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Abstract

While PKI applications differ in how they use keys, all
applications share one assumption: users have keypairs.
In previous work, we established that desktop keystores are
not safe places to store private keys, because the TCB is
too large. These keystores are also immobile, difficult to
use, and make it impossible for relying parties to make rea-
sonable trust judgments. Since we would like to use desk-
tops as PKI clients and cannot realistically expect to re-
design the entire desktop, this paper presents a system that
works within the confines of modern desktops to shrink the
TCB needed for PKI applications. Our system (calledSe-
cure Hardware Enhanced MyProxy(SHEMP)) shrinks the
TCB in space and allows the TCB’s size to vary over time
and over various application sensitivity levels, thus making
desktops usable for PKI.

1. Introduction

Because public-key cryptography can enable secure in-
formation exchange between parties that do not share se-
crets a priori,Public Key Infrastructure(PKI) has long
promised the vision of enabling secure information services
in large, distributed populations. A number of useful appli-
cations become possible with PKI. While the applications
differ in how they use keys (e.g., S/MIME uses the key for
message encryption and signing, while client-side SSL uses
the key for authentication), all applications share one as-
sumption: users have keypairs.

Where these user keypairs are stored and used is the
primary focus of this research. Traditionally, users ei-
ther put their key on some sort of hardware device such
as a smart card or USB token, or they place it directly
on the hard disk such as in a browser or system keystore.
Most modern operating systems (such as Windows and Mac
OSX) include a keystore and a set ofCryptographic Service
Providers(CSPs) which use the key. In fact, many cross-
platform software systems, such as the Java Runtime and
the Netscape/Mozilla Web browser include their own key-
store so that they may use a user’s keypair without having
to rely on the underlying OS (thus enhancing portability).

Keystores Most keystores fall into one of four basic
categories: Asoftware tokenstores the key on disk (most
likely in some sort of encrypted format). Examples of this
approach include the default CSP for Windows and the
Mozilla/Netscape Web browser. Ahardware tokenstores
the key and performs key operations. The interaction be-
tween an application and the key is typically mediated by
the OS (although in some cases, the application may inter-
act with the device directly). In order for the OS or appli-
cation to be able to speak to the token, the token vendor
must provide a driver for the device which adheres to one
of the two common standards for communicating with cryp-
tographic devices: the CryptoAPI (CAPI) for Microsoft,
and RSA’s PKCS#11 for the rest of the world. Examples
of hardware tokens include the Aladdin eToken and Spyrus
USB tokens, as well as more powerful devices (sometimes
referred to ascryptographic acceleratorsor Hardware Se-
curity Modules(HSM)). A secure coprocessorstores the
key, can perform key operations internally using crypto-
graphic hardware, and can even house the applications di-
rectly, such as the IBM 4758 [3, 31]. These devices can
also be used as cryptographic accelerators or HSMs. Acre-
dential repositoryis a dedicated machine that stores private
keys for a number of users. When a user Alice wishes to
perform key operations, she must first authenticate to the
repository. The repository then certifies a temporary key
with Alice’s permanent key via a digital signature, or ac-
tively participates in the requested key operation. Examples
of credential repositories include MyProxy [18], hardened
MyProxy [9], SEM [2], and others [26].

In previous work, we examined the security aspects of
some of the standard keystores and the their interaction with
the desktop [15, 16]. We concluded that software tokens are
not safe places to store private keys, and we demonstrated
the permeability of keystores such as the Microsoft default
CSP and the Mozilla keystore. Our experiments showed
that in many cases, an attacker can easilykeyjack: either
steal the private key or use it at will.

In addition to being unsafe, standard software keystores
have the disadvantage of being immobile. Once a private
key is installed on a desktop, the only way to transport it to
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another machine is to export it and re-import it on the new
machine. Since this process can make the key vulnerable
to attack, such solutions may often offer mobility at the ex-
pense of security. As user populations become more mobile
and begin to use multiple devices, this immobility becomes
more problematic.

Hardware tokens claim to solve both of these problems;
they get the key off of the desktop and give users mobility.
We experimented with these devices and found that an at-
tacker is typically still able to use the key at will. However,
with respect to mobility, devices such as USB tokens can
add some benefit, provided that the appropriate software is
installed on each machine and that users use supported OSes
(but the tokens we experimented with did not have Apple or
Linux support at the time of our experimentation).

We concluded that the security problems of software and
hardware tokens stem from the facts that theTrusted Com-
puting Base(TCB) is too large and ill-defined, and that us-
ability issues make it hard for users and application devel-
opers to “do the right thing” [15, 16]. These shortcomings
make it impossible for relying parties to make reasonable
trust judgments about the system.

Secure CoprocessorsSecure coprocessors are a com-
bination of physical armor and software protections that
create a device that possesses a different security domain
from its host machine. Such devices can be used to shrink
the TCB, and have been shown to be feasible as commer-
cial products [3, 31] and can even run Linux and modern
build tools [6]. We have explored using secure coprocessors
for trusted computing—both as general designs (e.g., [21])
as well as real prototypes (e.g., [7])—but repeatedly were
hampered by their relatively weak computational power.
Their relatively high cost also inhibits widespread adoption,
particularly at clients. Their lack of ubiquity, coupled with
their sometimes awkward programming environments lead
us to conclude that secure coprocessors are difficult to use,
especially for application developers.

In other previous work, we used theTrusted Comput-
ing Group’s (TCG) specifications and hardware (a device
known as theTrusted Platform Module(TPM)) to secure an
entire desktop [10, 13, 14]. While the security properties of
our platform (calledBear) are not as strong as a secure co-
processor such as the IBM 4758, our approach shrinks the
TCB of a general purpose desktop.

Credential Repositories Credential repositories can
provide safe storage facilities for private keys as well as
give users mobility. The repository approach allows an or-
ganization to focus security resources on the repository, thus
providing economies of scale. In terms of secure key stor-
age, repositories significantly shrink the TCB. The private
key no longer relies on a general purpose and buggy desk-
top for safe storage, but instead on a dedicated server which

is presumably administered by a professional. Repositories
allow users to access their private key from multiple ma-
chines, thus giving them mobility. However, when a user
Alice wishes to use her private key to perform some oper-
ations, she must either bring it to her desktop, or design or
use a protocol which allows her to use the private key on the
repository and rewrite her application to use the new proto-
col. Thus, repositories can be difficult to use, especially for
application developers.

Recently, a credential repository has been developed by
the Grid computing community which provides both se-
curity and mobility to clients. Their repository is called
MyProxy [18], and there have even been efforts to harden
a MyProxy repository by using an IBM 4758 for key stor-
age and cryptographic operations [9].

SHEMP Our solution (SHEMP) builds on MyProxy, se-
cure hardware, and policy tools. We extend the MyProxy
approach by taking advantage of potentially heterogeneous
secure hardware on the client and repository. We also ex-
tend the MyProxy design by exploring the use ofProxy Cer-
tificates(PCs) for applications beyond mere authentication.
We use theeXtensible Access Control Markup Language
(XACML) to provide a mechanism which allows users to
specify their key usage options based on the client and
repository properties. We have built a SHEMP prototype
and constructed a testbed and have conducted performance
and user studies. The repository and one client currently
run on our Bear TCPA/TCG platform.

This Paper Section 2 examines the problem in detail.
Section 3 discusses the SHEMP toolkit and Section 4 ap-
plies those tools to build the SHEMP system. In Section 5,
we offer an evaluation of SHEMP and Section 6 concludes.

2 The Problem

The problem that we are attempting to solve is that mod-
ern desktops are unsuitable for use as PKI clients. They
can allow a user’s private key to be stolen or used at an at-
tacker’s will, they make it difficult for users (and application
authors) to do the “right thing”, they are inherently immo-
bile, and they do not allow relying parties to make good trust
judgments about the system (i.e., they allow the key to be
used for transactions which the user was not aware of or did
not intend). A more detailed description of the experiments
used to draw this conclusion can be found in previous work
(see [15, 16]); this section presents a brief analysis of some
of those results.

Software A major cause of the problem is the complex-
ity of modern software. This complexity makes it difficult
or impossible for users to draw conclusions about a given
computation’s results. Complexity also decreases the sys-
tem’s usability, and decreased usability often results in de-
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creased security. Complexity also expands the set of soft-
ware that must be trusted in order for the system to oper-
ate correctly. This set of software is often referred to as
the TCB. A good discussion of the TCB can be found in
the “Orange Book” [19]. A small TCB minimizes the at-
tacker’s target and maximizes the chance for developers to
build secure systems.

Placing a private key on such a complex system is prob-
lematic. By exploiting the complexity, it is possible for an
attacker to trick users into giving away their key directly,or
use it for purposes which they are unaware of or did not in-
tend. By exploiting the fact that so much of a complex sys-
tem needs to be trusted in order for it to behave correctly,
it is possible for an attacker to either get the key directly,
or be able to use it at will without alerting the key’s owner.
We found that getting one user-level executable (i.e., our
keyjacking malware) to run on the client is enough to ac-
complish a successful attack.

Hardware Many in the field suggest getting the private
key off of the desktop altogether and placing it in a separate
secure device of some sort. Taking the key to a specialty
device such as an inexpensive USB token would seem to re-
duce the likelihood of key theft as well as shrink the amount
of software which has to be trusted in order for the system
to be secure. At first glance, it would appear that just the
device and the software which provides access to the device
(i.e., its CSP) need to be trusted. We found that relying on
such a device is also problematic. While putting the pri-
vate key on a token gives some physical security and makes
it harder to steal the key, we found that it does not shrink
the TCB (since the adversary can still borrow the key via
host-side attacks).

Secure coprocessing is an improvement from a security
standpoint, but it is not a magic bullet either. From a prac-
tical standpoint, high end devices such as the IBM 4758 are
far too expensive to deploy at every client. On the other
end of the spectrum, lower priced devices (e.g., the TPM)
cannot withstand many common attacks (such as hardware
attacks, or attacks from root) without additional measures
(e.g., aid from the processor, such as what is being consid-
ered in the literature [8, 17, 32, 33]).

Immobility In addition to the security and cost consid-
erations mentioned above, the desktop PKI client paradigm
suffers another problem: immobility. Modern comput-
ing environments are becoming increasingly distributed and
user populations are becoming increasingly mobile. More-
over, the number of computing devices that a typical user
owns is growing. It is not uncommon for someone to own a
desktop, a laptop, a cell phone, and a PDA. Which device(s)
should house the private key?

One proposal is to use inexpensive tokens such as USB
tokens and allow users to carry their token with them across

devices and computing environments. This approach has a
number of drawbacks in addition to the security problems
mentioned above. First, some devices may not have the
proper hardware or software installed, or may not have sup-
port altogether. Second, a particular machine may not be
trustworthy, or may have malware installed which abuses
the private key. Again, putting the private key in a token
does not shrink the TCB.

Another proposal is to move the key around on some re-
movable media (e.g., a floppy) and export the key to some
intermediate format (e.g., PKCS#12) and then import the
key at the destination. This approach suffers a number
of drawbacks as well. First, some devices may not sup-
port the media—e.g., we are unaware of cell phones with
floppy drives. Second, the intermediate format may be in-
secure (e.g., as Peter Gutmann has demonstrated with his
breakms [5] tool).

In order foranyproposed solution to succeed in making
desktops usable for PKI, it must address a range of issues
including security, usability, and mobility. For the solution
to be of any practical interest, it must safely store and use
the private key, give application developers flexibility while
maintaining security, match the model of real world user
populations, and allow relying parties to make reasonable
judgments about the system.

3 Our Building Blocks

Our building blocks consist of three categories: acreden-
tial repository(MyProxy) anddelegation framework(Proxy
Certificates (PCs)) which are used to get keys off of the
desktops and give users mobility;secure hardwarewhich
can be used as the basic keystore, both at repositories and
clients, when available; and apolicy languagewhich is used
to express key usage and delegation policies at the reposi-
tory as well as express attributes of repositories and clients.

3.1 MyProxy and Proxy Certificates

The first component we use to build SHEMP is the
MyProxy credential repository, which we use to shrink the
TCB and give users mobility [18]. MyProxy was originally
designed to allow Grid users to obtain and delegate access to
their credentials from multiple locations on the Grid. Mod-
ern versions of MyProxy [9] use the repository to store a
long-term credential, thus getting the private key off of the
user’s desktop altogether (in fact, Lorch et al. [9] store the
key in an IBM 4758 at the repository). When a user, or pro-
cess running on a user’s behalf, needs to use a credential for
authentication or authorization, it logs in to the MyProxy
repository and requests that a short-lived PC be generated.
The PC along with the user’s long-term credential can then
be used for authentication or authorization.

The MyProxy system is attractive for two reasons. First,
it gets the user’s private key off of the desktop entirely,
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and thus shrinks the TCB. When a user or process needs
to use a credential, the TCB expands to include the desktop
(via delegation)—but only for short period of time. This
approach shrinks the TCB in space and time which, in
turn, gives MyProxy a security advantages over the stan-
dard desktop PKI approach. Second, the MyProxy system
gives users mobility. Since the user’s private key is stored
in a central location, it can be accessed from many locations
without having to be transported by hand (i.e., exporting/re-
importing or using a protocol like Sacred [23, 24, 25]).

Proxy Certificates The second component we use in
SHEMP are PCs. PCs allow us to expand the TCB for to
cover a client machine for a short period of time. We chose
X.509 Proxy Certificates for a number of reasons. First,
they are standardized by the IETF and are awaiting an RFC
number assignment. Second, because they are X.509-based,
they can be used in many places in the existing infrastruc-
ture that are already outfitted to deal with X.509 certificates.
Third, they are widely used in the Grid community and are
used in the MyProxy system and in the dominant middle-
ware for Grid deployments: the Globus Toolkit [4]. Fourth,
they allow dynamic delegation without the help of a third
party, allowing clients to obtain a PC without having to en-
dure the cumbersome vetting process at theCertificate Au-
thority (CA). Last, the PC standard defines aProxy Certifi-
cate Information(PCI) X.509 extension which can be used
to carry a wide variety of (possibly domain-specific) policy
statements (e.g., XACML statements, discussed below).

3.2 Secure Hardware

The third component we use in SHEMP is secure hard-
ware, which allows us to shrink the TCB of each machine.
Over the years, our lab has built a number of systems which
involve and/or enhance secure coprocessors. Secure hard-
ware is interesting in the context of SHEMP because it can
be used to reduce the size of the TCB, thus reducing the risk
of a key disclosure.

Most of our initial systems were constructed around the
IBM 4758, as the second author brought it to the PKI Lab
from IBM [3, 28, 31]. Members of our group have used
these devices to enhance privacy [7], harden PKI [12, 29],
and enhance S/MIME [21].

The IBM 4758 is a secure coprocessor which provides
secure storage facilities, cryptographic acceleration, and a
platform on which to run third-party applications. The
IBM 4758 is a very secure device, having been validated
to FIPS 140-1 Level 4. It can withstand both software and
hardware attacks, and effectively provides a different secu-
rity domain from its host machine. A useful feature of the
IBM 4758 is what it callsOutbound Authentication(known
as attestationin many other contexts), which enables ap-
plications running inside of the IBM 4758 to authenticate
themselves to remote parties [30]. A good overview of the

IBM 4758 and its capabilities can be found in the literature
(e.g., [3, 28, 31]).

More recent projects have involved constructing a “vir-
tual” coprocessor out of commodity hardware. Our initial
design and prototype was based on the TCG specification
(see [20, 34, 35, 36]) and was called “Bear” [13]. The Bear
platform is less secure than the IBM 4758. It does provide
a means to ensure file integrity for files which a possibly re-
moteSecurity Admindecides are necessary. However, since
the design is based on the TCG specification and hardware,
it is susceptible to local hardware attacks, as well as attacks
from root [10, 13]. Bear has a mechanism which allows it
to “attest” to the integrity of the platform when challenged.
The TCG specifications refer to this mechanism asattesta-
tion. More information about Bear can be found in previ-
ous work (e.g., [10, 13]), and a summary of the attestation
mechanism can be found in earlier work [10] as well as the
literature (e.g., [20, 27, 34, 35, 36]).

3.3 Policy

The last tool we use in SHEMP is a policy framework. In
order to enhance SHEMP’s the expressiveness and usability,
we want to give users a way to relay their wishes regarding
key usage to relying parties and applications—and to the
SHEMP system itself. Further, we want the SHEMP system
to be able to convey attributes of both key repositories and
clients to relying parties.

In one role, the policy framework should allow a relying
party Bob, upon receiving a PC from Alice, to be able to
discover the conditions under which Alice’s PC was gen-
erated. Then, Bob can decide for himself whether to trust
Alice, given her current environment. As we will explore in
detail in Section 4, SHEMP administrators assign attributes
to clients and repositories. When Alice makes a request for
the repository to generate a PC for her, the repository will
include the attributes of the client desktop and the repository
in the PC itself (in the PCI extension). These attributes es-
sentially define Alice’s TCB. When Alice presents her PC to
Bob, he can examine the attributes himself, and then make
a trust decision based on Alice’s TCB.

In another role, the policy framework should allow a key-
holder Alice to express her wishes about uses of her private
key—potentially based on the security level of the reposi-
tory and end client platform. For example, users may wish
to restrict access to cryptographic operations that the repos-
itory will perform with their private key; applications may
wish to restrict certain data or operations. Without this abil-
ity, a successful attacker could fully impersonate the victim
or use the victim’s key for any operation. The policy frame-
work must be flexible enough to allow SHEMP administra-
tors to specify domain-specific attributes to machines, and
easy enough to use that users and application developers can
construct policies which accurately govern their resources.
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We chose to use XACML [37] because it is generic
enough to express a wide range of attributes, and has an
open-source implementation [22]. XACML is an XML-
based language for expressing generic policies and at-
tributes. APolicy Decision Point(PDP) takes a policy and
a set of attributes, and makes an access control decision.

Concretely, we rely on XACML environmental attributes
to carry information about Alice’s current operating envi-
ronment. When Alice wishes to use her real private key on
the repository, the environment and requested operatrion are
placed into an XACML request and given to the PDP, along
with Alice’s Key Usage Policy (which is an an XACML
policy governing Alice’s private key. See Section 4.1 for
further details.). As we will show in Section 5, it is pos-
sible to build XACML-generating policy tools which make
XACML easy enough to use for administrators and appli-
cation developers. (More information and example policies
can be found in previous work [11].)

To reiterate, the use of policy helps protect Alice from
adversaries at nonsecure client machines from repeatedly
obtaining fraudulent short-lived credentials—because the
policy will limit the power of these credentials.

4 SHEMP

The goal of SHEMP is to allow a relying party Bob to
be able to make valid trust judgments about Alice upon re-
ceiving a Proxy Certificate from her—and this validity must
reflect the opinions of Bob and Alice about the desktop in-
frastructure involved. Bob should have some reason to be-
lieve that Alice authorized the issuance of her Proxy Cer-
tificate for the intended purpose(s), and that the private key
described in the Proxy Certificate is authentic. Equipped
with the tools of Section 3, we designed and implemented
the SHEMP system.

When a user Alice wishes to use her private key, she
logs into the SHEMP repository from her client desktop,
generates a temporary keypair on her desktop, and then re-
quests a PC which includes the public portion of her tem-
porary keypair and is signed by her permanent private key
on the repository. The PC is only valid for a short period of
time, and includes a snapshot of the environment in which
the PC was generated. This snapshot describes the security
attributes of the repository and client desktop, and allows
applications to decide for themselves how trustworthy the
private key described by PC really is. The SHEMP sys-
tem attempts to leverage secure hardware when it can, but
it does not require secure hardware. Concretely, SHEMP
allows keypairs on the repository and the client to be gen-
erated and used in secure coprocessors. Additionally, the
framework for describing the security attributes of reposito-
ries and client desktops allows users and administrators to
express the presence and quality of secure hardware—and
relying parties to use this information when making their

trust judgments. Section 5 will provide more detail.
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Figure 1. In the SHEMP system, circles represent indi-
viduals or organizations and the boxes represent machines.
The arrows indicate trust relationships between parties; an
arrow fromA to B means “A trustsB”. The boxes inside
of the dashed area represent certificates. In this figure, all
three certificates are signed by the CA, and are issued to
the Repository Administrator, Platform Administrator, and
Alice respectively. The administrators issue identity certifi-
cates to the repository and Matisse. The dashed edges indi-
cate the issuing of a certificate, and the resulting certificates
are added to the certificate store.

4.1 The SHEMP Architecture

The PlayersInitially, there are three familiar parties in-
volved in SHEMP: a CA, a user Alice (A), and a user’s
machine (Matisse). As in any typical PKI, Alice trusts her
CA to certify members of her population (including her-
self). This relationship is depicted as a solid arrow from
Alice to the CA in Figure 1. In order for the CA to trust
Alice, it must believe her identity and that she has the pri-
vate key matching the public key in her certificate request
(typically a Registration Authorityverifies Alice’s identity
on the CA’s behalf). Once the CA believes Alice’s identity
is authentic and that she owns the private key, the CA will
express its trust in Alice in the form of a CA-signed identity
certificate. This relationship is depicted as a dashed edge
from the CA to Alice in Figure 1.

For an application running on Alice’s machine (Matisse)
to trust certificates signed by the CA (such as Alice’s), it
usually needs to have the CA certificate installed. This re-
lationship is represented by the edge from Matisse to the
CA in Figure 1. To illustrate a concrete example of the ne-
cessity of this relationship, assume that some organization
uses S/MIME mail. If Alice and Bob both have identity
certificates signed by the CA and Bob sends Alice a signed
message, then Alice’s mail program needs to know Bob’s
certificate and it needs to trust the entity which vouched for
Bob’s identity (the CA).

Appeared in the Proceedings of the 3rd Annual Conference on Privacy, Security, and Trust (PST), Oct 2005. 5



In addition to the three familiar parties described above,
the SHEMP system introduces three more: aRepository Ad-
ministrator(R in Figure 1) who runs the key repository(s), a
Platform Administrator(P in Figure 1) who is in charge of
the platforms in the domain (such as Matisse), and at least
one key repository (Rep 0in Figure 1).

The Repository Administrator is in charge of operating
the repository. Since the repository contains the entire pop-
ulation’s private keys and is thus a target for attacks, it
must be maintained with care. The Repository Adminis-
trator is in charge of loading private keys into the reposi-
tory and vouching for the repository’s identity and security
level (these will be discussed below). Thus, it is necessary
for the CA to trust the Repository Administrator. Since the
Repository Administrator is a member of the CA’s domain
(in fact, probably part of the same organizational unit—such
as Dartmouth College Computing Services), it trusts the CA
as well. This relationship is depicted by the edge connecting
the Repository Administrator to the CA in Figure 1.

The Platform Administrator is in charge of the platforms
that end users (e.g., Alice) will use. The Platform Admin-
istrator has the same responsibilities as a typical system ad-
ministrator: configuring machines, installing and upgrading
software, applying patches, etc. Additionally, the Platform
Administrator is in charge of creating and vouching for plat-
form identities and security properties (discussed below).
Since the Platform Administrator is in charge of the nodes
that will be using the keys stored in the repository, the CA
must trust the Platform Administrator. Since the Platform
Administrator is a part of the CA’s domain (again, possibly
part of the same organizational unit), it trusts the CA. The
relationship is shown in Figure 1 as the edge connecting the
Platform Administrator to the CA.

The last entity involved is the key repository which holds
the private keys. As with individual platforms (e.g., Ma-
tisse), the repository trusts the CA. This relationship makes
it possible for entities with CA-signed certificates to estab-
lish SSL connections to the repository. Since the repository
trusts the CA, it believes the identity of an entity with a
CA-signed certificate. This relationship is represented by
the edge between the repository and the CA in Figure 1

There could be more entities involved in the system.
There will most certainly be multiple users and platforms.
Further, there could be multiple CAs, multiple repositories
with different Repository Administrators, as well as multi-
ple Platform Administrators. The set of entities in Figure 1
is the smallest set which is necessary and sufficient to de-
scribe the system.

Identity Certificates Setup The way SHEMP (and PKI
in general) represents trust is via certificates. From the ini-
tial trust relationships between the entities in Figure 1, a
number of certificates can be immediately issued. Figure 1
illustrates these initial certificates; they are containedin the

dashed box which could possibly represent an LDAP direc-
tory where users go to locate certificates.

The certificates are issued from the CA to entities which
have a mutual trust relationship with the CA. Since the ad-
ministrators and Alice all have such a relationship with the
CA, they are all issued identity certificates. The certificates
not shown in Figure 1 are the CA certificates which are in-
stalled at the key repository and at the platform. As pre-
viously discussed, these certificates are necessary to allow
things like client-side SSL connections, and are represented
by the one-directional edges in Figure 1.

The first phase of setup begins when machines are added
to the domain. As a repository is added, the Repository
Administrator must take a number of steps to set it up. First,
he must generate a keypair for the repository. This keypair
can be generated in a number of ways depending on what
type of platform the repository runs on. For instance, if
the repository runs in a IBM 4758, then the keypair ought
to be generated there, so as not to be compromised. If the
repository runs on a Bear platform, then the keypair should
be generated inside of the TPM.

Second, the Repository Administrator binds the public
portion of that keypair to an identifier for the repository. A
repository could be identified by a name, a hardware MAC
address, the hash of the newly-generated public key, etc.
The only restriction that SHEMP imposes is that this iden-
tifier uniquely identify the repository. The binding of the
public key to the identifier is accomplished via the Reposi-
tory Identity Certificate issued by the Repository Adminis-
trator (depicted as the certificate issued from the Repository
Administrator to Repository0 in Figure 1). A similar proce-
dure is performed by the Platform Administrator each time
a new machine is added to the domain.

First, the Platform Administrator generates a new key-
pair on the platform, using the most secure method avail-
able to it (e.g., an IBM 4758 or a TPM). Second, the Plat-
form Administrator binds the public portion of the keypair
to a unique identifier for the platform. This binding is rep-
resented as the Platform Identity Certificate (depicted as the
certificate issued from the Platform Administrator to Ma-
tisse in Figure 1). As with the repository, SHEMP is agnos-
tic to the specific mechanism used to identify the platform,
but administrators should use the “least spoofable” identi-
fier possible. (Recall that we are focusing on minimizing
risk.) For example, if a TPM is present, the TPM’s Endorse-
ment Key could be used, providing a more secure identifier
than a hardware MAC address (which is easily spoofed). In
our prototype, we protect it with the Bear/Enforcer SA’s se-
curity policy. If the TPM or the LSM detect tamper, the
private key becomes unavailable.

Attribute Certificates Setup The final phase of setting
up the system involves issuing attribute certificates to the
appropriate entities. These attribute certificates are used to

Appeared in the Proceedings of the 3rd Annual Conference on Privacy, Security, and Trust (PST), Oct 2005. 6



bind the security level of the machines (i.e., the repository
and client platform) to the machine’s identifier, and to bind
a user’s delegation policy to the user’s identity.

As the Repository Administrator configures the repos-
itory, he must also assign some domain-specific security
level to the repository. We assume the enterprise already
has developed security profiles for machines. Concretely,
the security level is expressed by the Repository Adminis-
trator generating and signing some XML attributes for the
repository. The idea is for the administrator to make some
signed XML statements such as “This repository runs on
a Bear platform”, “This repository is in a secure location
and guarded by armed guards.”, etc. These attributes can
be arbitrarily complex, and are stuffed into a signed XML
statement called theRepository Attribute Certificate(RAC).
The RAC is identified by the same identifier that the Repos-
itory Administrator used in the Repository Identity Certifi-
cate, and thus binds the repository to its XML attributes.
The RAC is then signed by the Repository Administrator
and placed in a well-known location, such as an LDAP di-
rectory. This procedure is shown in Figure 2.

As the Platform Administrator configures new machines,
she constructs some XML attributes for the platform and
signs them. These attributes are expressed in XML, and
can state any domain-specific properties that the Platform
Administrator feels are important in determining the secu-
rity level of the machine. Examples may include statements
such as “This machine is inside the firewall”, “This machine
is a Bear platform”, “This machine was patched on April 21,
2004”, etc. Like the RAC, these attributes can be arbitrarily
complex and are stuffed into a signed XML statement called
thePlatform Attribute Certificate(PAC). The PAC is identi-
fied by the same unique identifier that the Platform Admin-
istrator used to identify the platform in the Platform Identity
Certificate. Again, machines with no secure hardware may
be identified by a hardware MAC address, whereas a Bear
platform may be identified by the TPM’s endorsement key.
In any case, the PAC binds the client platform’s identity to
its XML attributes. The PAC is signed by the Platform Ad-
ministrator and is placed in a well-known location such as
an LDAP directory. This procedure is shown in Figure 2.

The last part of the setup occurs when a user Alice visits
the CA for the first time in order to get her identity certifi-
cate issued. Alice goes through the standard identity vetting
process, eventually proving her identity to the CA. At the
CA, Alice also gets a chance to express herKey Usage Pol-
icy (KUP), which governs how her key is to be used. For ex-
ample, Alice may specify “If my key lives in an IBM 4758
repository, and I request a Proxy Certificate from a Bear
platform, grant the Proxy Certificate full privileges. If my
key lives in a Bear repository, and I request a Proxy Certifi-
cate from any machine outside the firewall, allow my key to
be used for encryption only. etc.” This KUP is expressed
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Figure 2. Administrators issue attribute certificates to the
repository and Matisse which contains their security level
expressed in XML. The CA issues an attribute certificate to
Alice which contains her Key Usage Policy (KUP).

as an XACML policy, and is signed by the CA. The signed
KUP is identified by Alice’s name and is placed into the
LDAP along with her identity certificate.

Again, the automatic use of Key Usage Policies helps
protect Alice from adversaries at nonsecure client ma-
chines, by limiting the power of these credentials.

The System in MotionOnce setup is completed, Alice
is free to wander throughout the domain and use her key.
For example, assume that she needs to register for classes
via an SSL client-side authenticated Web site. Alice begins
by finding a computer which is acting as a client (i.e., has
our SHEMP client software installed, and has an Platform
Identity Certificate and PAC in the directory). For illustra-
tion, assume Alice walks up to the client named Matisse.
Matisse first connects to the repository and establishes a
client-side SSL connection. The Repository and Platform
Identity Certificates are used to negotiate this connection.
Recall that the Repository and Platform Identity Certifi-
cates are signed by the appropriate administrators (Reposi-
tory and Platform, respectively), and that the administrators
have CA-signed certificates (or a valid chain of certificates
back to the CA). The implication is that there is a valid cer-
tificate chain from each of the platforms back to the CA.
Since both the repository and platform trust the CA, they
have good reason to believe the client-side authentication.

The second step is for Alice to authenticate herself to the
repository. SHEMP is agnostic with respect to how authen-
tication is accomplished. For prototyping purposes, Alice
uses a username/password, but for stronger security, Alice
could use an authentication technique which cannot be in-
tercepted by rogue processes on the client. For instance,
Alice could use some other keypair for authentication pur-
poses or she could use biometrics, etc.
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Once both Matisse and Alice have authenticated, the
repository uses Matisse’s identifier to look up Matisse’s
PAC. The repository may also fetch Alice’s identity certifi-
cate and KUP if it is not locally stored on the repository
(possibly to save space repository). Once the repository has
gathered all of the policy information about the Matisse and
Alice (e.g., the PAC, KUP, and Alice’s identity certificate),
it will acknowledge Alice’s and Matisse’s authentication,
and waits for a Proxy Certificate request from Matisse.

Matisse will then generate a temporary keypair for Al-
ice to use. Again, this may be generated a number of ways
depending on the resources available to the client. For ex-
ample, if the client is a Bear platform, it could generate a
keypair in the TPM so that the key will never leave the TPM.
If the client is a standard unarmed desktop, it may generate
a keypair with OpenSSL. In any event, Matisse generates
an unsigned Proxy Certificate containing the public portion
of the temporary key, and sends it to the repository to be
signed by Alice’s private key.

The repository must then decide if it should sign the re-
quest with Alice’s private key. The repository takes the se-
curity levels of itself and Matisse (contained in the RAC
and PAC, respectively) and generates an XACML request
containing the attributes. This XACML request and Alice’s
KUP are then evaluated to determine whether the opera-
tion is allowed. Concretely, an XACML PDP running on
the repository as part of the repository software will make
this decision. If the operation is allowed, the repository
will place the attributes found in the PAC and RAC, along
with Alice’s KUP into the Proxy Certificate’s PCI exten-
sion, and then sign the Proxy Certificate with Alice’s private
key. Placing the attributes and KUP into the PCI allows the
Proxy Certificate’s relying party to see the security proper-
ties of Alice’s environment. The signed Proxy Certificate is
then returned to Alice.

Alice now presents her Proxy Certificate which, along
with her identity certificate, form a chain: one which in-
cludes her real public key which is signed by the CA, and an
X.509 Proxy Certificate which contains a short-lived tempo-
rary public key, signed by her real private key.

Decryption, Signing, and Authentication Traditional
PKI uses of private keys include decryption, signing, and
authentication. The PCs generated by SHEMP can by used
for any of these operations, although the short lifespan of
the Proxy Certificate adds some complexity. For example,
if Bob encrypts something for Alice using her PC’s pub-
lic key, and the PC expires before Alice decrypts the mes-
sage, then she loses the message. If Alice signs something
with her temporary private key, and Bob attempts to verify
the message after Alice’s PC has expired, the signature is
meaningless. Having Bob deal with Alice’s long-term cer-
tificate would be ideal, but then Alice needs a way to ask the
repository to perform private key operations on her behalf.

We designed and implemented decryption and signing
proxies on the repository to solve this problem. They allow
Alice to turn a message encrypted with her long-term pub-
lic key into a message encrypted with her temporary public
key, and turn a signature generated with her temporary pri-
vate key into a signature generated with her long-term one.
This way, Bob just has to deal with Alice’s long-term cer-
tificate, and is not required to know anything about SHEMP.
These applications do not explore novel cryptographic tech-
niques such as proxy re-encryption schemes [1], but are still
novel contributions, as they explore the use of PCs for stan-
dard private key operations; until now, they have only been
used for authentication and dynamic delegation.

5 Evaluation

5.1 Security

Before we offer a security analysis of SHEMP, we state
an important assumption which holds throughout our anal-
ysis: the level of security in SHEMP (or any system) can-
not be measured with a single bit. It isnot the goal of our
analysis to conclude some meaningless statement such as
“SHEMP is secure.” Rather, our analysis aims to illustrate
how SHEMP can be used to increase security in a wide
range of environments with possibly different threat mod-
els. We show how SHEMP creates a framework which
makes it possible to build a secure PKI environment (i.e.,
one which minimizes the risk and impact of key disclosure)
under an array of threat models.

SHEMP decreases the risk of private key disclosure in a
number of ways. First, SHEMP removes users’ keys from
the desktop and places them in a credential repository which
is administered by a professional. Placing keys in a repos-
itory shrinks the TCB. The TCB is expanded to cover the
desktop only when needed, and only for a short period of
time. Second, by using secure hardware when available,
SHEMP can reduce the TCB size even further. Finally, by
including environmental information (i.e., repository and
platform attributes) in each user’s PC, relying parties can
decide for themselves whether they should trust the request.

Getting Keys Off of the DesktopSince the TCB is a
finite set of software and (possibly hardware) components,
we can represent TCBs with set notation as the setTCB.
We consider the TCB of the current client-side approach to
be the union of the TCBs of all of then client desktops in
the domain. We denote the this total TCB asT , where:T =
⋃n

i=1
TCBi . If any oneof then desktops in Alice’s domain

have keyjacking malware installed, then anyone who uses
that desktop will have their key stolen or misused. Solutions
which encourage mobility (i.e., allowing users to store their
private keys on USB dongles) actually make matters worse,
as a compromised machine is likely to service a number
of users. In this case, all of the users of the compromised
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machine will have their key stolen or misused. If we letc
of the desktops are infected with keyjacking malware, then
Alice has ac/n chance of having her key stolen or misused.
If the desktops are all roughly the same in terms of OS and
software, and an attacker can compromise one of them, then
it is likely that c can approachn very quickly, leaving it
almost certain that Alice will be keyjacked.

Under SHEMP, there is only one machine which houses
users’ private keys: the key repository. (Actually, the
SHEMP design allows for a number of repositories, but
we envision a small number of repositories in relation to
clients.) Centralization shrinks the TCB from then desk-
tops to just one key repository when no one is using the
system. When Alice needs to use her key, she requests that
the repository extend the TCB to cover her machine during
the duration of her session. Concretely, this is accomplished
by the repository signing a short-lived PC for a temporary
key on Alice’s current desktop. The TCB at some timet is
the repository’s TCB plus the TCB of whatever clients are
involved in active sessions (i.e., have valid PCs) at timet. If
we letTCBrep be the repository’s TCB andp be the num-
ber of valid PCs at timet, we can denote SHEMP’s total
TCB at timet asT (t), where:

T (t) = TCBrep ∪

p
⋃

i=1

TCBi .

Assume that organizationS uses SHEMP, and that organi-
zationO does not. Additionally, assume that they have the
same number of users and desktops (denotedn), and that
one desktop is serving asS’s key repository (leavingS with
n−1 clients). The TCB atS is never greater thanO’s TCB,
i.e.,∀t : |T (t)| ≤ |T | because:

∣

∣

∣

∣

∣
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⋃
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∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n
⋃

i=1

TCBi

∣

∣

∣

∣

∣

.

To see why this statement is true, assume that every user in
S has a valid PC at some timet. In this casep = n − 1,
which yields the same size TCB asO. The implication is
that if any client desktop does not have a valid PC, then the
SHEMP approach shrinks the TCB. Furthermore, Alice’s
policy statement may disqualify some clients from using her
key, thus shrinking the TCB even further.

SHEMP also minimizes the risk of private key disclo-
sure by placing all of the private keys under the control of
a trusted entity: the Repository Administrator. The Repos-
itory Administrator will likely be closely related to the or-
ganizational unit which issues certificates. A specialist is
more likely to protect the private keys than an individual
user is. Thus, letting a specialist care for the private keys
decreases the risk of private key disclosure.

Using Secure HardwareAs we discussed in Section 3,
secure hardware can shrink the TCB. Highly secure devices

such as the IBM 4758 can provide a separate security do-
main from their host, while secure platforms such as Bear
can provide some level of protection, and cost significantly
less than an IBM 4758. SHEMP reduces the TCB (and
hence, the risk of private key disclosure) further by taking
advantage of secure hardware, when and where available.

Since the keys reside in a central location (i.e., the repos-
itory), we envision that the repository will utilize some form
of secure hardware. The repository application could be
running in secure hardware, and the private keys could be
stored inside. The organization’s threat model should dic-
tate the level of secure hardware that they adopt. For maxi-
mum security, the repository should run in a device such as
the IBM 4758, and the clients should minimally use some-
thing like Bear. The use of secure hardware allows organi-
zations with SHEMP to shrink the TCB even further, thus
further decreasing the risk of private key disclosure.

Describing the TCB Finally, SHEMP minimizes the
risk of key disclosure through the use of the environmental
attributes (found in the Repository and Platform Attribute
Certificate) and KUPs found in each Proxy Certificate’s PCI
extension. SHEMP mandates that all of this information be
included. This approach gives useful information to relying
parties, allowing them to adjust their trust in the client based
on the environment. Relying parties are thus aware when a
client generates a temporary key under conditions which are
likely to result in key disclosure, and have the possibilityto
limit the key’s use. The usability of the policy statements in
the context of building applications will be examined below.

In addition to minimizing the risk of a private key dis-
closure, SHEMP minimizes the impact of such a disclosure.
First, a successful keyjacking-style attack only gives theat-
tacker access to a temporary keypair, and only for a limited
period of time. Second, SHEMP reduces the impact of a
disclosure to the organization by simplifying and shrink-
ing the size of Certificate Revocation Lists (CRLs). Finally,
SHEMP makes forensics easier by consolidating (and pos-
sibly protecting) the audit trail.

Closing the Window SHEMP minimizes the impact of
private key disclosure at the client by only allowing the tem-
porary key to be used for a short time. Under SHEMP, the
key issued on the client’s desktop is valid for a number of
hours (our prototype defaults to two hours). This small time
window limits the opportunity for a successful attacker to
use the victim’s key. The set of operations that an attacker
can perform with a stolen key is possibly further limited by
the victim’s KUP. A successful attacker may not have access
to the encryption or signing proxies (or other resources in
the domain) depending on how the victim has set her KUP.
Therefore, a restrictive KUP can also limit the impacts of a
private key disclosure.

RevocationSHEMP minimizes the impact to the organi-
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zation in the case of a key compromise. In many status quo
PKIs, compromised keys are revoked by placing their cer-
tificate into a CRL or anOnline Certificate Status Protocol
(OCSP) server. Keeping CRLs up to date and distributing
them are non-trivial problems in PKI space.

Since only the SHEMP repository can use Alice’s private
key, SHEMP (like SEM [2]) can effectively revoke a user’s
keypair by changing the authentication information at the
repository. Changing Alice’s authentication informationre-
sults in Alice (or anyone with Alice’s login information)
being unable to log on to the repository and make requests
to use her private key. This approach reduces the size of
CRLs and the amount of work for the administrative staff.

The Audit Trail SHEMP minimizes the impact of a pri-
vate key compromise by consolidating the audit trail used
as forensic information. Since all accesses to use Alice’s
private key are received by the SHEMP repository, there is
a central log of Alice’s private key activity on the repository.
In the event that Alice’s key is compromised, investigators
need only look in one place for information. Furthermore,
since the SHEMP repository software can run inside of se-
cure hardware, SHEMP can secure the logs themselves by
keeping them inside of the hardware. The logs could be
cryptographically protected to prevent tamper or viewing
by unauthorized individuals. In the event of a compromise,
the organization would have a central location for the logs
and can protect them against modification.

5.2 Usability

In order to show that SHEMP is usable, we need to show
that developers and administrators can understand and con-
struct valid policies to solve real security problems—i.e.,
the policy mechanism must be a valid medium for devel-
opers and users to express their mental models. Further-
more, we need to show that the computational overhead in-
troduced by SHEMP’s policy mechanism and use of extra
keypairs does not make the system unusable from an end
user’s perspective.

User StudyTo see whether the policy mechanisms were
usable, we conducted a user study consisting of eight sub-
jects which are highly representative of the types of people
who would be tasked with constructing SHEMP policies.
Our user study outlined some real application designs taken
from Dartmouth’s Grid community. We gave the applica-
tion designs to subjects who would likely fill the roles of the
Repository Administrator, the Platform Administrator, and
the CA. We were interested in evaluating whether the par-
ties could generate a meaningful set of policies which rep-
resent a given mental model, how many tries it took them,
and their feedback regarding the difficulty of their task.

Once users had completed the test, they were asked to
complete and return a survey. Compiling the survey data led

to a few interesting discoveries. First, there was an inverse
correlation between the number of machines under the sub-
ject’s control and the number of mistakes the subject made.
The subjects who administered the most machines made the
fewest mistakes. Second, of the subjects who had config-
ured other application security policies (such as Apache or
MySQL), all but one of them said SHEMP was easier to
configure. The one who said it was harder recommended
using a GUI, and giving a users a way to go back. Many
thought that the structure of the tool was helpful; they liked
the question and answer tone rather than having a random
access configuration file to edit. Third, no one reported
anything particularly confusing about SHEMP, and every-
one mentioned in one way or another that they would like
a GUI with the potential to go back to the previous set of
options. Finally, subjects learned the tool rather quickly: no
one reported running any scripts more than three times.

The overall results were positive. Half of the subjects
built perfect policies, and of the remaining half, no one
missed more than one operation out of eight. Every mistake
resulted from a typographical error, such as a misspelled
word or failure to respect case sensitivity. These results
suggest that a policy generation tool which does not allow
users to make such mistakes (possibly by doing input vali-
dation or presenting users with a graphical menu of options
to choose from) would yield better results. The results in-
dicate that the SHEMP policy mechanisms are usable, but a
good policy construction tool is essential.

Performance In order to show that the overhead intro-
duced by SHEMP does not make the system unusable to end
users, we conducted a performance analysis. Performance
is not the most interesting aspect of SHEMP, but since a
third party is contacted for all private key operations, we
expected a slowdown and wanted some quantification. If
SHEMP keeps users waiting for long periods of time to per-
form key operations, then users are likely to find faster so-
lutions, even at the expense of security.

We used our prototype to measure the overhead of PC
generation and the decryption and signing proxies. As a
baseline, we compared SHEMP to a simple Java applica-
tion which we call the SHEMPCryptoAccessory . The
CryptoAccessory performs the standard cryptographic
operations using a locally-stored keypair, and without third-
party involvement.

We measured the slowdown for three operations (Gener-
ate Proxy Certificate, Decrypt, and Sign) on three network
configurations. The operations consisted of generating an
RSA keypair, using it to decrypt a message, and then using
it to sign a message. For the first configuration, we put the
SHEMP client and the repository on the same machine, thus
eliminating network delay altogether. In the second config-
uration, we placed the client and repository on the same
Ethernet segment, so as to simulate a Local Area Network.
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For the final configuration, we put the client and repository
on different networks by putting the client on our campus-
wide wireless network.

The column labelled “Avg.” is an average over the re-
sults of ten runs in the different configurations. Only3.32%
of the time spent generating a PC is used by SHEMP. This
extra time that SHEMP introduces is used to transport the
unsigned PC over the network, verify the current environ-
ment’s attribute certificates, perform a policy check against
Alice’s KUP, sign the PC, and return the signed PC to Al-
ice. The other96.68% of the time is spent generating the
temporary keypair on the client.

The performance results for the proxies are less impres-
sive, indicating that roughly half of the time spent perform-
ing the operation is introduced by SHEMP. In these cases,
SHEMP uses the time to transport the messages over the
network, perform a policy check, perform a public key oper-
ation (either to verify the message or to encrypt the message
with Alice’s temporary public key), and perform a private
key operation (either to sign a message with Alice’s long-
term private key or decrypt a message which was encrypted
with her long-term public key). From s user’s perspective,
using SHEMP doubles the time it takes to perform a private
key operation. However, this is not as bad as it appears.
First, the extra time needed for SHEMP may not be no-
ticeable to humans. Over the average of the ten decryption
operations performed in the “Different Network” configu-
ration, SHEMP takes the time of the operation from222.3
milliseconds to487.8 milliseconds. Human perception can-
not detect the slowdown. Second, it is possible to reduce
the overhead by using cryptographic acceleration hardware.

Our performance analysis indicates that the overhead in-
troduced by SHEMP does not make the system unusable.
While the performance hit is statistically significant, it can
be improved via specialized hardware, and users are un-
likely to notice the slowdown anyway.

Op Local Same Seg Diff. Net Avg.

Gen PC 3.69% 1.94% 4.33% 3.32%
Decrypt 54.95% 42.64% 54.42% 50.67%

Sign 40.22% 49.04% 57.51% 48.92%

Table 1. Slowdown vs. local private key operations.

5.3 Mobility

SHEMP gives users mobility without sacrificing secu-
rity. In our prototype testbed, we have three client desk-
tops which are assigned a different set of security attributes.
The desktops represent low-, medium-, and high-security
machines (high-security machines being ones armed with
a TPM). We are able to access our private key from each
one, subject to the restrictions in our KUP. The mobility of

SHEMP stems from the fact that it is based on the MyProxy
design. The use of the credential repository approach allows
SHEMP users to access their key from anywhere, provided
that they can access the key repository. MyProxy’s mobil-
ity is what led us to use it as a foundation for the SHEMP
design in the first place. In all fairness, we can claim that
SHEMP is as mobile as MyProxy.

SHEMP excels in the security properties which are main-
tained during migration. The current client-side infrastruc-
ture makes migration risky by using unsafe transport for-
mats. The use of a secure format such as Sacred [23, 24, 25]
could provide some benefits, but it is not necessarily a part
of what we consider the current client-side infrastructure.
MyProxy is an improvement in that private keys typically
stay on the repository, and only PC are given to the user.
However, MyProxy does not consider Alice’s environment
when deciding whether or not to allow Alice to use her pri-
vate key. As long as Alice (or anyone else) can authenticate
to the repository, it will grant her full access to her key.

SHEMP takes the MyProxy approach a step further by
actually checking the security properties of the current envi-
ronment, and then consulting Alice’s KUP to see if it should
grant the request. Concretely, the SHEMP repository uses
the platform authentication step to identify the requesting
platform. As discussed in Section 4, the repository gives
the attributes contained in the Platform and Repository At-
tribute Certificates along with Alice’s KUP to a PDP for
evaluation. If the PDP returns “Permit”, then the request
is granted. SHEMP’s use of environmental information in
making its access decision gives users the same amount of
mobility as the MyProxy approach, while simultaneously
providing extra security.

6 Summary
Starting with the approach employed by the Grid com-

munity (i.e., the MyProxy online credential repository),
we designed a system which makes desktops usable PKI
clients: SHEMP. In Section 5, we offered a security anal-
ysis of SHEMP, illustrated how it minimizes the risks and
impacts of a private key disclosure, and how it can defend
against the keyjacking attacks of Section 2. We discussed
how SHEMP maintains security while providing mobility
through the use of environmental attributes and Key Usage
Policies. Finally, we showed that SHEMP is usable by pre-
senting the results of our usability study and performance
analysis. The results indicate the SHEMP’s policy frame-
work can be used to accurately capture a mental model of
the system given the right tools, and that SHEMP’s over-
head is imperceivable by humans.
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