure
coprocessor.

To achieve the second goal, server forwards the Client
Random and Server Random messages to the co-server
since these numbers will be used in the secret generation
process. The client uses the co-server’s public key to en-
crypt the Premaster Secret in the ClientKeyExchange mes-
sage. Consequently, the Premaster Secret is known to the
co-server but not to the server. The key calculation pro-
cess takes place inside the co-server. The encrypted Fin-
ished message from the client becomes incomprehensible
to the server. The server has to send this message to the
co-server for decryption and MAC verification. Before the
server sends the Finished message, it has to forward it to the
co-server for MAC generation and encryption. Otherwise,
the client will not be able to verify this message, and thus
will not send any sensitive information to the server-side.

Record Layer Now that the shared keys for encryption
and MAC are in the co-server, the record layer proto-
col has to call for the co-server to carry on security ser-
vices. We modified the record layer in the Apache server
to route every incoming SSL message from the client, as
well as every outgoing message to the client, into the co-
server for cryptographic operations including message en-
cryption/decryption and MAC generation/verification.

(In this prototype, we encrypt every outgoing SSL mes-
sage through WebALPS, so that the user need not man-
age two parallel SSL sessions, and so that we do not
need to solve the problem of how two different streams
of information—of different trust levels—can be securely
multiplexed in the same SSL stream. Subsequent work [7]
in our lab has begun exploring this issue.)

4.2 Performance Analysis

Performance of our system is important, because it
will affect the willingness of the industrial world to ac-
cept the WebALPS approach. In particular, we are inter-
ested to see how much the communication overhead in-
troduced by the co-server slows down the request-serving
speed of the WebALPS-enabled server, and how well can
the WebALPS-enabled server sustain heavy workload.

Section 4.2.1 and Section 4.2.2 address these ques-
tions, respectively. We did all tests on the same Apache
server with three different virtual hosts configured to han-
dle HTTP, HTTPS, and WebALPS-HTTPS requests respec-
tively, using a null WebALPS application in order to mea-
sure the inherent costs of this approach. (When we pro-
totype realistic WebALPS applications, these tests would
need to be revisited.)

4.2.1 Speed

For the speed test, we used http load,4 a free and easy-to-
use tool from ACME software.

For the sake of comparison, we tested three systems in-
cluding our prototype WebALPS-enabled HTTPS host, nor-
mal HTTPS host, and HTTP host. We tested each of these
system by using one client which keeps sending requests
for a randomly-generated file of size 2KB in a 2-second
time span. We then compared the performance of these sys-
tems using three measurements including speed (the num-
ber of served requests per second), connection time (the
TCP connection time for HTTP and HTTPS hosts plus the
SSL handshake time for HTTPS hosts) and request time (the
amount of time taken to process a request once the connec-
tion is established).

Table 1 shows the results from our tests. Not surpris-
ingly, in all three measurements, the plain HTTP server of-
fers the best performance, while the WebALPS server per-
forms the worst. This result is expected given the overhead
added by SSL and the even more overhead added by Web-
ALPS.

However, what we really want to learn from these re-
sults is how the slowdown from HTTPS host to WebALPS-
enabled host compares to the slowdown from plain HTTP

4http://www.acme.com/software/http load/
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Speed (requests/sec) Connection Time (msec) Request Time (msec)
WebALPS host 9.8922 0.7235 100.368

normal HTTPS host 67.7246 0.6335 14.1461
HTTP host 858.7989 0.1832 0.9060

Table 1. Speed test and comparisons of WebALPS host, normal HTTPS host, and HTTP host

Speed (times) Connection Time (times) Request Time (times)
Slowdown caused by SSL (HTTP → HTTPS) 11.68 2.46 14.6
Slowdown caused by WebALPS (HTTPS →
WebALPS-HTTPS)

5.85 0.14 6.1

Table 2. Comparisons of slowdowns caused by WebALPS with slowdowns caused by SSL

host to HTTPS host, and which phase (connection or re-
quest) is the major factor for the slowdown.

The data in Table 2 shows how much SSL slows down
HTTP communication and how much WebALPS slows
down SSL communication. For the overall speed, normal
HTTPS host is 11.68 times slower than HTTP host while
WebALPS host is 5.85 times slower than normal HTTPS
host. For the connection time, normal HTTPS host is 2.36
times slower than HTTP host while WebALPS host is only
0.14 times slower than normal HTTPS host. For the request
time, normal HTTP host is 14.6 times slower than HTTP
host while WebALPS host is 6.1 times slower than normal
HTTPS host.

In every category, SSL technology has a far greater neg-
ative performance impact on HTTP than what WebALPS
technology has on SSL.

Despite of the performance slowdown, SSL technology
still prevails in today’s e-commerce world. We think that
there are at least two reasons behind SSL’s success as a
method for securing e-commerce and other service-related
applications. First, this usage of SSL offers a secure com-
munication channel to an authenticated server—essential
to many applications. Second, communications that go
through SSL channel only occupy a very small percentage
of total web traffic. A user’s experience about a server’s
speed is built up based on the overall performance of the
server, which is largely determined by non-SSL communi-
cations.

These two arguments remain true for the WebALPS-
enabled server. The kind of security and privacy that Web-
ALPS co-server offers will solve the trust problems exist-
ing in a wide range of applications that are hard or even
impossible to address otherwise. Based on this similar-
ity with SSL, we argue that although WebALPS approach
slows down the secure communication, it could still win as
a technology because of the important security features it
offers. (Convincing users who are only concerned about
the final performance slowdown, and not about the relative

cost-benefit for what they gain from what they oay, is an-
other issue.)

From Table 2, there is little difference (0.14 times) be-
tween the connection (TCP plus SSL handshake) phase for
WebALPS-enabled host and normal HTTPS host. This
could be attributed to the fact that WebALPS co-server uses
the IBM 4758’s fast modular math engine for RSA oper-
ations that are required during the SSL handshake process.
(One might conjecture that using standard cryptographic ac-
celeration with a non-WebALPS server would offer a simi-
lar speed-up.)

However, for request time, WebALPS-enabled Host is
6.1 times slower than normal HTTPS host. The time-
limiting factor could be the bulk data transfer rate between
the host and the coprocessor, and/or bulk data DES opera-
tion and MAC calculation rate in the coprocessor. The exact
reason is still not clear. We are devising more elaborate tests
to pinpoint the exact bottleneck here.

4.2.2 Scalability

For scalability testing, we chose to use WebBench5, a
commercial-grade, web server benchmarking product from
Ziff eTesting Labs Inc that enables creating large test suites
using standardized (and allegedly realistic) test workloads.

We tested our prototype WebALPS system and the nor-
mal HTTPS Apache host using the standard e-commerce
test suite provided by WebBench. This test suite uses a e-
commerce workload with balanced HTTP (92%) requests
and HTTPS requests (8%). During the test, we used a max-
imum number of 8 test clients with 3 threads per client. We
then made two measurements—the request-serving speed
(requests/second) and the throughput (bytes/second).

Figure 4 shows the scalability comparisons between
WebALPS-enabled host and normal HTTPS host in terms
of the server’s ability to sustain its serving speed (measured

5http://www.etestinglabs.com/benchmarks/webbench/home.asp
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in number of requests served per second) under high work-
load. From the figure, it is clear that both hosts scale well
under the workload provided in the e-commerce suite. As
for the performance, on average, WebALPS-enabled host is
about 25% slower than a normal HTTPS host.

The result we obtained by measuring throughput is sim-
ilar to the result when measuring speed (and the figure cor-
responding to Figure 4 can be found in [6]).

From these data (and assuming the WebBench suite pro-
vides a realistic workload), we can safely conclude that
within our test range, WebALPS-enabled server are scal-
able under real-life e-commerce workloads.

Another thing we want to point out is that in this test,
with the introduction of the non-secure components in the
workload that represents real-life scenarios, the perfor-
mance slowdown of WebALPS-enabled server has reduced
from over 500% (as shown in Section 4.2.1) to only about
25%. This supports our previous argument that to users in
real life, the performance slowdown of WebALPS approach
would not be as dramatic as what Table 2 shows.

5 A Test Application

To demonstrate the feasibility of the WebALPS approach
and the advantage it offers, we decided to build a simple
application on top of the implemented prototype. We chose
an E-voting system for this purpose because privacy/voter
anonymity is one of the most important requirements for
such applications [1, 9].

To protect the privacy of voters, it is often mandatory to
assure that nobody, including the election authorities, can
trace a vote back to the voter who cast it. Existing E-voting
systems often employ complicated protocols to ensure this
property [4, 10, 12]. In essence, the the problem here stems
from the risk of insider attack at the server systems that are
used for voting. With the introduction of trusted WebALPS
co-servers, the task of ensuring the voter’s privacy is greatly
simplified.

Figure 5 illustrates the structure of our voting system.
In the current implementation, we assume all the voters are
users registered in our site’s Name Directory (DND) and we
use the voter’s DND passwords for authentication. A voter
casts his vote by sending it together with his name and pass-
word to the WebALPS co-server. The voting module run-
ning at the application layer inside the WebALPS co-server
authenticates the user through the help of an authentication
CGI program and the DND server, validates the vote, and
counts the vote if the validation succeeds During the whole
process, the voter’s sensitive information—the vote and the
password—never leaves the secure coprocessor. Therefore,
the voter can trust his privacy has been preserved—even if
the server operator might be motivated to subvert it.

Discussion of additional applications can be found
in [14].

6 Conclusion

In this paper, we presented an application of secure co-
processing and cryptography that solves many manifesta-
tions of a real trust problem: the ability of insiders at Web
servers to learn and change sensitive data and computation
that clients depend on. We described our implementation
and performance testing of this idea, and a simple E-voting
application we built that further validates it.

Our performance analysis suggests that the WebALPS
co-server can offer security and privacy to web clients at
a reasonable performance cost compared with how much
SSL technology sacrificed for similar goals. When tested
with standard e-commerce workload benchmarks, the pro-
totype demonstrates good performance and scalability that
are comparable to what a normal SSL-enabled Apache
server offers. We are confident that based on the secure fea-
tures offered by secure coprocessors, the trusted WebALPS
co-server will become a critical piece of enabling technol-
ogy for security and privacy in Web-based services.

Many areas remain for future work.
First, we want to produce an end-to-end implementation

of this idea. This requires extending our prototype to gen-
erate a key pair once, and setting up the WebALPS CA to
authenticate and certify these key pairs. Whether the CA
should use identity certificates—or whether we should de-
velop a way to express these hardened server properties via
attribute certificates—is an interesting question.

We also want to build WebALPS guardian applications
for many of the more compelling examples in [14]. Ease
of implementation will require some way to easily identify
which pieces of the client-server and server-client traffic the
guardian should re-write; extending HTML seems one nat-
ural approach. Once we have a real application in a live
setting, the questions of performance measurement—and of
“realistic workload”—will need to be revisited.

Our WebALPS prototype was built on the current pro-
duction CP/Q++ operating system shipped with the 4758-
2; the imminent release of Linux [5] for the 4758 could
streamline development and experimentation (although out-
bound authentication support would have to be added, for
secure deployment).

Consideration of the full range of applications also raises
some additional research questions. For example, most
Web users probably are not even aware of what CAs their
browser accepts, what this certification means, or what
cryptography their browser has been configured to accept
as suitable in SSL sessions. Of course, extending browser
and web technology to meaningfully communicate certifi-
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cate semantics—and server attributes and delegation—is ar-
guably a necessary next step, even without WebALPS.
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