
Int J Inf Secur (2004) 3: 28–41 / Digital Object Identifier (DOI) 10.1007/s10207-004-0033-0

Outboundauthentication for programmable secure
coprocessors

SeanW. Smith

Department of Computer Science, Dartmouth College, Hanover NH 03755, USA
e-mail: sws@cs.dartmouth.edu

Published online: 19 May 2004 – Springer-Verlag 2004

Abstract. A programmable secure coprocessor platform
can help solve many security problems in distributed
computing, particularly if coprocessor applications can
participate as full-fledged parties in distributed crypto-
graphic protocols. Thus, a generic platform must not
only provide programmability, maintenance, and config-
uration in the hostile field, it must also provide outbound
authentication for the entities that result. This paper of-
fers our experiences in solving this problem for a high-end
secure coprocessor product. This work required synthesis
of a number of techniques, so that parties with different
and dynamic views of trust can draw sound and complete
conclusions about remote coprocessor applications.

Keywords: Secure coprocessors – Authentication – At-
testation – Trust

1 Introduction

How does one secure computation that takes place re-
motely – particularly when someone with direct access
to that remote machine may benefit from compromising
that computation? This issue lies at the heart of many
current e-commerce, rights management, and PKI issues.

1.1 Secure coprocessing

To address this problem, research (e.g., [20, 28, 30]) has
long explored the potential of secure coprocessors: hard-
ware devices that, with high assurance, can be trusted to
carry out computation unmolested by an adversary with
direct physical access. For example, such an adversary
could subvert rights management on a complex dataset
by receiving the dataset and then not following the pol-

icy; secure coprocessors enable solutions by receiving the
dataset encapsulated with the policy and only revealing
data items in accordance with the policy [12]. For another
example, an adversary could subvert decentralized e-cash
simply by increasing a register. However, secure copro-
cessors enable solutions: the register lives inside a trusted
box, which modifies the value only as part of a transac-
tion with another trusted box [5, 28]. Many other appli-
cations – including private information retrieval [2, 21],
e-commerce coservers [13], and mobile agents [29] – can
also benefit from the high-assurance neutral environment
that secure coprocessors could provide.
As discussed in the literature (e.g., [8]), achieving this

potential requires several factors, including establishing
and maintaining physical security, and enabling the de-
vice to authenticate code loads and other commands that
come from the outside world. Achieving this potential
also requires building applications whose design does not
negate the security advantages of the underlying platform
(e.g., [4]).
However, using secure coprocessors to secure dis-

tributed computation also requires outbound authenti-
cation (OA): the ability of coprocessor applications to
authenticate themselves to remote parties. (Code down-
loading loses much of its effect if one cannot easily au-
thenticate the entity that results!) Merely configuring
the coprocessor platform as the appropriate entity (e.g.,
a rights box, a wallet, an auction marketplace) does not
suffice in general. A signed statement about the config-
uration also does not suffice. For maximal effectiveness,
the platform should enable the entity itself to have au-
thenticated key pairs and to engage in protocols with any
party on the Internet: so that only that particular trusted
auction marketplace, following the trusted rules, is able
to receive the encrypted strategy from a remote client; so
that only that particular trusted rights box, following the

S.W. Smith: Outbound authentication for programmable secure coprocessors 29

trusted rules, is able to receive the object and the rights
policy it should enforce.
(In theory, solutions where the entity does not possess

its own key pair but makes use of some other service are
also possible, but we did not consider them because they
do not easily mesh with standard approaches – where the
relying party can draw a conclusion based on whether an
entity proves knowledge of a private key – and would also
overly complicate the API for key usage.)

1.2 The research project

The software architecture for a programmable secure
coprocessor platform must address the complexities of
shipping, upgrades, maintenance, and hostile code for
a generic platform that can be configured and maintained
in the hostile field [22]. Our team spent several years
working on developing just such a device; other reports [8,
9, 23] present our experiences in bringing such a device
into existence as a COTS product, the IBM 4758.
Although our initial security architecture [23] sketched

a design for outbound authentication, we did not fully im-
plement it – nor fully grasp the nature of the problem –
until theModel 2 device released in 2000. As is common in
product development, we had to concurrently undertake
tasks one might prefer to tackle sequentially: identify fun-
damental problems; reason about solutions; design, code,
and test; and ensure that we satisfied legacy application
concerns.

1.3 The basic problem

A relying party needs to conclude that a particular key
pair really belongs to a particular software entity within
a particular untampered coprocessor. Design and produc-
tion constraints led to a nontrivial set of software entities
in a coprocessor at any one time, and in any one copro-
cessor over time. Relying parties trust some of these enti-
ties and not others. Software and hardware structure can
introduce further dependencies that might affect the con-
clusions relying parties would reach if they knew these de-
pendencies; for example, if a coprocessor permitted mul-
tiple concurrent applications, some of these were hostile,
and the OS (through oversight) permitted hostile appli-
cations to subvert other ones, then a relying party might
want to know additional details about the software con-
figuration surrounding a particular application instance.
Furthermore, we needed to accommodate amultiplicity of
trust sets (different parties have different views), aswell as
the dynamic nature of any one party’s trust set1 over time.
This background sets the stage for the basic problem:

how should the device generate, certify, change, store, and
delete private keys, so that relying parties can draw those
conclusions, and only those conclusions, that are consis-
tent with their trust set?

1 See Sects. 4.4 and 4.5 for more discussion.

1.4 This paper

This paper is a post-facto report expanding on this re-
search and development experience that may have rele-
vance both to other secure coprocessor technology and to
the growing industry interest in remotely authenticating
what’s executing on a desktop (e.g., [10, 19, 26]).
Section 2 discusses the emergence of the problem in the

context of the underlying technology. Section 3 presents
the theoretical foundations. Section 4 presents the design.
Section 5 suggests some directions for future study.

2 Problem

2.1 Underlying technology

We start with a brief overview of the 4758, a PCI card
that contains a general-purpose computing environment
(486 class), cryptographic accelerators, and hardware
RNG. The device is tamper-responding: with high as-
surance, on-board circuits detect tamper attempts and
destroy the contents of volatile RAM and nonvolatile
battery-backed RAM (BBRAM) before an adversary can
see them. The 4758 also contains nonvolatile FLASH that
is not destroyed upon tamper – but we do check integrity
and restrict writing ability. The internal software of the
4758 is divided into layers, with layer boundaries cor-
responding to divisions in function, storage region, and
external control. The current family of devices has four
layers: Layer 0 in ROM, and Layer 1 through Layer 3 in
rewritable FLASH.
The layer sequence also corresponds to the sequence of

execution phases after device boot: initially Layer 0 runs,
then invokes Layer 1, and so on. (Because our device is an
enclosed controlled system, we can avoid the difficulties
of secure boot that arise in exposed desktop systems; we
know execution starts in Layer 0 ROM in a known state,
and higher-level firmware is changed only when the device
itself permits it.) In the current family, Layer 2 is intended
to be an internal operating system, leading to the con-
straint that it must execute at maximum CPU privilege;
it invokes the single application (Layer 3) but continues
to run, depending on its use of the CPU privilege levels to
protect itself.
We intended the device to be a generic platform for se-

cure coprocessor applications. Our research team insisted
on the goal that third parties (different from IBM, and
from each other) be able to develop and install code for
the OS layer and the application layer. Business forces
pressured us to have only one shippable version of the
device and to ensure that an untampered device with
no hardware damage could always be revived. Thus, we
needed to develop a code-loading architecture that ac-
commodated both sets of goals.
For code loading, one might develop a hierarchical de-

sign where each layer chooses what to install in the next
layer. Instead of this hierarchical approach, we converged

30 S.W. Smith: Outbound authentication for programmable secure coprocessors

on a centralized design where Layer 1 contains the secu-
rity configuration software that establishes owners and
public keys for the higher layers and validates code in-
stallation and update commands for those layers from
those owners. This design decision stemmed from our vi-
sion that application code and OS code may come from
different entities that may not necessarily trust each oth-
er’s updates; centralization of loading made it easier to
enforce the appropriate security policies.
Layer 1 is updatable, in case we want to upgrade al-

gorithms, fix bugs, or change the public key of the party
authorized to update the layer. However, we mirror this
layer – updates are made to the inactive copy, which is
then atomically made active for the next boot – so that
failures during update will not leave us with a nonfunc-
tioning code-loading layer.

2.2 Authentication approach

Another business constraint we had was that the only
guaranteed contact we would have with a card was at
manufacture time. In particular, we could assume no au-
dits or database of card-specific data (secret or other-
wise), nor provide any online services to cards once they
left the factory. This constraint naturally suggested the
use of public-key cryptography for authentication, both
inbound and outbound. This choice separates cards from
relying parties and frees us from having to track any as-
sociation of particular cards with their ultimate location,
users, and applications.
For inbound authentication, we can preinstall a pub-

lic key (in FLASH) telling the card who it should listen
to for its first command. For outbound authentication,
the natural approach is to keep a private key in tamper-
protected memory and have something create signed cer-
tificates about the corresponding public key.
Because of the last-touch-at-manufacturing constraint

(and because of a design assumption that the manufac-
turer would be the central trust root for these devices),
the last time we can ensure that an external trust point
can interact with the card and sign such certificates is at
the factory – after that, it’s up to the card itself.

2.3 User and developer scenarios

Discussions about potential relying parties led to addi-
tional requirements.
Developers were not necessarily going to trust each

other. For example, although an application developer
must trust the contents of the lower layers when his ap-
plication is actually installed, he should be free to require
that his secrets be destroyed should a lower layer be up-
dated in a way he does not trust. As a consequence, we
allowed each code load to include a policy specifying the
conditions under which that layer’s secrets should be pre-
served across changes to lower layers. Any other scenario
destroys secrets.

However, even those developers who wanted the de-
vice to preserve secrets across updates reserved the right
to, post facto, decide that certain versions of code – even
their own – were untrusted and to verify whether an un-
trusted version had been installed during the lifetime of
their secrets.
In theory, the OS layer should resist penetration by

a malicious application; in practice, operating systems
have a bad history here, so we only allow one application
above it and intend the OS layer solely to assist the appli-
cation developer. (That is, the OS can support multiple
concurrent processes, but we assume these are all in the
same trust domain.) Furthermore, we need to allow that
some relying parties will believe that the OS in general (or
a specific version) may indeed be penetrable by malicious
applications.
Small-scale developers (without a large preestablished

reputation) may be unable to assure the public of the in-
tegrity and correctness of their applications (e.g., through
code inspection, formal modeling, etc). Where possible,
we should maximize the credibility our architecture can
endow on applications from such developers.
(We note that this design assumption of “one appli-

cation space” was driven by the generally poor record of
operating systems in this regard and by the lack of a suit-
able high-assurance candidate at the time of product de-
velopment. Considering our problem in the framework of
a higher assurance operating system, where this restric-
tion may be unnecessary, or a general-purpose desktop,
where this restriction may be unacceptable, is an interest-
ing area of future work.)

2.4 On-card entities

One of the first things we need to deal with is the no-
tion of what an on-card entity is. Let’s start with a simple
case: suppose the coprocessor had exactly one place to
hold software and that it zeroized all state with each code
load. In this scenario, the notion of entity is pretty clear:
a particular code loadC1 executing inside an untampered
device D1. The same code C1 inside another device D2
would constitute a different entity, as would a reinstalla-
tion of C1 inside D1.
However, this simple case raises challenges. If a reload

replaces C1 with C2, and reloads clear all tamper-
protected memory, how does the resulting entity (C2 on
D1) authenticate itself to a party on the other side of
the net? The card itself would have no secrets left since
the only data storage hidden from physical attack was
cleared. Consequently, any authentication secrets would
have to come with C2, and we would start down a path of
shared secrets and personalized code loads.
This line of thinking leads to questions. Should an ap-

plication entity “include” the OS underneath it? Should
it include the configuration control layers that ran ear-
lier in this boot sequence but are no longer around? (As
we discuss later, one can even make a case that an entity

S.W. Smith: Outbound authentication for programmable secure coprocessors 31

should include entities that were previously installed but
are no longer present on the card.)
Since we built the 4758 to support real applications,

we gravitated toward a practical definition: an entity is an
installation of the application software in a trusted place,
identified by all underlying software and hardware.

2.5 Secret retention

As noted, developers demanded that we sometimes
permit secret retention across reload. With a secret-
preserving load, the entity may stay the same, but
the code may change. The conflicting concepts that
developers had about what exactly happens to their
on-card entity when a code update occurs led us to
think more closely about entity lifetimes. We introduce
some language – epoch and configuration – to formalize
that.
A Layer n epoch entity consists of a sequence of

Layer n configuration entities. This sequence may be un-
bounded – since any particular epoch might persist indef-
initely, across arbitrarily many configuration changes, if
the code-loading officer included policies that permitted
such persistence across such changes.
For example, Layer N may undergo a transition such

as a hot update, a complete reinstall, or a surrender.2

A hot update will begin a new N configuration but will
preserve the oldN epoch; whether it preserves aK epoch
(for K >N) depends on the policy the owner of LayerK
has established.
Figure 1 sketches these concepts.

Definition 1 (Configuration, Epoch). A Layer N
configuration is the maximal period in which that layer
is runnable, with an unchanging software environment in
layers 1 . . .N . A Layer N epoch is the maximal period in
which the Layer can run and accumulate state. If E is an
on-card entity in Layer N ,

– E is an epoch entity if its lifetime extends for a LayerN
epoch.
– E is a configuration entity if its lifetime extends only
for a Layer N configuration.

2 Table 4 in [23] and Appendix F in the IBM 4758 PCI Cryp-
tographic Coprocessor Custom Software Developer’s Toolkit Guide
give more details on the transition sequences.

Epoch 1 Epoch 2

Config 1, in Epoch 1 Config 2, in Epoch 1 Config 2, in Epoch 1

Secret-destroying code-load Secret-preserving code-load Secret-destroying code-load

Fig. 1. An epoch starts with code-load action that clears a layer’s secrets; with
an epoch, each secret-preserving code load starts a new configuration

2.6 Authentication scenarios

This design left us with on-card software entities made
up of several components with differing owners, lifetimes,
and state. A natural way to do outbound authentica-
tion is to give the card a certified key pair whose pri-
vate key lives in tamper-protected memory. However,
the complexity of the entity structure creates numerous
problems.

Application code. Suppose entity C is the code C1 resid-
ing in the application Layer 3 in a particular device. C
may change: two possible changes include a simple code
update taking the current code C1 to C2, or a complete
reinstall of a different application from a different owner,
taking C1 to C3.
If a relying party P trusts C1, C2, and C3 to be free

of flaws, vulnerabilities, and malice, then the natural ap-
proach might work. However, if P distrusts some of this
code, then problems arise.

– If P does not trust C1, then how can P distinguish
between an entity with the C2 patch and an entity
with a corrupt C1 pretending to have the C2 patch?
(See Fig. 2.)
– If P does does not trust C2, then then how can P dis-
tinguish between an entity with the honest C1 and an
entity with the corruptC2 pretending to be the honest
C1? (The mere existence of a signed update command
compromises all the cards – since the relying party
cannot know whether any particular card carried out
this update. See Fig. 3.)
– If P does not trust C3, then how can P distinguish be-
tween the honest C1 and a malicious C3 that pretends
to be C1? (Essentially, this is isomorphic to Fig. 3.)

Code-loading code. Even more serious problems arise
if a corrupted version of the configuration software in
Layer 1 exists. If an evil version existed that allowed ar-
bitrary behavior, then (without further countermeasures)
a party P cannot distinguish between any on-card entity
E1 and an E2 consisting of a rogue Layer 1 carrying out
some elaborate impersonation.

OS code. Problems can also arise because the OS code
changes. Debugging an application requires an operating
system with debug hooks; in final development stages,

32 S.W. Smith: Outbound authentication for programmable secure coprocessors

trusts

distrusts

updated to

k

C1 C2

Relying Party P

Fig. 2. Replacing untrusted software with
trusted software, while retaining the
private key, creates trust problems

trusts

distrusts

Relying Party P

k

C1 C2
updated to

Fig. 3. The potential to replace trusted software with untrusted
software, while retaining the private key, also creates trust

problems

a reasonable scenario is to be able to “update” back-and-
forth between a version of the OS with debug hooks and
a version without.
With no additional countermeasures, a party P can-

not distinguish between the application running securely
with the real OS, the application with debug hooks un-
derneath it, and the application with the real OS but with
a policy that permits hot updates to the debug version.
The private key would be the same in all cases.

2.7 Internal certification

The above scenarios suggest that perhaps a single key
pair, for all entities in a card for the lifetime of the card,
may not suffice. If two different entities, one trusted and
one untrusted, had access to the same private key mate-
rial, then the relying party can no longer draw a reason-
able conclusion from use of the private key alone. If we
want to enable the relying party to do this, the natural
generalization is to have separate keys for separate enti-
ties. However, extending to schemes where one on-card
entity generates and certifies key pairs for other on-card
entities also creates challenges.
For example, suppose Layer 1 generates and certifies

key pairs for the Layer 2 entity. If a reload replaces cor-
rupt OS B1 with an honest B2, then party P should be
able to distinguish between the certified key pair for B2
and that for B1. However, without further countermea-
sures, if supervisor-level code can see all data on the card,
then B1 can forge messages from B2 – since it could have
seen the Layer 1 private key.
A similar penetrated-barrier issue arises if we expect

an OS in Layer 2 to maintain a private key separate from
an application Layer 3, or if we entertained alternative
schemes where mutually suspicious applications executed

concurrently. If a hostile application might in theory pen-
etrate the OS protections, then an external party can-
not distinguish between messages from the OS, messages
from the honest application, and messages from rogue ap-
plications.
This line of thinking led us to the more general ob-

servation that, if the certifier outlives the certified, then
the integrity of what the certified does with their key pair
depends on the future behavior of the certifier.
In the case of the coprocessor, this observation has

subtle and dangerous implications; for example, one
of the reasons we centralized configuration control in
Layer 1 was to enable the application developer to dis-
trust the OS developer and request that the application
(and its secrets) be destroyed, if the underlying OS under-
goes an update the application developer does not trust.
What if the untrusted OS has access to a private key
used in certifying the original application? (This observa-
tion might also have implications for other types of PKI,
where a CA/RA both generates as well as certifies user
key pairs.)
We revisit all these issues in Sect. 4.3.

3 Theory

The construction of the card suggests that we use certified
key pairs for outbound authentication. However, as we
just sketched, the straightforward approach of just send-
ing the card out with a certified key pair permits trouble.
In this section, we try to formalize the principles that

emerged while considering this problem.
A card leaves the factory and undergoes some se-

quence of code loads and other configuration changes.
A relying party interacts with an entity allegedly running
inside this card. The card’s OA scheme enables this appli-
cation to wield a private key and to offer a collection of
certificates purporting to authenticate its keyholder.
It would be simplest if the party could use a straight-

forward validation algorithm on this collection. As Mau-
rer [14, 17] formalized, a relying party’s validation algo-
rithm needs to consider which entities that party trusts.
Our experience showed that parties have a wide variety
of trust views that change dynamically. Furthermore, we
saw the existence of two spaces: the conclusions that
a party will draw, given an entity’s collection of certifi-
cates and the party’s trust view, and the conclusions that
a party should draw, given the history of those keyholders
and the party’s trust view.
We needed to design a scheme that permits these sets

of conclusions to match, for parties with a wide variety of
trust views.

3.1 What the entity says

Relying party P wants to authenticate interaction with
a particular entity E. For this interaction to be meaning-
ful, P must already trust E to behave correctly with its

S.W. Smith: Outbound authentication for programmable secure coprocessors 33

keys (we will elaborate on this point in Sect. 4.3). Many
scenarios could exist here; for simplicity, our analysis re-
duces these to the scenario of E needing to prove to P
that own(E,K): that E has exclusive use of the private
element of key pair K; that (in P ’s view) no one who
might subvert this will do so.
We need to be able to talk about what happens to

a particular coprocessor: both a long-term sequence of
actions and specific instants along that sequence. So we
introduce some notation – history and run – for these
concepts.
A coprocessor can take action only in the context of

the particular history H that it has experienced to that
point in time. However, we need to consider both history
and run because this run may continue in several different
ways beyond that point and the actions in these potential
futures may be relevant to the conclusions a relying party
draws from an action the coprocessor takes now.

Definition 2 (History, Run, ≺). Let a history be a fi-
nite sequence of computation for a particular device. Let
a run be some unbounded sequence of computation for
a particular device. We write H ≺ R when history H is
a prefix of run R.

In the context of OA for coprocessors that cannot be
opened or otherwise examined, and that disappear once
they leave the factory, it seemed reasonable to impose the
restriction that on-card entities carry their certificates.
For simplicity, we also imposed the restriction that they
present the same fixed set no matter who asks.

Definition 3. When entity E wishes to prove it owns K
after history H, let Chain(E,K,H) denote the set of cer-
tificates that it presents.

3.2 What the relying party concludes

Will a relying party P believe that E ownsK?
First, we need some notion of trust. A party P usu-

ally has some ideas of which on-card applications it might
trust to behave “correctly” regarding keys and signed
statements, and of which ones it is unsure.

Definition 4. For a party P , let TrustSet(P) denote the
set of entities whose statements about certificates P trusts.
Let root be the factory CA: the trust root for the card. A le-
gitimate trust set is one that contains root.

As discussed earlier, this project arose in the con-
text of a specific commercial product effort, which im-
posed some specific constraints. In particular: we could
not construct a database of coprocessors, we could not
track where they went, we could neither contact nor audit
them, we could not assume that they or their applica-
tions or relying parties would have network access back to
the factory. These constraints made revocation infeasible.
Consequently, for the problem space we faced, it was rea-
sonable to impose the restriction that the external party

decided validity based on an entity’s chain and the party’s
own list of trusted entities.
We formalize this notion of “reasonable” validation

schemes.

Definition 5 (Trust-set scheme). A trust-set certifi-
cation scheme is one where the relying party’s Validate al-
gorithm is deterministic on the variables Chain(E,K,H)
and TrustSet(P).

We thus needed to design a trust-set certification
scheme that accommodates any legitimate trust set since
discussion with developers (and experiences doing secu-
rity consulting) suggested that relying parties would have
a wide divergence of opinions about which versions of
which software they trust.

3.3 Dependency

The problem scenarios in Sect. 2.6 arose because one en-
tity E2 had an unexpected avenue to use the private key
that belonged to another entity E1. We need language to
express these situations, where the integrity of E1’s key
actions depends on the correct behavior of E2.
We formalize this concept as a dependency function,

taking an entity to the set of entities that can subvert its
correct operation, with respect to private keys.

Definition 6 (Dependency Function). Let E be the
set of entities. A dependency function is a function D :
E −→ 2E such that, for all E1, E2, we have:

– E1 ∈D(E1) (Idempotency)
– if E2 ∈ D(E1) then D(E2)⊂D(E1) (Transitivity).

When a dependency function depends on the run R, we
write DR.

Different entity architectures give rise to different ap-
propriate dependency functions.
In our specialized hardware, code runs in a single-

sandbox controlled environment that (if the physical se-
curity works as intended) is free from outside observation
or interference. Hence, in our analysis, dependence should
follow from the ability of an entity to read or write an-
other entity’s secrets or to modify code that can read or
write another entity’s secrets.

Definition 7. For entities E1 and E2 in run R, we write

E2
data
−→RE1

when E1 has read/write access to the secrets of E2.

(E2
data
−→RE2 trivially.)

We write

E2
code
−→RE1

when E1 has write access to the code of E2. Let −→R be
the transitive closure of the union of these two relations.

34 S.W. Smith: Outbound authentication for programmable secure coprocessors

For an entity E in a run R, define

DepR(E) = {F : E −→R F}.

The intuition here is that, for the coprocessor architec-
ture we considered,DepR(E) lists all the on-card software
entities that could have subverted the correct operation of
entity E in run R.
In terms of the coprocessor, if C1 follows B1 in the

postboot sequence, then we have C1
data
−→RB1 (since B1

could have manipulated data before passing control).
If C2 is a secret-preserving replacement of C1, then

C1
data
−→RC2 (because C2 still can touch the secrets C1

left). If A can reburn the FLASH segment where B lives,

then B
code
−→RA (because A can insert malicious code

into B that would have access to B’s private keys).

3.4 Soundness

Should the relying party draw the conclusions it actually
will? In our analysis, security dependence depends on the
run; entity and trust do not. This leads to a potential co-
nundrum. Suppose, in run R, we have:

– C −→R B and
– C ∈ TrustSet(P), but
– B �∈ TrustSet(P).

Then a relying party P cannot reasonably accept any
signed statement from C because B may have forged it.
To capture this notion, we define soundness for OA.

The intention of soundness is that if a relying party con-
cludes that a message came from an entity, then it really
did come from that entity – modulo the relying party’s
trust view. The party will not conclude that it should
trust the entity if such a conclusion is inconsistent with
the party’s beliefs.
That is, suppose in some history H ≺ R, P concludes

own(E,K) from Chain(E,K,H). If the TrustSet(P) enti-
ties behave themselves, then E should really own K. We
formalize this notion:

Definition 8. An OA scheme is sound for a dependency
function D when, for any entity E, a relying party P with
any legitimate trust set, and any history and runH ≺R:

Validate(P,Chain(E,K,H))=⇒DR(E)⊆ TrustSet(P).

We restrict our attention to legitimate trust sets be-
cause given commercial product constraints (a party
could not open and examine a coprocessor without de-
stroying it), it would be difficult for a relying party who
did not trust root to draw any useful conclusions.

3.5 Completeness

One might also ask if the relying party will draw the con-
clusions it actually should.We consider this question with

the term completeness. If in any run where E produces
some Chain(E,K,H) and DR(E) is trusted by P – so in
P ’s view, no one who had a chance to subvert E would
have – then P should conclude that E ownsK.

Definition 9. An OA scheme is complete for a depen-
dency function D when, for any entity E claiming key K,
relying party P with any legitimate trust set, and history
and runH ≺R:

DR(E)⊆ TrustSet(P)=⇒Validate(P,Chain(E,K,H)).

(Note that by our definition of TrustSet, if DR(E) ⊆
TrustSet(P), then P believes that E will act honestly.)

3.6 Achieving both soundness
and completeness

These definitions equip us to formalize a fundamental ob-
servation. If we’re going build a trust-set authentication
scheme that is both sound and complete, then the certifi-
cate chain for an entity needs to name its full dependency
set. Figure 4 sketches why.

Theorem 1. Suppose a trust-set OA scheme is both
sound and complete for a given dependency function D.
Suppose entity E claims K in histories H1 ≺ R1 and
H2 ≺R2. Then:

DR1(E) �=DR2(E) =⇒

Chain(E,K,H1) �= Chain(E,K,H2).

Proof. SupposeDR1(E) �=DR2(E) but Chain(E,K,H1)=
Chain(E,K,H2).We cannot have bothDR1(E)⊆DR2(E)
and DR2(E) ⊆DR1(E), so, without loss of generality, let
us assume DR2(E) �⊆ DR1(E). There thus exists a set S
with DR1(E)⊆ S but DR2(E) �⊆ S.
Since the scheme is sound and complete, it must work

for any legitimate trust set, including S. Let party P
have S = TrustSet(P). Since this is a trust-set certifica-
tion scheme and E produces the same chains in both his-
tories, party P must either validate these chains in both

Relying party P

trusts distrusts
Chain C

E

D ER1() D ER2()

Fig. 4. If E produces the same chain but
may or may not depend on things that
P does not trust, then P must accept
a chain it should reject, or reject a chain
it should accept

S.W. Smith: Outbound authentication for programmable secure coprocessors 35

scenarios or reject them in both scenarios. If party P ac-
cepts in run R2, then the scheme cannot be sound for D
since E depends on an entity that P did not trust. But
if party P rejects in run R1, then the scheme cannot be
complete for D since party P trusts all entities on which
E depends.

3.7 Design implications

We consider the implications of Theorem 1 for specific
ways of constructing chains and drawing conclusions for
specific notions of dependency.
For example, we can express the standard approach –

the relying party P makes its conclusion by recursively
verifying signatures and applying a basic inference rule –
in a Maurer-style calculus [14]. Suppose C is a set of cer-
tificates: statements of the formK1 says own(E2,K2). Let
S be the set of entities that P trusts to speak the truth
about assertions of key ownership. That is:

S = TrustSet(P).

We can then start reasoning about Viewwill(C,S): the
set of certificates statements and key ownership conclu-
sions that this party will conclude are true, given the set
of entities the party trusts.
A relying party may start by believing

C ∪{own(root,Kroot)}.

So we initialize Viewwill(C,S) to that set of statements.
We then keep adding statements derivable from this set
by applying the rule

own(E1,K1), E1 ∈ S, K1 says own(E2,K2)

	 own(E2,K2).

Informally, if the party trusts an entity and believes that
entity owns a key, then it believes certificates that key
signs. The Validate algorithm for party P then reduces to
the decision of whether own(E,K) is in this set.
We can also express what a party should conclude

about an entity, in terms of the chain the entity presents,
and the views that the party has regarding trust and de-
pendency. If D is a dependency function, we can define
Viewshould(C,S,D) to be the set of statements derivable
by applying the alternate rule:

own(E1,K1), D(E1)⊆ S, K1 says own(E2,K2)

	 own(E2,K2).

Informally, if the party trusts an entity, and the entity (in
this run) is in a configuration environment that the party
trusts, then the party should believe certificates signed
with that entity’s key.
In terms of this calculus, we obtain soundness by en-

suring that for any chain and legitimate trust set, and

H ≺ R, the set Viewwill(Chain(E,K,H), S) is contained
in the set Viewshould(Chain(E,K,H), S,DR). The rely-
ing party should only use a certificate to reach a con-
clusion when the entire dependency set of the signer is
in TrustSet(P).
By construction of the inference rules, we can see that

containment holds the other way.

Viewshould(Chain(E,K,H), S,DR)⊆

Viewwill(Chain(E,K,H), S).

4 Design

For simplicity of verification,wewould likeChain(E,K,H)
to be a literal chain: a linear sequence of certificates
going back to root. To ensure soundness and complete-
ness, we need to make sure that, at each step in the
chain, we maintain the invariant that the partial set of
certifiers equals the dependency set of that node (for the
dependency function we see relying parties using). To
achieve this goal, the elements we can manipulate in-
clude generation of this chain, as well as how dependency
is established in the device. In particular, we follow two
guidelines:

– Use the software and hardware architecture to elimi-
nate any unnecessary dependence, and then
– Ensure that the dependency set that remains partici-
pates in certification.

4.1 Layer separation

Because of the postboot execution sequence, code that
executes earlier can subvert code that executes later.3 If
B,C are Layer i,Layer i+1, respectively, thenC −→R B
unavoidably.
However, the other direction should be avoidable, and

we used hardware to avoid it. To provide high-assurance
separation, we developed ratchet locks: an independent
microcontroller tracks a counter, reset to zero at boot
time. The microcontroller will advance the ratchet at the
main coprocessor CPU’s request but never roll it back.
Before B invokes the next layer, it requests an advance.

To ensureB
data

�−→RC, we reserved a portion of BBRAM
for B and used the ratchet hardware to enforce access

control. To ensureB
code

�−→RC, we write-protect the FLASH
region where B is stored. The ratchet hardware restricts
write privileges only to the designated prefix of this exe-
cution sequence.
To keep configuration entities from needlessly depend-

ing on the epoch entities, in our Model 2 device we sub-
divided the higher BBRAM to get four regions, one each

3 With only one chance to get the hardware right, we did not
feel comfortable attempting to restore the system to a more trusted
state, short of reboot.

36 S.W. Smith: Outbound authentication for programmable secure coprocessors

for epoch and configuration lifetimes, for Layer 2 and
Layer 3. The initial boot-time cleanup code Layer 1 (al-
ready in the dependency set) zeroizes the appropriate
regions on the appropriate transition. That is, if this
boot sequence does not preserve the Layer K epoch, the
BBRAM region for the Layer K epoch is zeroized; if this
boot sequence does not preserve the Layer K configura-
tion, the BBRAM region for the LayerK configuration is
zeroized.
(For transitions to a new Layer 1, the cleanup is en-

forced by the old Layer 1 and the permanent Layer 0 – to
avoid incurring dependency on the new code.)

4.2 The code-loading code

As discussed elsewhere, we felt that centralizing code-
loading and policy decisions in one place enabled cleaner
solutions to the trust issues arising when different par-
ties control different layers of code. But this centraliza-
tion creates some issues for OA. Suppose the code-loading
Layer 1 entity A1 is reloaded with A2. Business con-
straints dictated that A1 do the reloading because the
ROM code had no public-key support. It is unavoid-

able that A2
code
−→RA1 (because A1 could have cheated

and not installed the correct code). However, to avoid

A1
data
−→RA2, we take these steps as an atomic part of the

reload: A1 generates a key pair for its successor A2; A1
uses its current key pair to sign a transition certificate at-
testing to this change of versions and key pairs; and A1
destroys its current private key. Figure 5 illustrates this
process.
This technique – which we implemented and shipped

with the Model 1 devices in 1997 – differs from the con-
cept of forward security4 in that we change keys with each
new version of software and ensure that the name of the
new version is spoken by the old version.
That is, the device leaves the factory with a key pair

owned by Layer 1 and a certificate5 signed by the factory

4 Ross Anderson’s invited lecture at the ACM Conference on
Computer and Communications Security in 1997, later docu-
mented as “Two Remarks on Public Key Cryptology,” http://www.
ftp.cl.cam.ac.uk/ftp/users/rja14/forwardsecure.pdf, is pop-
ularly regarded as the seminal citation on forward-secure signa-
tures; similar terms can be found in earlier work such as [11].
5 For more information on naming details and examples of cer-
tificate formats, see pp. 3–95 to 3–116 in IBM 4758 PCI Crypto-
graphic Coprocessor Custom Software Interface Reference Version
2: 4758-002 and 4758-023.

certifies certifies certifies

updates toinstalls updates to

kR k1 k2 k3

A1 A2 A3root

Fig. 5.When the code-loading layer updates itself, it generates and certifies
a new key pair for its successor

root that names the factory root and that binds the de-
vice’s public key to that device (specified by model num-
ber, serial number, etc.) with that version of Layer 1 code
(identity of the owner of this layer, name they gave to
this code, revision number they gave to this code, SHA-1
hash of this code, when the current Layer 1 epoch started,
when the current Layer 1 configuration started, etc.).
Each such update of Layer 1 then adds a transition cer-
tificate, signed by the old version, that names both the old
and new version of the Layer 1 code as well as the fact that
a transition took place from the old to the new.
As a consequence, a single malicious version cannot

hide its presence in the trust chain; for a coalition of ma-
licious versions (and the rest honest), the trust chain will
name at least one malicious entity. (Section 5 considers
forward-secure signatures further.)
To summarize: we eliminate dependency on future

loads by destroying the old private key; but the past loads
(on which a given version depends) participate in the
chain for that version.

4.3 The OA manager

Since we do not know a priori what device applications
will be doing, we felt that application key pairs needed
to be created and used at the application’s discretion.
Within our software architecture, Layer 2 should do this
work – since it’s easier to provide these services at run-
time instead of reboot, and the Layer 1 protected memory
is locked away before Layer 2 and Layer 3 run.
This OA Manager component in Layer 2 will wield

a key pair generated and certified by Layer 1, and will
then generate and certify key pairs at the request of
Layer 3. This approach follows our guidelines: the ratchet
locks (Sect. 4.1) ensure that Layer 1 cannot depend on the
OA Manager; the OA Manager depends on Layer 1, but
Layer 1 creates and is named in its chain.
When requesting a key pair, the application specifies

whether it should live as long as that Layer 3 epoch or
as that Layer 3 configuration. The OAManager will indi-
cate this in the certificate; in conspiracy with Layer 1, the
manager will also enforce this lifetime, by using our spe-
cial BBRAM regions to see that the private key is zeroized
when the lifetime ends.
These certificates also indicate that said key pair be-

longs to an application, and they include a field chosen
by the application. (A straightforward extension of our

S.W. Smith: Outbound authentication for programmable secure coprocessors 37

trust calculus would thus distinguish between owning and
trusting a key pair for certification purposes, and owning
and trusting a key pair for the application-specified pur-
pose – the last link.)
How long should the OA Manager key pair live? To

keep the chain linear, we decided to have Layer 1 gener-
ate and destroy the OAManager key pair (e.g., instead of
adding a second horizontal path between successive ver-
sions of the OA Manager key pairs). The question then
arises of when the OAManager key pair should be created
and destroyed.
We discuss some false starts.
As discussed in Sect. 2.7, the interaction of certifier

and certified lifetimes causes trouble.
If the OAManager outlived the Layer 2 configuration,

then our certification scheme cannot be both sound and
complete. Figure 6 shows an example. Suppose Layer 2
is updated from B1 to B2 while preserving the OA key
pair kB. Application C1 depends on the new version B2,
but its chain only names B1. We violate Theorem 1; the
scheme cannot be sound and complete.
If the OA Manager outlives the Layer 3 epoch, then

we also have trouble. Figure 7 shows an example. Sup-
pose application C1 is replaced by application C2 but the
OA Manager retains the same key. If a relying party wor-
ries that C2 may penetrate the OS, then C1 may incur
a dependency on C2 – even though the C1 chain does not
name C2.
Our final design avoided these problems by having the

Layer 2 OA Manager live exactly as long as the Layer 3
configuration. Using the protected BBRAM regions, we

certifies depends on

C1

B1 B1

kB

updated to

Fig. 6. If the certifier outlives its own code change,
then the application can incur a dependency

not named in its chain

certifies
and depends on

C1

B1

updated to

penetrates

kB

C2

Fig. 7. If the certifier outlives the application, then
the old application can incur a dependency

not named in its chain

ensure that upon any change to the Layer 3 configura-
tion, Layer 1 destroys the old OA Manager private key,
generates a new key pair, and certifies it to belong to the
new OA Manager for the new Layer 3 configuration. If
the new configuration was due to a Layer 1 reload, then
the old Layer 1 signs a transition certificate which signs
the new OA Manager key pair. This approach ensures
that the trust chain names the dependency set for Layer 3
configurations – even if dependency is extended to in-
clude penetration of the OS/application barrier. Figure 8
sketches this structure.
(As noted earlier, the private halves of any Layer 3

configuration key pairs will also be destroyed; if this con-
figuration change does not preserve the Layer 3 epoch,
those private keys are destroyed as well.)

4.4 Naming

We already discussed the naming formats for the initial
device certificate and the transition certificates. The OA
Manager certificate names the Layer 1 certificate that
signed it and this particular device and names the soft-
ware entities (again, via identity of the owner of this layer,
name they gave to this code, revision number they gave
to this code, SHA-1 hash of this code, when the cur-
rent layer epoch started, when the current layer config-
uration started, etc.) in both Layer 2 and Layer 3. An
application certificate names the OA Manager certificate
that signed it (which thus names the current Layer 3
epoch and the software present in this Layer 3 configu-
ration), whether this certificate lives for an epoch or just
a configuration, and the arbitrary data field given by the
application.
Trusting an epoch entity requires, by definition, gam-

bling that future secret-preserving code changes will be
trustworthy. To make this more reasonable, we include
code owner information (so that the relying party can
know whose judgment they are trusting). To accommo-
date parties who chose to trust epochs to later change
their minds, note that we also ensure that a Layer 3
epoch certificate (say, for epoch E) still names the
Layer 3 configuration (say, C1) in which it began exis-
tence. If, in some later Layer 3 configuration Ck within
that same epoch, the relying party decides that it wants
to examine the individual configurations to determine
whether an untrusted version was present, it can do
that by examining the trust chain for Ck and the se-
quence of OA Manager certificates from C1 to Ck.
An untrusted Layer 1 will be revealed in the Layer 1
part of the chain; otherwise, the sequence of OA Man-
ager certificates will have correct information, reveal-
ing the presence of any untrusted Layer 2 or Layer 3
version.
In a sense, a relying party exercising this “right of

retroactive paranoia” begins with a trust set that treats
configuration within an epoch in the same equivalence
class, but then relaxes this assumption.

38 S.W. Smith: Outbound authentication for programmable secure coprocessors

certifies

C1

B1

updated to

C2

certifies certifies

updated to new config begins

C2

B2

kB1 kB2 kB3

Layer gens, certifies new key pair1 Layer gens, certifies new key pair1

Fig. 8.We insure that chains name dependency by having Layer 1 generate
a new OA Manager key pair with each change to code

the application depends on

4.5 Summary

As noted earlier, the trust chain for the current Layer 1
version starts with the certificate the factory root signed
for the first version of Layer 1 in the card, followed by
the sequence of transition certificates for each subsequent
version of Layer 1 installed. The trust chain for the OA
Manager appends the OA Manager certificate, signed by
the version of Layer 1 active when that Layer 3 config-
uration began, and providing full identification for the
current Layer 2 and Layer 3 configurations and epochs.
The trust chain for a Layer 3 key pair appends the certifi-
cate from the OAManager that created it.
Our design thus constitutes a trust-set scheme that

is sound and complete for the dependency function we
felt was appropriate, for any legitimate trust set. A cer-
tificate for an OA Manager key pair names exactly those
configuration entities (including Layer 3, in case one
does not trust the OS protections) that correct use of
the Manager’s private key depends on. A certificate for
a configuration-length application key pair names exactly
those configuration entities it depends on.
A certificate for an epoch-length application key pair

names exactly those epoch entities it depends on; should
the relying party later decide to not trust a particular
Layer 3 configuration, a method exists, as sketched above,
to shift to a configuration entity and determine if the un-
trusted configuration was present.

4.6 Implementation

Full support for OA shipped with all Model 2 family de-
vices and the CP/Q++ embedded operating system. Fur-
thermore, the Layer 1 component underwent full formal
modeling and testing, as part of the FIPS 140-1 Level 4
validation of the Model 2 hardware and security layers.
Implementation required some additional design deci-

sions. To accommodate small developers (Sect. 2.3), we
decided to have the OAManager retain all Layer 3 private

keys and wield them on the application’s behalf; conse-
quently, a party who trusts the penetration resistance of
a particular Layer 2 can thus trust that the key was at
least used within that application on an untampered de-
vice. Another design decision resulted from the insistence
of an experienced application architect that users and de-
velopers will not pay attention to details of certificate
paths; to mitigate this risk, we do not provide a “verify
this chain” service – applications must explicitly walk the
chain. We also gave different families of cards different
factory roots, to encourage relying parties to make a con-
scious decision about the root they choose.
A few aspects of the implementation proved challeng-

ing. One aspect was the fact that the design required two
APIs: one between Layer 1 and Layer 2, and another be-
tween Layer 2 and the application. Another aspect was
finding places to store keys. We extended the limited area
in BBRAM by storing a MAC key and a TDES encryp-
tion key in each protected region, and storing the cipher-
text for new material wherever we could: during a code
change, that region’s FLASH segment; during applica-
tion run-time, in the Layer 2-provided PPD data storage
service. Another interesting aspect was the multiplicity
of keys and identities added when extending the Layer 1
transition engine to perform the appropriate generations
and certifications. For example, if we decide to accept
a new Layer 1 load, we now also need to generate a new
OA Manager key pair and certify it with the new Layer 1
key pair as additional elements of this atomic change. Our
code thus needed two passes before commitment: one to
determine everyone’s names should the change succeed
and another to then use these names in the construction
of new certificates.
As has been noted elsewhere [8], we regret the design

decisions to use our own certificate format and the fact
that the device has no form of secure time (e.g., Layer 3
can always change the clock). Naming the configuration
and epoch entities was challenging, particularly since the
initial architecture was designed in terms of parameters

S.W. Smith: Outbound authentication for programmable secure coprocessors 39

such as code version and owner, and a precise notion of
“entity” only emerged later.

5 Conclusions

One might characterize the entire OA architecture pro-
cess as “tracing each dependency and securing it.” Our
experience here, like other aspects of this work, balanced
the goals of enabling secure coprocessing applications
while also living within product deadlines. OA enables
Alice to design and release an application, Bob to down-
load it into his coprocessor, and Charlie to then authen-
ticate remotely that he’s working with this application in
an untampered device.
Outbound authentication allows third-party develop-

ers to finally deploy coprocessor applications, such as
Web servers [13] and rights management boxes [12], that
can be authenticated by anyone on the Internet, and can
participate in PKI-based protocols.
We briefly enumerate some avenues for future research

and reflection.

Alternative software structure. Our OA design follows
the 4758 architecture’s sequence of increasingly less-
trusted entities after boot. Some current research ex-
plores architectures that dispense with this limiting as-
sumption and also with the 4758 assumptions of one
central loader/policy engine and of a Layer 2 that exists
only to serve a one-application Layer 3.
It would be interesting to explore OA in these realms.

For example, supporting multiple applications would
seem to require accepting at least one of the following
scenarios:

– Forcing the relying party to trust OS protections,
– Awkwardly regenerating key pairs with each applica-
tion change,
– Placing “potential peer applications” in groups that
formminimum granularity for relying party trust sets.

It would also be interesting to explore OA in the context
of software entities that may migrate between devices or
be backed up and restored.

Alternate platforms. In our work (undertaken primarily
from 1996 to 1999), we focused on how to authenticate
software that lived in the most remote place possible: on
the other side of the Internet, inside a box that (in theory
and, one hopes, in practice) irrevocably destroys state if
opened up.
Since our work began, industrial efforts have begun

examining a similar problem: how to authenticate soft-
ware living on an ordinary desktop on the other side
of the Internet. These new “trusted computing plat-
forms” and their applications in DRM (and implica-
tions for the desktop environment) comprise a volatile
and sometimes controversial topic. As of this writ-
ing, the main efforts consist of the Trusted Comput-

ing Platform Alliance (TCPA) [19, 26] initiative [which
has now changed its name to the Trusted Comput-
ing Group (TCG)], Microsoft’s Next Generation Se-
cure Computing Base (NG-SCB) [10], and Intel’s La-
Grande project [24]. The TCPA/TCG approach puts
a smart-card-like Trusted Platform Module (TPM) on
the motherboard; this TPM then releases credentials
based on whether hashes measuring system-relevant
parameters, such as the OS code, are correct. The
NGSCB/LaGrande approaches appear to extend this
into OS and CPU structure (although the full details are
not yet public).
Academia has also been looking at how to augment

system security using small amounts of physical security.
The AEGIS [25], CERIUM [6], and XOM [15] projects
all take various approaches to augmenting a CPU to
protect processes; McGregor and Lee [18] explore aug-
menting a CPU to protect key material. In our own lab,
we have been exploring [16] using commercially available
TCPA/TCG hardware to attempt to build a “virtual”
4758.
The emergence of these commercial platforms has re-

focused attention on issues of how to authenticate a soft-
ware entity on a remote platform (termed attestation),
and how to bind data to that entity. It would be inter-
esting to explore the interaction of our OA work with
these ideas as well as the longer history of work in securely
booting desktops [1, 7, 27].

Alternate PKI. The analysis and design presented in this
paper made some implicit assumptions about what en-
tities may certify, and about how relying parties draw
conclusions. For example:

– Must a relying party accept the root? What if we had
different roots?
– Must on-card entities that generate and certify key
pairs limit themselves to certifying just the key pair?
If the entity included some way of verifying “trustwor-
thiness” of new code loads – apart from the fact that
the right party authorized the load – then the relying
party might be able increase its trust set over time,
possibly changing our results.
– Must certification happen only when a key pair is
created? Long-lived entities with the potential for run-
time corruption suggest ongoing integrity-checking
techniques.

It would be interesting to examine OA in light of such
techniques.

Alternate cryptography. We developed our transition cer-
tificate scheme for Layer 1 to ensure that not all cor-
rupt entities could hide their presence in a chain. En-
tities aside, this scheme is essentially a basic forward-
secure signature scheme (e.g., [3, Sect. 3.3]). It would
be interesting to investigate how the broader space of

40 S.W. Smith: Outbound authentication for programmable secure coprocessors

forward-secure signature schemes might be used in these
settings.

Alternate dependency. Our dependency function – entity
E1 can subvert E2 when it can read or write secrets, or
write code, at any time – emerged for the special case of
our device. A more careful incorporation of time would
be interesting, as would an examination of the other av-
enues of manipulation in more complex settings (e.g., the
opportunities for covert channels in common desktop op-
erating systems, or if the coprocessor cryptopages to the
host file system).

Trust sets in the wild. One linchpin of our design was the
divergence and dynamic nature of what relying parties
tend to trust. (Consequently, our analysis assumed that
parties may have “any legitimate trust set.”) It would be
interesting to measure and formally characterize the trust
behavior that occurs (or should occur) with real-world re-
lying parties and software entities.

Formalizing penetration recovery. Much complicated rea-
soning arose from scenarios such as “what if, in six
months, trusted software component X turns out be
flawed?” Further exploration of the design and implemen-
tation of authentication schemes that explicitly handle
such scenarios would be interesting.

Acknowledgements. The author gratefully acknowledges the com-
ments and advice of the greater IBM 4758 team; particular thanks
go to Mark Lindemann, who co-coded the Layer 2 OA Man-
ager, and Jonathan Edwards, who tested the API and transformed
design notes into manuals and customer training material. The
author is also grateful for the comments and advice of the Inter-
net2 PKI Labs on new research issues here. Finally, gratitude is due
the anonymous referees, who have made this a stronger and clearer
paper.
Preliminary versions of this paper appeared as Dartmouth

College Technical Report TR2001-401 and in the proceedings of
ESORICS 2002.
This paper reports work the author did while a research staff

member at IBM Watson. Subsequent work was supported in part
by the Mellon Foundation, AT&T/Internet2, the U.S. Department
of Justice (contract 2000-DT-CX-K001), and NSF. The views and
conclusions do not necessarily reflect the sponsors.

References

1. Arbaugh W, Farber D, Smith J (1997) A secure and reliable
bootstrap architecture. In: Proceedings of the IEEE sympo-
sium on security and privacy. IEEE Press, New York, pp 65–71

2. Asonov D, Freytag J (2003) Almost optimal private infor-
mation retrieval. In: Dingledine R, Syverson P (eds) Privacy
enhancing technologies. Lecture notes in computer science,
vol 2482. Springer, Berlin Heidelberg New York, pp 209–223

3. Bellare M, Miner S (1999) A forward-secure digital signa-
ture scheme. In: Wiener M (ed) Proceedings of Advances in
Cryptology – Crypto 99. Lecture notes in computer science,
vol 1666. Springer, Berlin Heidelberg New York, pp 431–448

4. Bond M, Anderson R (2001) API-level attacks on embedded
systems. IEEE Comput 34:64–75

5. Chaum D, Pedersen T (1993) Wallet databases with observers.
In: Brickell E (ed) Proceedings of Advances in Cryptology
– Crypto ’92. Lecture notes in computer science, vol 740.
Springer, Berlin Heidelberg New York, pp 89–105

6. Chen B, Morris R (2003) Certifying program execution with
secure processors. In: Proceedings of the 9th conference on hot
topics in operating systems (HOTOS-IX). USENIX

7. Clark P, Hoffmann L (1994) Bits: A smartcard protected op-
erating system. Commun ACM 37:66–70

8. Dyer J, Lindemann M, Perez R, Sailer R, Smith SW, van
Doorn L, Weingart S (2001) Building the IBM 4758 secure co-
processor. IEEE Comput 34(October):57–66

9. Dyer J, Perez R, Smith SW, Lindemann M (1999) Application
support architecture for a high-performance, programmable
secure coprocessor. In: Proceedings of the 22nd National Infor-
mation Systems Security conference

10. England P, Lampson B, Manferdelli J, Peinado M, Willman B
(2003) A trusted open platform. IEEE Comput 36:55–62

11. Günther, CG (1990) An identity-based key-exchange proto-
col. In: Quiswater J-J, Vandewalle J (eds) Proceedings of
Advances in Cryptology – Eurocrypt ’89. Lecture notes in
computer science, vol 434. Springer, Berlin Heidelberg New
York, pp 29–37

12. Iliev A, Smith SW (2003) Prototyping an armored data vault:
rights management for big brother’s computer. In: Dingledine
R, Syverson P (eds) Privacy enhancing technologies. Lecture
notes in computer science, vol 2482. Springer, Berlin Heidel-
berg New York, pp 144–159

13. Jiang S, Smith SW, Minami K (2001) Securing web servers
against insider attack. In: Proceedings of the 17th annual com-
puter security applications conference. IEEE Press, New York,
pp 265–276

14. Kohlas R, Maurer U (2000) Reasoning about public-key certi-
fication: on bindings between entities and public keys. J Select
Areas Commun 18:551–560

15. Lie D, Thekkath C, Mitchell M, Lincoln P, Boneh D, Mitchell
J, Horowitz M (2000) Architectural Support for Copy and
Tamper Resistant Software. In: Proceedings of the 9th inter-
national conference on architectural support for programming
languages and operating systems. ACM Press, New York,
pp 168–177

16. Marchesini J, Smith SW, Wild O, MacDonald R (2003) Ex-
perimenting with TCPA/TCG hardware, or: How I learned to
stop worrying and love the bear. Computer Science Technical
Report TR2003-476, Dartmouth College

17. Maurer U (1996) Modelling a public-key infrastructure. In:
Bertino E, Kurth H, Martella G, Montolivo E (eds) Proceed-
ings of Computer Security – ESORICS 96. Lecture notes in
computer science, vol 1146. Springer, Berlin Heidelberg New
York

18. McGregor P, Lee R (2003) Virtual secure co-processing on
general-purpose processors, Computer Engineering Technical
Report CE-L2002-003, Princeton

19. Pearson S (ed) (2003) Trusted computing platforms: TCPA
technology in context. Prentice-Hall, Upper Saddle River, NJ

20. Smith SW (1996) Secure coprocessing applications and re-
search issues. Los Alamos Unclassified Release LA-UR-96-
2805, Los Alamos National Laboratory

21. Smith SW, Safford D (2001) Practical server privacy using
secure coprocessors. IBM Sys J 40:683–695

22. Smith SW, Palmer E, Weingart S (1998) Using a high-
performance, programmable secure coprocessor. In: Hirschfeld
R (ed) Financial cryptography. Lecture notes in computer sci-
ence, vol 1465. Springer, Berlin Heidelberg New York, pp 73–
89

23. Smith SW, Weingart S (1999) Building a high-performance,
programmable secure coprocessor. Comput Netw 31:831–860

24. Stam N (2003), Inside Intel’s secretive ‘LaGrande’ project.
http://www.extremetech.com/

25. Suh G, Clarke D, Gassend B, van Dijk M, Devadas S (2003)
AEGIS: architecture for tamper-evident and tamper-resistant
processing. In: Proceedings of the 17th international confer-
ence on supercomputing. ACM Press, New York, pp 160–171

S.W. Smith: Outbound authentication for programmable secure coprocessors 41

26. Trusted Computing Platform Alliance (2001) TCPA design
philosophies and concepts, version 1.0

27. Tygar JD, Yee BS (1993) Dyad: a system for using physically
secure coprocessors. In: Proceedings of the joint Harvard-MIT
workshop on technological strategies for the protection of in-
tellectual property in the network multimedia environment

28. Yee BS (1994) Using Secure Coprocessors. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, May 1994. Also
available as Computer Science Technical Report CMU-CS-94-
149

29. Yee BS (1997) A sanctuary for mobile agents. Computer Sci-
ence Technical Report CS97-537, UCSD

30. Yee BS, Tygar JD (1995) Secure coprocessors in electronic
commerce applications. In: Proceedings of the 1st USENIX
Electronic Commerce workshop. USENIX, pp 155–170

S.W. Smith is currently on
the faculty of the Department of
Computer Science at Dartmouth
College. His current research fo-
cuses on how to build trustable
systems in the real world. He
previously worked as a scientist
at IBM T.J. Watson Research
Center doing secure coprocessor
design, implementation, and val-
idation and at Los Alamos Na-
tional Laboratory doing security

designs and analyses for a wide range of public-sector clients.
Dr. Smith was educated at Princeton (B.A., mathematics)
and CMU (M.S., Ph.D., computer science) and is a mem-
ber of ACM, USENIX, the IEEE Computer Society, Phi Beta
Kappa, and Sigma Xi.

