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Abstract

The Border Gateway Protocol (BGP) determines how Internet traffic is routed throughout

the entire world; malicious behavior by one or more BGP speakers could create serious secu-

rity issues. Since the protocol depends on a speaker honestly reporting path information sent

by previous speakers and involves a large number of independent speakers, the Secure BGP

(S-BGP) approach uses public-key cryptography to ensure that a malicious speaker cannot

fabricate this information. However, such public-key cryptography is expensive: S-BGP re-

quires a digital signature operation on each announcement sent to each peer, and a linear

(in the length of the path) number of verifications on each receipt. We use simulation of AS

models derived from the Internet to evaluate the impact that the processing costs of crypto-

graphy have on BGP convergence time. As the size of these models grows, inherent memory

requirements grow beyond what is normally available in serial computers, motivating us to use

distributed memory cluster computers, just to hold the model state. We find that under heavy

load the convergence time using ordinary S-BGP is significantly larger than BGP. We examine

the impact of highly aggressive caching and pre-computation optimizations for S-BGP, and

find that convergence time is much closer to BGP. However, these optimizations may be

unrealistic, and are certainly expensive of memory. We consequently use the structure of

BGP processing to design optimizations that reduce cryptographic overhead by amortizing

the cost of private-key signatures over many messages. We call this method Signature-Amor-

tization (S-A). We find that S-A provides as good or better convergence times as the highly

optimized S-BGP, but without the cost and complications of caching and pre-computation.

These experiments––whose memory demands easily exceed 10Gb––are made possible using
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parallel simulation. They show that it is is possible therefore to minimize the impact route val-

idation has on convergence, by being careful with signatures, rather than consumptive of

memory.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The Internet is comprised of a large number of Autonomous Systems (AS) that
establish global connectivity by cooperatively sharing traffic. Traffic originating in

one AS may end up being carried by the internal networks of several different ASes

enroute to its destination. The routing of traffic across ASes is established by co-

operative execution of a distributed protocol called the Border Gateway Protocol

(BGP) [33]. Gateway routers that connect ASes (called BGP speakers), execute the

protocol. This paper concerns BGP, optimizations to known solutions for adding

security to its route announcement mechanism, and the evaluation of these optimi-

zations using parallel simulation.
Lack of security is a serious concern that has been recognized for some time, e.g.

[27,28]. The root cause of the problem is that BGP speakers trust the messages they

receive, and trust other purported BGP speakers to be reliably executing the BGP

protocol according to specifications. A comprehensive analysis of the security vul-

nerabilities in BGP is developed by Murphy in [21], and we echo key points of that

analysis. The nature of the BGP protocol is that the messages a speaker sends are

extensions of messages that the speaker earlier received. A compromised speaker

can insert false information into the messages it sends; as that information is ac-
cepted and propagated, network performance may suffer:

• Data may be delayed in its delivery, or even prohibited from being delivered.

• Views of network connectivity may be incorrect.

• Data may be falsely routed through a portion of the network designed to eaves-

drop, or even modify the data.

• Fed by false information, the BGP protocol itself may begin to misbehave in such

a way that stable routes to networks are not constructed.

Murphy points out that that BGP has three fundamental vulnerabilities. The

first is that it fails to ensure the integrity, freshness, and source authenticity of

messages between speakers, the second is that it fails to validate the authority

of a speaker to even participate in the BGP protocol, and the third is that it fails

to ensure the authenticity of the information conveyed in BGP messages. The

first issue can be addressed by hardening peer-to-peer communication with IPsec

[4]. The second and third issues are addressed by a protocol known as S-BGP
[13].
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S-BGP provides a comprehensive treatment of prefix ownership and route

authentication, including identification of needed public-key infrastructure, and

techniques for embedding S-BGP extensions within the existing BGP specification

in order to support incremental deployment. The security it offers is limited to

route authentication––a rogue cannot fabricate routing information and inject it

into the network. It does not protect against insider attacks on a router’s route

selection policy, its filtering policies, or the timing of the dispersion of the route

announcements it does make. Still, the main concerns about deploying S-BGP
today are not so much what it does not do as they are the difficulty of implement-

ing and maintaining the public-key infrastructure needed to support it. Neverthe-

less, the vulnerability of the routing infrastructure is a timely concern, and

solutions are likely to involve digital signatures of route announcements. Against

this backdrop, our contribution is to show that the cryptographic processing costs

of route authentication can adversely affect BGP behavior and to develop a low-

impact solution to that problem.

Prior analysis of S-BGP identified its resource requirements [13]. Our contribution
is to study how its additional computational load affects convergence––the speed at

which BGP finds and distributes good routes. Using a detailed simulation model, we

find that for highly connected routers under high load––e.g. a rebooting Tier 1

speaker––use of S-BGP significantly lengthens convergence time. Longer conver-

gence reflects increased instability, and can cause degraded network performance.

Consequently we examine S-BGP’s cryptography costs and identify steps where per-

formance improvements might be effective. We describe a new optimization that

reduces the number of expensive cryptographic operations; using simulation we
observe that with our technique BGP’s convergence is close to that when no crypto-

graphy is used at all. We also consider aggressive route caching optimizations sug-

gested in and inspired by the S-BGP literature, and find that convergence is no

better than using our technique (without caching). Thus we have identified a new

way of securing BGP path announcements, without significantly affecting conver-

gence time, and without demanding significantly more router memory for caching

validated and/or signed routes.

The behavior of convergence time is very much affected by the topology and log-
ical relationships between autonomous systems. To obtain an understanding of how

cryptographic processing costs affect convergence in the actual Internet, we need to

simulate BGP behavior on the largest models of systems possible. The memory de-

mands of a detailed BGP simulation are large––every BGP router stores the last

advertised route for every network prefix, from each of its peers. This implies that

the memory needs of the simulation are proportional to the product of the number

of routers, average length of BGP advertisement, advertised prefixes, and average

router connectivity. The simulator we use for our study (SSFNet) [3] can use an or-
dinary desktop computer to handle a network with 100 ASes, 2 prefixes per AS. For

systems much larger than this we use parallel simulation on a distributed memory

cluster computer. It is instructive to analyze the effectiveness of parallel simulation

on our problem. We find that we benefit more on our experiments from the simple

fact of being able to do them (using the available memory), than we do from the
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additional processing power. The simulator we use for our study is written entirely in

Java, and so is portable to any computers that run Java––this is true even for the

distributed version, which uses native Java methods for inter-process communica-

tion.

The remainder of the paper is organized as follows. Section 2 gives a brief over-

view of the BGP protocol, then Section 3 describes S-BGP, an existing proposal for

securing BGP route announcements. Section 4 reports on benchmarking of crypto-

graphic overhead, and Section 5 uses simulation to look at how this overhead affects
BGP convergence time. We describe how to amortize route announcement signature

overheads in Section 6. In Section 7 we discuss the parallelization of our problem

class under SSFNet, and we summarize our conclusions in Section 9.
2. BGP

We first quickly review critical aspects of the BGP protocol.
An AS manages subnetworks, each one described by an IP prefix––a fixed pattern

of the n highest order bits shared by all devices in the subnetwork. This n may vary

from prefix to prefix. Packet forwarding is based on prefixes: given a packet’s IP ad-

dress, a router searches its forwarding tables for the longest prefix that contains it,

and forwards through the port the table associates with that prefix. Routers that con-

nect ASes use BGP to construct and maintain their forwarding tables; these routers

are called BGP speakers. A BGP speaker communicates with a set of other BGP

speakers, known as its peers. A speaker sends an Update in order to announce a
new preferred route to a prefix p. The route is described as a sequence of AS ids.

For instance, AS B0 uses B0;B1;B2; . . .Bk to announce the route it prefers to reach

a prefix owned by Bk.

One way Update messages occur is when an AS announces prefixes it originates

(i.e, owns) to its peers. This typically occurs when the speaker reboots. Another

way Update messages get generated is related to the change of connection state be-

tween two peers. Peers maintain logical sessions with each other; message traffic

across a session (including KeepAlive messages mandated by the protocol) informs
the endpoints of their partner’s liveness. Sessions do go down, for a variety of rea-

sons. When a session is established (or re-established) the endpoints share their entire

routing tables with each other, in the form of a large number of Update messages.

Processing of an Update for prefix p may itself generate a number of new Updates.

This happens if the AS path reported is the basis for a more attractive path; the re-

cipient selects the new path, appends its AS identity to it, and announces the ex-

tended path to one or more of its peers.

Update messages between peers are rate-limited with a parameter known as the
Minimum Route Advertisement Interval (MRAI). The MRAI is formally defined

to be the minimum time that must elapse between sending successive Updates of

the same prefix. In practice it is implemented as the minimum amount of time which

must elapse between successive bursts of messages from one peer to another (partic-

ular) one. A speaker allocates an MRAI timer for each of its peers. The default value
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used throughout the Internet is 30 s, which is also the value assumed throughout our

experiments.

At configuration time a speaker is encoded with a policy that governs how it se-

lects preferred routes. Shortest-number-of-hops is a commonly adopted policy. A

speaker also uses a configuration-time policy to select the subset of its peers to re-

ceive an Update. That policy reflects business relationships between the ASes the

peers represent.

When a speaker announces a route to prefix p it implicitly withdraws its preference
for the last route it announced to the same prefix. The recipient, having seen the old

route and the new, understands that the sender no longer supports the older route.

An Update message may also simply declare the route to a prefix to be withdrawn,

without specifying an alternative preferred route. A route withdrawal can cause its

recipient to generate an Update message; this occurs if the withdrawn route was

the basis for the recipient’s preferred route to the named prefix. A speaker saves

the last announcement from every peer, for every prefix; receiving a route withdrawal

it may find at hand another path to the affected prefix, and will announce the best of
these.

A detailed description of BGP and its operation can be found in [33].

As we have seen, a route (or withdrawal) announced by one speaker for prefix p
can initiate a wave of announcements (or withdrawals) by other speakers about p.
The hope and expectation is that the wave eventually dies out. The length of time

required for the wave to die out entirely is call the convergence time.

Studies of BGP have considered questions of stability (whether convergence is

ever reached) [5,15,26], the policies that govern route selection [7,16,32], and conver-
gence [6,8,14,16,17,22,34]. Convergence is of interest because the quality of connec-

tions to a prefix are degraded during the transient period when those connections are

changing. For this reason various optimizations have been considered to control and

accelerate convergence. Our study considers how adding cryptographic operations to

BGP affects convergence time, and identifies techniques to minimize that effect.
3. S-BGP

Considered in its full generality, the problem of securing BGP from both inside

and outside attack is daunting. As a consequence of autonomy, no speaker should

necessarily trust the word of any other speaker. As a consequence of distribution,

no speaker can possess a complete, current view of the system. As a consequence

of size, the system as a whole can exhibit behavior not predictable when analyzed

on a small scale.

The main security issue is directly identified. Each speaker constructs its forward-
ing table via hearsay: in general, the only knowledge B0 has of a particular path

B0;B1;B2; . . . ;Bk to a prefix p is the fact that Bk claims to originate p, and that along

the way, each Bi forwards to Bi�1 the commitment of Biþ1 . . .Bk to participate in this

path. Consequently, nothing prevents a malicious speaker Q from simply fabricating

a claim to originate a prefix, or from fabricating a route to a prefix and announcing
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that to its peers. If the fabrication is sufficiently attractive, this misinformation will

propagate throughout the network, as a subpath in other paths.

The natural approach to stopping such forgery is to use digital signatures. A dig-

itally signed message typically contains the message m and the private-key encipher-

ment sðhðmÞÞ of a cryptographic hash hðmÞ of m. (Section 4 gives more details.) If a

party A receives a tuple ðm; sðhðmÞÞÞ allegedly from party B who allegedly possesses a

certain key pair, then A can extract m, reconstruct hðmÞ, and use the public key to

verify that sðhðmÞÞ matches hðmÞ. If hðmÞ matches the signature, then A can conclude
that the party with the matching private key sent the message.

To conclude that this party was B, however, A needs to know that B really pos-

sess that public key. Typical PKI achieves this via a certificate, an electronic doc-

ument that binds identity information with a key pair. Party A receiving the tuple

ðm; sðhðmÞÞÞ from party B validates the message using a certificate that gives B’s
identity and B’s public key. If A trusts this certificate, then verification of the sig-

nature on m tells A that B sent this message and that the message was not tampered

with.
A must also validate the certificate, itself a digital message. Typical PKI achieves

this by having another authority vouchsafe for the certificate, through another dig-

ital signature of course, applied to B’s certificate; typically, this chain of verification

is carried higher and higher up a trust ladder up to the root of a trust tree. Fortu-

nately most of this verification need only be done once, prior to or concurrent with

the receipt of A’s first message from B. Once B’s certificate is authenticated it need

not be re-authenticated until it is revoked, or expires. This has obvious performance

advantages when B communicates frequently with A.
A number of digital certificates exist in S-BGP. One is issued by the authority

responsible for allocating IP address space. This is used to authenticate that an

AS (named in the certificate) has the authority to announce that it originates a prefix

(also named in the certificate). Another is issued by the authority responsible for

allocating AS numbers, binding organization names with AS numbers; yet another

is issued to bind a public key to an AS number, and still another authenticates a

given speaker to represent a given AS number, binding a public key to that autho-

rization. The public keys associated with this last type of certificate are the ones most
frequently used in the course of operations. Without going into detail, for the pur-

poses of optimizing route authentication we will assume––as in previous S-BGP

analyses––that all the keys necessary to support S-BGP can be distributed as needed

(and infrequently) to the speakers that need them.

Now consider how announced routes are authenticated. Each speaker has its own

key pair, and is able to obtain the public key of any other speaker. Without security,

a speaker si in Bi would forward to a speaker si�1 in Bi�1 an empty claim that a prefix

p in Bk is reached through a Bi � Bk path. Instead, speaker si performs a hash on the
sequence Bi�1;Bi; . . . ;Bk; p, signs that hash value using its private key, and appends

that signature to a list of such signatures generated by previous speakers on the AS

path. Speaker si sends the AS sequence and the signature sequence in one message to

si�1. This message (and the outer signature) means that si has a nice path to p via a

Biþ1 � Bk path, and is offering to extend this Bi � Bk path to Bi�1. The signature will
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be used to validate that si is the author of this message. The next inner signature at-

tests that siþ1 offered to extend the Biþ1 � Bk path to Bi; and so on.

Conversely, when si�1 receives this message, it can use si’s public key to verify that

si really appended itself to an AS path supposedly from siþ1, and that si authorizes
si�1 to use the extended AS path. Speaker si�1 can only accept the path supposedly

from siþ1 by using siþ1’s public key to verify that it did indeed append itself to a path

supposedly from siþ2. Speaker si�1 must then verify siþ2’s signature, and so on. 1 If all

the signatures verify, then si�1 can conclude that the path was was not forged, that at
least one point in time it was constructed legitimately under BGP rules.

Our work is motivated by the fact that when a speaker forwards an Update mes-

sage to a set of peers, each peer receives a slightly different message, therefore requir-

ing that each message be individually signed. Each such message contains the

identity of the receiver, because for any given Update the speaker may, or may

not include a given peer in the set of recipients. Failure to include the recipient’s

identity in the message leaves open the possibility of a ‘‘cut-and-paste’’ attack,

wherein the attack observes an Update message sent by si to a peer, and sends a copy
to another of si’s peers that was not in the recipient set.

Murphy [21,20] considers additional issues and countermeasures for net-

work-level integrity and replay attacks, such as using IPSec, and the MD5 option

on the TCP level [10]. The cascade of digital signatures in route announcements, cou-

pled with authentication of the binding between AS and prefix, is the centerpiece of

S-BGP, and is the object of our attention.
4. Cryptographic overhead

If we want to protect against a malicious router forging paths, but we do not want

to change the basic method that BGP routers use to distribute and accumulate path

information, then it would seem that the cascaded signatures used by S-BGP are

unavoidable. Each router in a claimed path must attest to its participation with a

digital signature. The question then arises of how much this security costs in terms

of performance.
RSA is the near-universal standard for public-key cryptography (although, for

many years, the US Government did not recognize it). In RSA, the key pair consists

of a pair of exponents and a large (typically 1024-bit) modulus. In a private-key

operation, we raise the input to the power of the private exponent, and reduce it

via the modulus; in the public-key operation, we use the public exponent.

The RSA key generation process lets us choose a value for one of the exponents;

since the time of an RSA operation is roughly proportional to the position of the

leading one in the exponent, we typically choose the public 2 exponent to be very
1 In S-BGP there is appended a short index to a certificate, assumed to be known to the recipient, that

binds speaker, AS and speaker’s public key. This certificate is used to identify the speaker’s AS and

validate that it is authorized to sign for that AS.
2 If we instead chose a small value for the private key, then it would be easy for the adversary to guess it.



194 D.M. Nicol et al. / Simulation Modelling Practice and Theory 12 (2004) 187–216
small (such as 17). Together, these properties enable signature verification in RSA to

be much quicker than signature generation.

Since RSA was patented, and since RSA could be used for encryption as well as

signatures, the US Government promulgated an alternative public-key scheme,

DSA, which could be used for signatures only. DSA does not share the property that

verifications are extremely quick.

In both RSA and DSA, special large integer parameters play important roles. The

security depends on the presumed intractibility of certain operations on these large
integers; consequently, the longer the integers, the more secure.

In both schemes, these parameters relate to a modulus whose length has practical

size impacts. First, the length of a signature will be the length of a fixed number of

integers between 0 and the modulus. Second, the maximum length of the message

operand is also the length of the modulus. Since messages in general will be much

longer, signature schemes in practice use cryptographic hash functions, as noted ear-

lier. A cryptographic hash function h transforms an arbitrary length message to a

fixed-length hash value, with the property that it is believed infeasible for an adver-
sary to calculate another message that transforms to that same value. For signatures

with hashing, one first hashes the message, and then uses public-key cryptography on

the hash value. Currently, the standard hash function is SHA-1, which generates

hash values 20 bytes long.

Currently, 1024-bits is considered the shortest reasonable modulus for RSA, giv-

ing 128 bytes as the signature length. 1024 bits is also considered the shortest reason-

able value for the p parameter in DSA, with a modulus of 160 bits and a signature

size of 40 bytes.
We benchmarked these operations by using the OpenSSL [1] library (version

0.9.6.d), on a 1 GHz PC running RedHat 7.2 Linux. We then normalized these fig-

ures for a CPU speed of 200 MHz, as the estimates we made for normal BGP Update

processing were taken from a router with that clock rate. The actual CPU speed in

our study is largely immaterial; we are interested in the relationship between num-

bers, not the numbers themselves. Furthermore, the assumed communication laten-

cies between speakers is not large enough to contribute greatly to simulation timing.

It is in theory possible to break up the DSA signature operation into two steps,
one of which may be done before the message to be signed is known. The require-

ments for this pre-computation include (naturally) that the pre-computed values be

saved in a secure fashion to reduce the potential for an adversary to use them to

forge signatures. Perhaps because of this, we were not able to find a public domain

crypto package that supports 3 pre-computation. Nevertheless, if a problem domain

is important enough it is reasonable to assume that the effort will be made to take

advantage of this feature. Correspondingly we decomposed and bench-marked the

OpenSSL implementation of DSA to measure signature times under the assumption
that pre-computation is employed. The cost of signing virtually disappears. Tables 1

and 2 show these results.
3 Crypto++ has an exponentiation trick it calls ‘‘pre-computation,’’ but this is not the same thing.



Table 1

Benchmarks for RSA and DSA algorithms, based on a 1024-bit RSA modulus and a 1024-bit DSA p
parameter

Operation type RSA

sign

RSA verify DSA sign (no p-c) DSA sign (p-c) DSA verify

Time (1 GHz) (ms) 10.0 0.5 5.1 0.003 6.2

Time (200 MHz) (ms) 50.0 2.5 25.5 0.015 31.0

Table 2

Benchmarks for SHA-1 operations

Data size (bytes) 1–56 57–64 65–120 121–128

SHA-1 time, 1 GHz (ls) 1.57 2.74 2.58 3.76

SHA-1 time, 200 MHz (ls) 7.87 13.71 12.90 18.82

The time needed for hashing is proportional to the length of the data size, stepping up linearly in

accordance with the SHA-1 construction.
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S-BGP uses DSA, because of its shorter key length, and the potential to exploit

pre-computation in the signature step [13]. The flip-side though is that verifications

take an order of magnitude longer in DSA than in RSA, and a path suffix is verified

potentially many times, while it is it signed but once. We will shortly revisit this

tradeoff.

The use of cryptography adds an overhead of CPU cycles for eachUpdatemessage,

both for verification and for signing. The values of Table 1 in the 200 MHz need to be

considered in light of measurements we made of Update processing costs on a BGP
speaker at Dartmouth College. 4 We observed Update costs ranging from 32.5 to

97.5 ms. Table 1 shows then that cryptographic overhead is very significant. Prior

work recognized this as a potential problem, and proposed somemethods for improve-

ment.Murphy [20] suggested limiting the number of signatures that need to be verified;

instead of verifying each signature in the path, only work on up to c signatures. This
limits the cost of verifying paths, but sacrifices some security. Other solutions involve

caching routes; we discuss those in more length in the following section.
5. Simulations

In order for us to evaluate the impact that Update processing under S-BGP might

have on convergence, we use simulation. The complexity of interactions in BGP

make it difficult to analytically predict the effect of cryptographic overhead on con-

vergence, the fact that convergence is a global property means that to measure it in

the wild one has to deploy S-BGP on a large scale. Simulation is the obvious––and
4 This device has a Cisco RSP4 processor of 200 MHz with 128MB memory. It runs Cisco IOS 12.2(3),

maintaining 5 configured peers. The routing table holds roughly 120,000 entries. This is a typical

configuration for a router at the edge of the network.
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only––tool for this kind of ‘‘what-if’’ problem. Our experiments use the SSFNet [3]

simulator, which has been used in a number of other BGP studies [17,6,22,36,19].

This simulator has a large number of options for configuring BGP behavior, and

we use the defaults, such as

• the policy for selecting a path is shortest-number-of-hops,

• no router is a reflector,

• no route aggregation is performed,
• default timer values are used. The most important of these for convergence studies

is MRAI.

Related BGP simulators include Genesis [31] and BGP++ [25]. Genesis is based

on SSFNet but uses an entirely different approach to management of synchroniza-

tion in a parallel/distributed context. BGP++ puts a simulation wrapper around

an actual BGP implementation, Zebra [12].

Our experiments were conducted on three topologies, representing 110, 512, and
715 ASes. The process we used to create the topology is more detailed than it is inter-

esting, the essential thing it strives to preserve is distribution of connectivity in the

interior of the Internet. We start with a large AS topology built from Internet mea-

surements, heuristically merge nodes to reduce the graph, then reduce the graph fur-

ther by randomly removing edges and retain the largest connected component, and

then merge low degree nodes some more. While admittedly heuristic, the graphs we

obtain share the heavy-tail-like distribution of connectivity seen in the real Internet.

The cummulative distribution function of our 715 AS model is illustrated in Fig. 1.
Here we see that while the maximum node degree is 164, the average degree is 7.6.

Indeed, nearly 80% of ASes have degree smaller than the average, while 10% have

degree larger than 20. The core of the Internet is a highly connected place.
Fig. 1. Degree distribution of 715 AS system.
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In our experiments every node represents an AS. We make the simplifying

assumption that each AS originates 2 prefixes and that each AS is represented by just

one BGP speaker. Nevertheless, these graphs will suit our purposes well enough. Our

objective is to determine whether (and under what conditions) route verification

might impact BGP convergence, and our topologies should give insight into that

question. Another objective is to see to what extent optimizations we design reduce

cryptographic overhead, and our topologies should tell us that too. They reflect the

connectivity of ASes at the core, they reveal the impact of their high load and high
degree of connectivity, and they serve to generate the density of alternative routes

that can stress BGP.

Our simulation model applies execution delays to Update processing at three dif-

ferent stages. First, every Update received by a router has a nominal service time

sampled uniformly between 32.5 and 97.5 ms. This range is based on measurements

taken on a local BGP router, with a 200 MHz CPU clock. Route filtering and route

selection are functions whose execution costs are included in this delay. Another exe-

cution delay for verification follows, if and only if the route is chosen as the basis for
an announcement. Thus all of our experiments verify only those routes which must be

verified. Following this delay, if an announcement is to be made, a set of Updatemes-

sages for the router’s peers are generated and placed in an output buffer. The cost of

generating digital signatures for these is incurred at this point. The messages are sent

after they are signed, and when the MRAI timer permits.

We designed a set of experiments on the 110 AS model to examine convergence

under S-BGP as a function of BGP load intensity. In one scenario we measure the

time required for routes to a newly announced prefix to completely propagate
through the network. The originating router announces its two prefixes to its peers,

at a time when no router has an entry in its forwarding tables for either prefix. The

announcement wave that follows establishes, at every router, routes to these prefixes.

In a second scenario we model a router rebooting after a crash, and measure the time

needed for all routes to all prefixes to converge. The volume of workload is much

higher, because a rebooting router will get table dumps––an announcement for each

prefix, from each of its peers. It will announce its own preferences for prefixes as it

processes all of these Updates. In addition, the rebooting router announces its own
two prefixes, which thus entails all of the work involved in the first scenario as well.

In both scenarios we initiate the experiment at three different routers: the one with

highest connection (24), one with median connection (6), and one with smallest con-

nection (2). We ran each of the six resulting experiments twenty times, and compute

the mean values of a variety of measures. The ratio of standard deviation to mean is

less than 5% throughout, and so for our purposes it suffices to report the means.

For each experiment we report the number of route announcements, the number

of Update messages (a count that includes withdrawals), the number of times a sig-
nature was verified, the number of times a signature was generated, the sum over all

routers of the CPU time allocated to nominal Update processing, the sum over all

routers of the CPU time spent in cryptographic related activities, and the conver-

gence time. For S-BGP we considered DSA with pre-computation support for signa-

tures (pDSA), and ordinary DSA.



Table 3

Single prefix insertion experiment

Protocol #Anns. #Updates #verif. #sigs. base

CPU (s)

crypto

CPU (s)

Conver-

gence (s)

24-Peer Route Announces

BGP 578.8 649.6 42.5 74.0

S-BGP (pDSA) 584.8 651.7 942.4 560.8 42.2 29.2 74.3

S-BGP (DSA) 582.7 649.7 947.2 558.7 42.5 43.6 74.3

6-Peer Router Announces

BGP 633.5 731.4 47.7 81.5

S-BGP (pDSA) 599.6 685.9 1321.4 593.6 44.4 40.9 81.5

S-BGP (DSA) 610.3 703.2 1383.0 604.3 45.6 58.2 81.0

2-Peer Router Announces

BGP 653.7 763.0 49.5 87.9

S-BGP (pDSA) 644.0 745.8 1660.8 642.0 48.4 51.5 86.8

S-BGP (DSA) 647.6 750.0 1654.4 645.6 48.7 67.7 87.9

pDSA denotes DSA with aggressive pre-computation.

5 The seeming inversion of BGP and S-BGP convergence values in the 2-Peer subtable is not statistically

significant. The two values involved, 87.9 and 86.8, are within each other’s 95% confidence intervals.
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Cryptography does not not affect convergence in these experiments, as seen in Ta-

ble 3, despite the fact that cryptography increases the cost of processing an Update

by 50–140%, depending on cryptography used, and connectivity of the announcing

router. 5 In this case route propagation is limited by the MRAI timers, rather than

the Update processing time.

Connectivity reflects how close a node is to the center of the graph. Convergence
time increases as connectivity decreases because the AS paths involved are longer.

DSA cryptography costs increase with decreasing connectivity for the same reason.

Things are more interesting when we consider convergence under the high load

induced by a rebooting router, shown in Table 4. Here we also include experiments

that assume RSA is used.

One worry might be that in this scenario convergence time is nothing more than

the time the rebooting router needs to process the table dumps it gets from its peers.

There are 218 prefixes that originate in other ASes, and each peer reports its path to
each. This means that the highly connected router receives 24 · 218¼ 5232 Updates;

with an average of 65 ms. nominal processing per update, it takes 340 s (of the 472 s

convergence time) to work through the table dumps; in the medium connected case it

takes 85 of 150 s, in the least connected case it takes 28 of 100 s. Table dump pro-

cessing is an important component of convergence time, but is not the only

component.

To understand this table it is helpful to consider a simple model of the cost of pro-

cessing a received Update message:
F þ Prfroute preferredg � ðL � Cv þ Np � CsÞ



Table 4

Simulated behavior of rebooting convergence experiment

Protocol #Anns. #Updates #verif. #sigs. base

CPU (s)

crypto

CPU (s)

Conver-

gence (s)

24-Peer Router Reboots

BGP 28559.3 33220.5 2157.3 472.4

S-BGP (pDSA) 29324.0 34044.9 52626.8 29420.0 2212.3 1632.4 629.9

S-BGP (DSA) 29711.9 34438.8 52870.0 29807.9 2238.2 2399.6 799.3

S-BGP (RSA) 29061.5 33766.6 52194.6 29157.5 2194.0 2707.2 793.4

6-Peer Router Reboots

BGP 4182.4 4760.8 309.4 150.9

S-BGP (pDSA) 4214.0 4802.7 7263.0 4238.0 311.9 225.3 232.6

S-BGP (DSA) 4251.3 4843.3 7309.8 4275.3 314.7 335.7 261.3

S-BGP (RSA) 4249.7 4855.4 7423.0 4273.7 315.6 232.2 199.5

2-Peer Router Reboots

BGP 1950.3 2266.5 147.1 110.2

S-BGP (pDSA) 1955.9 2280.5 1494.9 512.7 148.1 59.7 112.6

S-BGP (DSA) 1983.9 2308.5 5389.8 1991.9 150.1 167.1 115.3

S-BGP (RSA) 1964.9 2277.4 5208.4 1972.9 147.8 111.6 115.0

pDSA uses aggressive pre-computation for signatures; DSA does not. We also simulated S-BGP with

RSA, for comparison.
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where F is a fixed cost, L is length of the AS path, Cv is the cost of verifying a

signature, Prfroute preferredg is the probability that the Update reports an AS path

that the recipient prefers, Np is the number of peers receiving the resulting Update,

and Cs is the cost of signing that Update. For pDSA Cs is cheap but Cv is expensive;

for RSA the roles are reversed. DSA’s value for Cs is much more significant than

pDSA’s. Thus for pDSA the term Prfroute preferredg � L � Cv is the critical added

cost, while for RSA it is Prfroute preferredg � Np � Cs.

We see that in the highly connected router experiments, RSA’s crypto costs are
much larger, and convergence time is much longer than ordinary BGP. The same

is true for ordinary DSA. In the medium connected case, far fewer peers are sent

Updates when a new route is advertised. This significantly reduces the average cost

of processing an Update using RSA. The impact of pDSA and DSA on convergence

is still notable. However, convergence is hardly affected by cryptography in the low

connectivity case.

Our data suggests that under high load, cryptographic operations can degrade

BGP convergence. This observation is consistent with the experiments by Premore
and Griffin [6] who observed that convergence time tends to increase as the cost of

processing anUpdate increases. Our model of increased costs is somewhat more com-

plex than theirs, but the result seems to hold at high load. Crypto’s extra

computational load affects convergence when the network can least afford degrada-

tion––under high load, such as has been induced during worm attacks or route flap-

ping. This concern is echoed in [13], where a number of options for caching are

suggested:
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• Cache validated routes on received Update messages, to avoid the cost of re-val-

idation.

• Cache signed Updates sent to peers, to avoid the cost of re-signing a previously

announced route.

• Save these caches in non-volatile memory, to avoid the overwhelming cost of ver-

ifying announcements at reboot.

To this list we add the idea of caching individual AS Path suffixes (as opposed to
just route announcements), which would allow efficient verification of a route

announcement that has not been seen before, but for which a route with a common

suffix has.

The degree to which such caching is practical, or effective (in the case of caches

too small to remember every route or suffix) depends a great deal on available mem-

ory, and traffic patterns. To get some feeling for the demands on such a system, we

analyzed a BGP announcement feed from a RIPE [2] monitor (peer rrc00) for the

entire month of March 2002. We observed 2,092,981 unique suffixes, and
1,143,903 unique routes. S-BGP already exerts a heavy memory footprint, as it needs

to store extracts of certificates; we would like to avoid exacerbating additional mem-

ory demands. Nevertheless, for the purposes of finding an upper bound on network

performance we ran the rebooting experiments under the assumption that all of the

caching mentioned above is in effect. These results are shown in Table 5. We report

again the ordinary BGP behavior, for reference. We use the prefix ‘c’ to remind us

that caching is assumed.

Under these idyllic conditions, the volume of cryptographic overhead is dramat-
ically reduced over that of Table 4, where caching is not assumed. The very interest-

ing fact though is that this massive reduction had a comparatively smaller impact on

convergence time. The increase in convergence using cDSA or RSA is still large.

However, it stands to reason that if a router can remember every route, then if we
Table 5

Rebooting convergence experiment

Protocol #Anns. #Updates #verif. #sigs. base

CPU (s)

crypto

CPU (s)

Conver-

gence (s)

24-Peer Router Reboots

BGP 28559.3 33220.5 2157.3 472.4

S-BGP (cpDSA) 29063.1 33754.7 3997.5 9537.4 2193.7 127.3 496.1

S-BGP (cDSA) 28900.8 33560.0 3383.6 9063.5 2180.6 339.2 648.7

S-BGP (cRSA) 29069.9 33750.8 3098.1 8961.9 2191.5 459.5 782.6

6-Peer Router Reboots

BGP 4182.4 4760.8 309.4 150.9

S-BGP (cpDSA) 4230.5 4825.9 1846.5 1551.9 313.3 57.7 180.6

S-BGP (cDSA) 4210.5 4791.3 932.6 1535.5 311.4 68.5 187.0

S-BGP (cRSA) 4229.8 4828.3 1844.9 1572.2 313.8 83.8 201.1

cpDSA uses aggressive pre-computation for signatures and aggressive caching; cDSA uses standard DSA

and aggressive caching; cRSA uses standard RSA and aggressive caching.



D.M. Nicol et al. / Simulation Modelling Practice and Theory 12 (2004) 187–216 201
run the simulation long enough every route will have been seen and no further cryp-

tography need be done, so there is a limit to what we can infer from this experiment.

A real study of caching performance is beyond the scope of this paper.

Despite the limitations of simulation, we believe one can conclude from our exper-

iments that if routes (and suffixes) are not cached, then under high load and signif-

icant connectivity, the cryptographic overhead of securing route announcements can

adversely affect BGP convergence. Whether optimizations such as caching and DSA

pre-computation can avert that threat is an open question whose answer may not be
known until actual deployment. In the following section we propose an optimization

that offers the hope of achieving nearly the convergence of ordinary BGP, but with-

out the overhead and uncertainty of caching.
6. Signature amortization

Questions related to reducing the cost of cryptography in the routing context have
been raised before, e.g. [9,35]. Such methods typically work to reduce the cost by

reducing the dependence on public-key methods, i.e. develop different ways of

authentication. As useful as line of approach like these may be, there are real diffi-

culties in applying those methods in BGP. The approach we explore is to do expen-

sive private-key operations less often, amortizing that cost over multiple messages.

As we have seen, the most significant drawback of DSA is its high validation cost.

If we eschew caching, then we cannot escape validating every path suffix when we

validate an AS path. From this point of view RSA is more attractive, because its val-
idation cost is (by our measurements) 12.5 times faster. Where RSA fails us in this

context is the high cost of signing every Update.

Recall the reason for the signature explosion: when a speaker makes an announce-

ment, it makes it to multiple peers (potentially). In BGP the messages to peers are

identical; in S-BGP they are not. Security requires that the recipient be named and

be part of the message that is signed. Thus, at first glance, every message must be

signed individually.

6.1. Amortization across peers

Let us take a second glance and ask ourselves whether there is not a way to

achieve the same security. There is a disarmingly simple solution. Suppose that a

speaker logically enumerates its peers with indexes ranging from 0 to the maximum

number of peers, N . In practice N < 64. A speaker can thus use a bit-vector, N bits

long, to describe any subset of its peers. The idea then is to have a speaker create a

bit-vector that describes the full set of peers filtered to receive an Update, put the bit-
vector in the message rather than the recipient’s identity, and sign the message. This

one message can be sent to all the peers, and only one new signature is involved. If a

speaker knows its logical position in a peer’s enumeration, it can validate that an

Update was intended for it by simply checking whether its bit is set. We call this

optimization Signature-Amortization (S-A).
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The only issue left is determining how a speaker learns its logical identity in each

of its peer’s enumerations, and how it can prove this identity to its relying parties. A

direct solution involves PKI certificates. Recall that in the S-BGP framework a

speaker acquires the certificate of each peer, principally to obtain its public key. Cer-

tificate formats are general enough that we can require that a speaker’s certificate

name each of the speaker’s peers (e.g., in an extension). We simply require that this

naming include the enumeration.

For a speaker si to prove that it was a recipient of an update from siþ1, it would
need to show that si is the kth peer of siþ1, where the kth bit in the vector (signed

with the update) was set. But if this ðk; siÞ pair is in siþ1’s certificate, then attesta-

tion of this information is already available to any party that can verify the

signature.

This solution does require generation of new certificates when peers change, but

that is a relatively infrequent event. As described it does have the vulnerability that

one of si’s peers can determine from certificates and bit vectors who other of si’s
peers may be. This vulnerability, and a dependence on certificates could be addressed
by other methods that involve direct communication between peers.

Amortization of the same message to multiple peers will have the biggest impact––

obviously––at a highly connected router. Most routers do not have the connectivity

found in Tier 1 ASes, and so we ask whether it is possible to find another way of

amortizing a private-key signing. The solution is to aggregate the signature on all

messages in all buffers, while the router awaits the firing of a MRAI timer.

6.2. Amortization across output buffers

We can adapt the hash tree techniques of [18,24] to this problem. Operationally

what we do is to tag Update messages that are going into an output buffer as being

‘‘unsigned’’. These messages will contain bit-vectors, reflecting a cross-peer aggrega-

tion that we continue to exploit. We delay actual signature until the message is free

to be transmitted––either immediately, or (if it must wait for its MRAI timer to fire)

when any one of the MRAI timers fires. At that point we ‘‘sign’’ all of the messages in

all of the buffers that are tagged as ‘‘unsigned’’, and change the tag in each. The mes-
sages that are released by the MRAI timer are sent (possibly leaving some signed

messages in other buffers, but they will not be signed again). The advantage to the

hash-tree method is that we can sign all of these messages using just one expensive

private-key operation. (The advantage to also using bit-vectors is that the hash-tree

need be built using only one representative of the group of Updates resulting from

the same announcement.)

More generally, given a set M of messages, our goal is to produce a signature for

each one, that has the same properties as traditional signatures: e.g., sðmÞ is a detach-
able blob matching m, that could only have been produced when A intended to sign

m, and that can be verified using m, sðmÞ, and knowledge of A’s public key (and, in

particular, not requiring some other set of previous signatures). However, we want to

minimize the number of private key operations necessary to go from M to

fhm; sðmÞijm 2 Mg.
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Let h be a sufficiently strong cryptographic hash function; let � denote concatena-

tion; let L;R denote a simple encoding of ‘‘left’’ and ‘‘right’’, and let pk_sign and

pk_verify be some standard public-key signature scheme. Suppose M consisted of

2 different messages, mL and mR; then we could apply the private key to obtain
S ¼ pk signðhðhðmLÞ � hðmRÞÞÞ

We could then use S � hðmRÞ � R as the signature on mL; verification consists of

hashing the message, concatenating hðmRÞ on the right, hashing the result, and

verifying that S is the public-key signature. In general, for a set of 2k messages, we

could sign them by building a binary tree of depth k and doing a private-key

operation on the root; the ‘‘signature’’ of any given message consists of the private-

key signature of the root, along with the path from that message to the root, specified

via k pairs of hashes and L;R values.

More formally, for a set m1; . . . ;mK of messages, we define a hash tree of this set to
be a (directed) binary tree with K leaves. We label each leaf with an hðmiÞ; if an inte-

rior node has children labeled NL and NR, then we label that node with hðNL � NRÞ.
Let Rootðm1; . . . ;mKÞ be the label on the root of such a tree.

If r labels the root of the tree and N is the label on some node, we define the

RouteðN ; rÞ––the route of N to r––as follows: If N ¼ r, then RouteðN ; rÞ ¼ ; (trivi-

ally––we’re already there).

Otherwise, N must be an interior node. Let Ns be its sibling and Np be its parent.

We then define the remaining cases:
RouteðN ; rÞ ¼ ðNs;RÞ;RouteðNp; rÞ if N is the left child

ðNs; LÞ;RouteðNp; rÞ if N is the right child

�

The intuition here is that ðNs;RÞ describes a step in the path: ‘‘concatenate Ns to the

right of the current hash value, hash that pair, and keep going.’’

With these definitions, we can define the signature for a message mi with a bit vec-

tor V , using a tuple of values. The first value is
pk signðRootðm1; . . . ;mKÞÞ;

a digital signature on the root of the hash tree. The remaining values are the bit
vector V and the list

The remaining values are the list
RouteðhðmiÞ;Rootðm1; . . . ;mKÞÞ;

which describes the route from hðmiÞ at a tree leaf to the root, including the hash

values needed at every level of the tree to reconstruct Rootðm1; . . . ;mKÞ. Validation of

this signature is tantamount to doing exactly that––use the path information to
reconstruct Rootðm1; . . . ;mKÞ, and verify that that is what the speaker for Bi signed.

Observe that of all the messages in the buffers that result from the same

announcement, each receives the same signature, and only one instance of that

common message is used to build the hash-tree.

Fig. 2 illustrates these ideas with a simple example. At the time an MRAI timer

fires, a router has unsigned messages for two peers, in two different buffers. A hash



Fig. 2. Illustration of hash-tree, and associated fields sent with m3, and recomputed by m3’s recipient.
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tree is built, the leaves of which are hashes on the individual messages. The value as-

signed to an interior node is the hash of the concatenation of the values of its chil-
dren. The figure illustrates what accompanies m3 when it is sent (in addition to an

indexing code which identifies the position of hðm3Þ in the tree) and the values that

are recomputed by the receiver. The basic idea is that the receiver recompute all the

values on nodes on the path from the message’s place in the leaves to the root, and

that the message contain all the ‘‘extra’’ hash information needed to support those

computations. The receiver then verifies that the root value it reconstructed is the

root value that was signed. It is clear then that the amount of information compris-

ing a signature grows logarithmically in the size of the tree, as does the work of ver-
ifying the message.

6.3. Performance

We have identified two ways of amortizing the cost of a private-key signature for

BGP announcement processing. We call this Signature-Amortization (S-A). If we

couple this technique with RSA, we obtain the benefits of fast verification, with

the advantage of reduced signing cost. Table 6 shows this, where for reference we
include the behavior of ordinary BGP and of the highly optimized cpDSA approach.

S-A-P reflects the behavior when the signature is amortized only over the peers, S-

A-B reflects the behavior when the signature is amortized over buffers.

Now we see that the impact that RSA has on convergence is small. In the case of

the highly connected router, this small device reduces the fraction of overall process-

ing time dedicated to crypto from 55% to 16%, with a reduction of convergence time

from 168% of BGP’s to just 105% of it. It is interesting to observe that amortizing

over buffers and peers is not appreciatively better than amortizing over peers alone.
It turns out that in these experiments the average size of the hash tree is pretty

small––less than 2.5 in both cases, while the average size of a peer set is 7.3 in the



Table 6

Rebooting convergence experiment

Protocol #Anns. #Updates #verif. #sigs. base

CPU (s)

crypto

CPU (s)

Conver-

gence (s)

24-Peer Router Reboots

BGP 28559.3 33220.5 2157.3 472.4

S-BGP (cpDSA) 29063.1 33754.7 3997.5 9537.4 2193.7 127.3 496.1

S-A-P (RSA) 28731.9 33392.4 51584.4 5840.3 2170.9 420.9 497.2

S-A-B (RSA) 28595.1 33252.8 51385.6 4342.8 2160.6 345.8 493.2

6-Peer Router Reboots

BGP 4182.4 4760.8 309.4 150.9

S-BGP (cpDSA) 4230.5 4825.9 1846.5 1551.9 313.3 57.7 180.6

S-A-P (RSA) 4269.0 4857.9 7356.8 981.3 315.8 67.4 164.4

S-A-B (RSA) 4243.3 4833.3 7283.0 905.7 313.9 63.5 162.7

S-A-P uses signature amortization across peers: we sign common messages resulting from the same Update

message only once. S-A-B also uses signature amortization across buffers: we build a hash-tree on mes

sages in buffers awaiting release by MRAI timers.
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highly connected case, and 5.8 in the medium connected case. It is not difficult to

imagine situations where the hash-trees will be larger though. The value of the

MRAI timer is pretty standard, and does not seem to be changing in practice while

routers get faster. So, for example, if a router had a 1 GHz CPU rather than the 200

MHz CPU we assume, the potential exists for buffers to have 5 times more messages

in them when MRAI timers fire, because the CPU can move them there that much

faster.
Of course, the most significant aspect of these results is that signature aggregation

appears to deliver the same––or better––convergence as does the highly optimized

S-BGP, but without pre-computation, and without caching.

The additional memory demands of S-A include an 88-byte increment per AS in a

path for using RSA rather than DSA, and 20 logK more bytes per AS for a hash-tree

of height K. Based on a 4096 byte limit on Update size, there is still ample room for

our more complex signatures. Our calculations (based on the analysis in [13]) is that

if the average hash-tree is built on as many as 32 messages, 21 ASes can still fit in on
Update message. Should the 4096 byte barrier be immutable, one could alter the

hash-tree amortization to trigger as soon as the number of unsigned messages

reached a threshold value. For aggregation across peers, the added cost of the bit-

vector is inconsequential, and in any case can replace explicit identification of the

recipient.
7. Parallelization

The topology of the 110 AS model studied in the previous section models the con-

nectivity of the Internet in and near the core. However, the diameter (longest shortest

path between any two ASes) is 5 hops, which is quite a bit shorter than typical paths

in the Internet. This model cannot be expected to capture convergence effects in the
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Internet due to path distance. Because of the rate-limiting accomplished by the

MRAI timer, (30 s per hop), distance effects could be significant. However, in order

to retain the connectivity structure of the Internet and better reflect path-length

effects, we need to run experiments on larger models.

SSFNet’s BGP simulator provides a highly detailed model of BGP operations. In

particular, every BGP speaker contains a forwarding table unique to it, capable in

principle of routing to any advertised prefix in the entire model. Furthermore,

BGP calls for a router to retain the last path advertised to every prefix, by every
one of a router’s peers. Consequently the number of AS paths the simulator must

retain as state is proportional to the product of the number of routers, the number

of unique prefixes, and the average number of peers per router. As we increase the

size of models simulated by increasing ASes, we increase both the number of routers

and the number of prefixes (because new ASes advertise new prefixes), and we tend

to increase the average AS path length (thereby increasing the storage needed per AS

path). Furthermore, the means by which we increase model size tends to increase

connectivity as well. Consequently the memory demands on our simulator grow
by more than a square in the number of ASes modeled. It is well known that virtual

memory is not an effective way to increase the size of simulation models, as discrete-

event simulations lack the locality of reference upon which virtual memory depends.

Other means are needed.

One way of acquiring a large memory space is to run the simulation on a distrib-

uted memory parallel computer. We have recently completed an implementation of

the SSFNet simulator that runs on such platforms. We used this implementation to

study SBGP and S-A on a model with with 512 ASes, and another with 715 ASes.
The experiments already reported on the 110 AS model looked at convergence

when a single router reboots. In order to explore the impact of cryptographic over-

head in other contexts, we developed experiments that cause a set of sessions to fail

within a 60-s interval. Routers themselves do not fail, only connections between rou-

ters. Failure of a session will cause both endpoints to advertise new paths to any pre-

fixes whose previously announced paths used that session; recovery of the session can

cause another wave of advertisements that effectively restore the paths lost when the

session failed. In our experiments we randomly choose a set of sessions, and failed
them at scattered times in a 60-s window (after all startup advertisements have con-

verged). Roughly 30% of all sessions are reset. This experiment models situations

where abrupt congestion in a network affects the TCP sessions between routers that

do not have physical connections (such as in a peering hotel).

7.1. BGP convergence

Table 7 presents the results from the larger runs, using the same notation as em-
ployed for the 110 AS model experiments.

Notable points in these data include

• The added processing delays of S-BGP increases the number of announcements

and updates over ordinary BGP, while acceleration methods (S-BGP with cach-



Table 7

Reset sessions convergence experiment

Protocol #Anns. #Updates #verif. #sigs. base

CPU (s)

crypto

CPU (s)

Conver-

gence (s)

512 ASes, session drops

BGP 1779K 2043K 132,805 1538

S-BGP (DSA) 1851K 2213K 13,806K 1918K 143,873 428,135 4638

S-BGP (cpDSA) 1740K 2013K 4109K 1728K 130,898 128,090 1848

S-A-B (RSA) 1801K 2068K 13,534K 36K 13,4457 35,722 1729

512 ASes, session returns

BGP 1261K 1276K 80,962 1155

S-BGP (DSA) 1315K 1328K 6536K 1423K 85,420 20,1739 3008

S-BGP (cpDSA) 1323K 1335K 785K 397K 85,926 24,526 1232

S-A-B (RSA) 1247K 1263K 6166K 26K 80,666 16,663 1256

715 ASes, session drops

BGP 5982K 7102K 461,643 3077

S-BGP (DSA) 10,171K 11,899K 93,187K 11,094K 773,446 288,9687 9996

S-BGP (cpDSA) 6193K 7354K 13,552K 5913K 478,024 422,617 4741

S-A-B (RSA) 6649K 7997K 60,547K 123K 519,835 157,852 4503

715 ASes, Session Returns

BGP 1808K 1816K 117951 1629

S-BGP (DSA) 2347K 2652K 18,395K 1907K 171,839 569,645 4988

S-BGP (cpDSA) 1855K 1863K 729K 356K 121,139 22,971 1610

S-A-B (RSA) 1755K 1764K 8378K 30K 114,161 22,469 1583

S-BGP DSAd uses standard S-BGP with DSA; cpDSA uses S-BGP with aggressive DSA pre-computation

and aggressive caching. S-A-B uses RSA and signature amortization across peers and buffers.
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ing, and S-A) have announcement and update counts that are much closer to

BGP’s.

• The raw convergence time increases with model size.

• The relative differential between BGP and S-BGP convergence times increases

with model size.

These tendencies might have been anticipated without resorting to the simulation.

However, the magnitude of the relative differences would not have been, nor the
magnitude of the convergence times that result from these experiments. A 10K sec-

ond convergence time (715 ASes, S-BGP) is nearly 3 h––that is a significant finding

that one would have difficulty predicting without using simulation. It is a finding that

could be obtained only by exploiting the large memory resource of a distributed

memory multiprocessor.
7.2. Parallel performance

The large-scale experiments just reported were conducted on a distributed mem-

ory cluster, using 4–16 nodes, with two 2.8 GHz CPUs and 4Gb memory on each



208 D.M. Nicol et al. / Simulation Modelling Practice and Theory 12 (2004) 187–216
node. We evaluate performance by dividing the AS network into 32 ‘‘timelines’’

(threads that coordinate in simulation time with each other), and considering per-

node performance on 4, 8, and 16 nodes, where nodes simulate (respectively) 8, 4,

and 2 timelines each. The AS graph is divided somewhat evenly among the 32 tim-

elines, although it is very difficult to balance workload precisely because the work-

load is so dynamic.

This implementation of SSFNet synchronizes timelines by imposing a barrier syn-

chronization every D units of simulation time, where D is the smallest latency delay
on any communication between any two timelines. D ¼ 200 ms in these experiments.

The current distributed memory implementation of SSFNet uses Java’s sockets for

all communication. This is an inherently non-scalable approach, because a socket

connection must be established between every unique pair of timelines. Future re-

leases of the package will offer improvements that employ faster non-socket commu-

nication mechanisms.

Fig. 3 illustrates the distribution of time in a 512 AS experiment between three

activities. ‘‘send’’ reflects time spent sending messages between nodes, ‘‘sync’’ reflects
time spent at a barrier synchronization at the end of a synchronization step, and

‘‘exc’’ reflects everything else, presumably model execution time. We do not see much

speedup going from 4 to 16 nodes, the overall execution time drops from just under

1200–800 s. Two factors seem to dominate these performance results. One is load

imbalance, evidenced by variation in the fraction of running time allocated to

‘‘exc’’. This is more explicitly illustrated in Fig. 4, where for each node we plot the

number of events executed by the node by the average number of events executed

by a node. A value of 1.0 means the node hits perfect balance. In the 16 node exper-
iment node 8 is 28% underloaded, while node 4 is 38% overloaded. One of the chal-

lenges of load-balancing for a problem like this is that the location of the workload is

highly variable, and largely unpredictable. A second factor degrading performance is

that synchronization overhead per node tends to go up as we increase the number of

nodes. This is to be expected, however this cost is exacerbated by our reliance on

sockets. The combination of decreasing workload per node with increasing synchro-

nization cost means that performance gains of distributing workload are significantly

diminished.
The memory required for the 512 AS experiments is a little over 4Gb in total, or

just 1Gb per node on the 4 node runs and 250Mb per node on the 16 node runs. It is

possible to equip a desktop computer with this much memory, although that is

costly. Experiments on the 715 AS model use over 10Gb; it is again possible (but

unusual) to equip a single CPU with this much memory. Our attempts to evaluate

an 830 AS model on 16 nodes encountered memory problems, solved simply by using

more nodes in the cluster. In this region of model space we clearly encounter the size

limitations imposed by faithful replication of BGP state data on every BGP speaker.
However, the ability of SSFNet to use multiple computer’s memories on a single

problem opens the way to run experiments on much larger models than are possible

using a normal desktop computers.
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Fig. 3. Distribution of execution time in parallel simulation of 512 AS network.
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8. Reflections

The real BGP routing infrastructure is enormous, and our simulations have had

to make a number of simplifying assumptions. It is therefore important to reflect on

how the differences in assumed models and real systems might affect the results.

A very useful aid for reasoning about what is going on is the graph shown in Fig. 5.

This captures the sense of observations others have made [23] on how convergence

(the y-axis) behaves as a function of the default MRAI timer (x-axis). For the first part
of the curve it is decreasing convex, after which it becomes increasing and linear. The

graph is understood if one thinks of BGP announcements as arriving in ‘‘waves’’, the

release of which is governed by the MRAI timer. When the timer is so large that all

the announcements in a wave are processed before the timer fires again, then the

growth of convergence time is linear in the MRAI value because between waves

the system is simply waiting for the ‘‘go’’ signal to release the next wave. This is

the second part of the curve. The first part of the curve is explained by the realization

that holding announcements back allows for a ‘‘better’’ new announcement for a pre-
fix to overwrite a buffered-but-as-yet-unreleased suboptimal one. As the MRAI timer

decreases in length, the chance increases that multiple updates for the same prefix are

released, and generate more work. The convergence time is larger for small MRAI

values, because there are more announcements being processed.

Understanding this leads us to the curve shown in Fig. 6. The y-axis is as before;
the x-axis is something like router utilization. Recalling our notion of a wave of

announcements (when the MRAI is large enough to cause each router to idle be-

tween waves), we divide the amount of computational work in a wave by the MRAI
value, assumed in this graph to be fixed. Value 1 (or 100%) is saturation. Prior to

saturation the convergence time is unaffected by workload, because it is defined by

the MRAI value––this corresponds to the increasing linear portion of the curve in

Fig. 5. The curve beyond the saturation point corresponds to the convex part of
Fig. 5. Convergence time as a function of MRAI value.



Fig. 6. Convergence time as a function of router workload.
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Fig. 5, but in reverse. The insight is that in saturation conditions it is equivalent to

talk in terms of decreasing MRAI and increasing workload per announcement––it is

merely a matter of selecting measurement units.

With this understanding we can analyze the impact that our model assumptions

have on the comparison of BGP, S-A, and S-BGP. The key is to see that our simpli-

fications uniformly underestimate the amount of work done by a router per wave.

Larger networks will have longer AS paths and higher average connectivity. Both
factors increase cryptographic workload processing, in the former case because ver-

ification costs increase linearly in the AS path length, and in the latter case because

signature costs (in S-BGP) increase linearly in the number of peers receiving an

Update. Our assumption of two announced prefixes per AS underestimates the num-

ber of Updates processed per wave in the real Internet. Let u0, u1 and u2 be the values
on Fig. 6 corresponding (respectively) to BGP, S-A, and S-BGP in a simulation run,

and let u00, u
0
1 and u02 denote the same values in the real Internet. Let c be the function

name. We want to know how the different approaches compare in the real Internet,
with respect to the comparison in our simulations: how does cðu01Þ � cðu00Þ compare

with cðu1Þ � cðu0Þ, cðu02Þ � cðu01Þ compare with cðu2Þ � cðu1Þ, and cðu02Þ � cðu00Þ com-

pare with cðu2Þ � cðu0Þ?
The first thing we notice is that any increase in workload for the pure BGP case is

inherited by both other cases––if BGP’s workload increases by a factor of a > 1,

then S-A’s and S-BGP’s workload increases by factors at least as large as a. This im-

plies that u00 � u0 6 u01 � u1 and u00 � u0 6 u02 � u2. Thus, because c is increasing con-

vex, its derivative _c is positive and increasing, which implies that
cðu1Þ � cðu0Þ ¼
Z u1

u0

_cðsÞds6
Z au1

au0

_cðsÞds ¼
Z au1

u0
0

_cðsÞds6
Z u0

1

u0
0

_cðsÞds

¼ cðu0 Þ � cðu0 Þ:
1 0
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The derivation for cðu2Þ � cðu0Þ is identical. It follows that the raw increase in

convergence time due to cryptographic overhead suggested by our simulations will

be even larger in the actual Internet.

It is also useful to consider the comparison of S-A and S-BGP. Compared to the

cost of a signature, the added complexity of verifying a signature with S-A schemes is

small. On the other hand, the real Internet will have larger peer groups than do our

simulations, hence S-BGP will be adding signature costs that S-A avoids. This im-

plies that if u01 is larger than u1 by a factor of b, then u02 is larger than u2 by a factor
at least as large as b. A derivation identical to the one above then shows that

cðu2Þ � cðu1Þ6 cðu02Þ � cðu01Þ, which is to say that in the real Internet the S-A optimi-

zations will be even more effective than our simulations suggest.
9. Conclusions

The Border Gateway Protocol is the glue of the Internet, but it is vulnerable to
attack. Public-key cryptography can help protect it, but is computationally expensive

and may impact network performance. We ask whether the route validation tech-

nique in S-BGP can affect BGP convergence. Using a detailed simulation model,

we find that the answer is ‘‘yes’’, when the BGP processing load is high in a router

that has many peers.

Minimizing performance impact of standard S-BGP requires caching and pre-

computation, which create implementation difficulties. Pre-computation requires

maintenance of a protected cache of pre-computed values. Furthermore, one needs
the cache the most, when the ability to replenish it is least––when a router has a

heavy load of Updates. We considered very aggressive caching strategies for S-

BGP, and assumed that once a route was seen, it was remembered forever. Under

these assumptions we see that S-BGP convergence is close to that ordinary BGP.

However, the effectiveness any real caching strategy depends heavily on the pattern

of traffic, on the replacement policy, and on the amount of memory available for the

cache. Our simulations suggest that S-BGP, as proposed, has to find effective solu-

tions to the caching and pre-computation problems.
We approach the problem differently. We notice that RSA has a much lower val-

idation cost than DSA, but that its signing cost is overwhelming. We develop meth-

ods for amortizing that expensive private-key signature over many updates. Our

simulations show that by basing the cryptography on RSA and amortizing the sig-

nature cost, BGP convergence is as good or better than the highly optimized S-BGP

solution––but without the complications, uncertainties, and risks of that solution. It

is possible therefore to minimize the impact route validation has on convergence,

simply by being careful with signatures.
Another approach to reducing cryptographic costs might be to sprinkle trusted

witnesses throughout the net. These witnesses could verify the cascaded signatures

on a path, then replace this cascade with a single signed assertion, and possibly apply

even more amortization there. In 1994, [29] suggested using secure coprocessor hard-

ware to implement such witnesses for a different type of multiparty hearsay; since
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1997, strong programmable secure coprocessor platforms have been available as

COTS products [30]. We also plan to explore the performance impacts of this

approach on large systems, using simulation. On a different note, recent work [11]

explores new schemes for securing routing information based on symmetric crypto-

graphy; further exploration and simulation could be interesting.

Our work is unique in its assessing BGP security measures in terms of its impact

on BGP convergence time, and is unique in using parallel simulation techniques to

study that impact on larger models than can be studied on normal serial computers.
The experiments on large models we report on suggest two importance facts. The

first is that S-BGP convergence time after a major disruption of sessions is very large,

on the order of 3 h in our of our experiments. The other is that the performance im-

pact of the cryptographic optimizations we develop improve as the size the network

grows. This observation suggests that the optimizations are worth studying in the

largest network of all, the actual Internet.

For simulations such as ours, portability (and hence access by the larger simula-

tion community) is an important consideration. A strength of our simulator is that it
is built entirely using Java––even the communication/synchronization aspects of our

distributed version use core Java functionality. Hence the software forming the basis

of our experiments is highly portable.
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