
Chapter 1

LIGHTWEIGHT INTRUSION DETECTION
FOR RESOURCE-CONSTRAINED EMBEDDED
CONTROL SYSTEMS

Jason Reeves, Ashwin Ramaswamy, Michael Locasto, Sergey Bratus,
and Sean Smith

Abstract Today’s power grid depends on embedded control systems to function
properly. Securing these systems presents a unique challenge, since on
top of the resource restrictions inherent to embedded devices, SCADA
systems must accommodate strict timing requirements that are non-
negotiable, and their massive scale greatly amplifies costs such as power
consumption. Together, these constraints make the conventional ap-
proach to host intrusion detection—namely, using a hypervisor to cre-
ate a safe environment from which a monitoring entity can operate—too
costly or impractical for embedded control systems in such critical in-
frastructure.

In this paper, we introduce Autoscopy, an experimental host intrusion
detection mechanism that operates from within the kernel and leverages
its built-in tracing framework to look for control-flow anomalies, which
are most often caused by rootkits hijacking kernel hooks. In initial
testing on a standard laptop system, our prototype was able to detect
a representative selection of control-flow hijacking rootkit techniques
while imposing less than 5% performance overhead for the majority of
our benchmark tests. We argue that its design and effectiveness make it
both feasible for and uniquely suited to intrusion detection for SCADA
systems, and are currently porting Autoscopy to actual power hardware
to test our hypothesis. Being situated in the kernel, Autoscopy needs
some hardware (e.g., memory immutability) or software protection (i.e.,
kernel hardening) measures in place for its own protection; however,
such protective measures would cost less than full-blown reference mon-
itor isolation via hardware virtualization at the core of hypervisor-based
proposals.

Keywords:
IDS, intrusion detection, embedded system



2

1. Introduction
In recent years, critical infrastructure has become reliant on embedded

control systems: computers implanted in larger devices to serve as con-
trollers and perform many of their important tasks. The power grid has
not been immune from this trend: one study predicts that the number of
smart electric meters deployed worldwide (and by extension the embed-
ded control systems inside these meters) will increase from 76 million in
2009 to roughly 212 million by 2014 [2].

The need to secure systems containing software that expresses com-
plex process logic is well understood, and this need is particularly impor-
tant for devices operating as part of a SCADA system, where this logic
applies to the control of potentially hazardous physical processes such as
power generation. Therefore, as embedded control devices continue to
permeate critical infrastructure, it is essential that we take steps to en-
sure the integrity of these devices. Failing to do so could have dangerous
consequences: Stuxnet [5], which targeted PC workstations used to con-
figure programmable logic controllers (PLCs) and successfully modified
the PLC code, is a recent example of malware that caused widespread
damage to physical installations by infecting their SCADA computers.

However, SCADA embedded control systems impose a stringent set of
requirements on protection mechanisms to be both viable and effective.
For one thing, the extra costs associated with security computation (i.e.,
the part of the overall computation performed by the device dedicated to
achieving security goals) do not scale in this environment—for example,
LeMay and Gunter [13] found that in a planned rollout of 5.3 million
electric meters, including a trusted platform module (TPM) with each of
these devices would incur an added power cost of over 490,000 kWh per
year, even assuming that the TPM sat idle at all times. Additionally,
embedded control systems within the power grid must also deal with
strict application timing requirements, some of which require a message
delivery time of no more than 2 ms for proper operation [9]. Thus,
to build a protection scheme for SCADA embedded control devices, we
must also take these extra factors into account.

The Problem with Virtualization. A number of malware pro-
tection proposals ([10, 16, 23, 25, 31, 40]) address the issue by using
virtualization, creating a trusted zone from which their monitoring pro-
grams can operate and relying on a hypervisor to moderate between the
host system and the monitor. These proposals, however, fail to take the
inherent resource constraints of embedded control systems into account.
For example, the space and storage constraints of embedded devices may



Reeves, Ramaswamy, Locasto, Bratus & Smith 3

make including a separate hypervisor impractical—in fact, Petroni and
Hicks [25] found that simply running the Xen hypervisor on their test
platform (a laptop featuring an 2 GHz dual-core processor and 1.5 GB of
RAM) imposed an overhead of nearly 40%. This finding indicates that
virtualization may not be a feasible option for SCADA embedded control
systems, and that we should consider different approaches to intrusion
detection on these devices.

By contrast, kernel hardening projects exemplified by grsecurity/PaX
[22] and OpenWall [21] that implemented a variety of security mecha-
nisms in the code of the Linux kernel itself (by creatively leveraging x86
and other architectures’ MMU hardware and the ELF binary format
features) were greatly successful in reducing the kernel’s attack surface
– without resorting to a separate implementation of a formal reference
monitor. This PaX approach empirically demonstrates the possibility of
providing practical security guarantees by embedding protection mech-
anisms within the kernel rather than by relying on an entirely separate
operating layer below the kernel; it also shows that added assurance and
performance can coexist in practice.

We note that whereas many hypervisor-based approaches may initially
appear attractive, the collective price (in terms of maintenance, patch-
ing, energy, etc.) [3] obviates their use in a PCS/SCADA/embedded
environment. In contrast, PaX demonstrates the suitability of a protec-
tion mechanism that relies on already-deployed mechanisms that form a
core part of the existing hardware and OS kernel system stack. While
such an arrangement (i.e., dispensing with a separate reference moni-
tor) might at first seem to be a losing proposal for a security pattern,
in practice, it actually requires extensive and creative machinations on
the part of an exploit aimed at such a hardened kernel. Notably, re-
cently published attacks on the Linux kernel depend on assumptions
that one or more of these PaX-like protective features are disabled or
not present. Indeed, there has been little public work on exploitation of
grsecurity/PaX kernels; even leveraging high-impact “arbitrary write”
kernel code vulnerabilities for exploitation of PaX kernels is hard [32].
Proof-of-concept attacks on PaX primarily underscored the complexity
of the task, with the PaX team’s rapid elimination of the PoC’s generic
attack vector serving as further evidence of the PaX defensive approach’s
viability.

This technical pattern forecasts the practicality of a “same-layer” pro-
tection mechanism.

Our Approach. In this paper, we describe Autoscopy, an in-kernel,
flow-control intrusion detection technique for embedded control systems,



4

intended to be used alongside and as a complement to kernel-hardening
measures. It does not rely on a hypervisor and instead operates within
the operating system itself, leveraging mechanisms already built into the
OS kernel (specifically, Kprobes [17]) to try to minimize the overhead it
imposes on its host. Autoscopy looks for control-flow anomalies caused
by the hijacking of function pointers within the kernel, a hallmark of
rootkits that wish to inject their own functionality into the OS. In tests
run on a standard laptop system, Autoscopy was able to detect every
one of the published control-flow hooking rootkit techniques it was tested
against, while imposing an overhead of 5% or less on a wide range of
performance benchmarks.

These results indicate that unlike virtualized intrusion detection so-
lutions, Autoscopy’s design and performance make it well-suited to the
task of protecting embedded control devices, including those that make
up the infrastructure of critical industries.

We structure the rest of the paper as follows: Section 2 offers some
brief background material, Section 3 describes recent intrusion detection
proposals, Section 4 introduces Autoscopy and discusses its advantages
and limitations, Section 5 summarizes the results of our non-embedded
tests, Section 6 presents our arguments that using Autoscopy to protect
mission-critical embedded control systems is both possible and practical,
and Section 7 concludes.

2. Background
In this section, we introduce the methods and best practices of a

standard intrusion detection system (IDS), explain why these may be
unattainable on a SCADA embedded control system, briefly discuss the
virtualization and self-protection approaches to intrusion detection, and
highlight the tracing framework we take advantage of for our IDS.

2.1 Embedded Control Systems in the Grid
Today’s electrical grid contains a wide variety of intelligent electronic

devices (IEDs), including transformers, relays, and remote terminal units.
The capabilities of these devices can vary widely—for example, the
ACE3600 RTU sports a 200 MHz PowerPC-based processor and runs
a VX-based real-time operating system [20], while the SEL-3354 com-
puting platform has an option for a 1.6 GHz processor based on the x86
architecture, and can support operating systems such as Windows XP
or Linux [34].

In addition to the typical resource restriction issues, embedded con-
trol systems within the power grid are often subject to strict timing



Reeves, Ramaswamy, Locasto, Bratus & Smith 5

requirements when passing data along the network. For example, IEDs
within a substation require a message delivery time of less then 2 ms
to stream transformer analog sampled data, and must be able to ex-
change event notification information for protection within 10 ms [9].
With these small timing windows, introducing even a small amount of
overhead could disrupt a device such that it cannot meet its message la-
tency requirements, prohibiting it from doing its job—an outcome that
may well be worse than a malware infection. Therefore, we must take
great care to limit the amount of overhead we impose, as the device’s
availability takes precedence over its security.

2.2 IDS Methods and Best Practices
Intrusion detection systems can be classified in two ways: the device

or medium it protects, and the method it uses to detect intrusions. In
the former case, an IDS can either be host-based, where it lives on a
single system and monitors its running processes and user actions, or
network-based, where it analyzes the packets flowing through a network
to look for malicious traffic [8]. In the latter case, an IDS’s detection
strategy is most often classified as misuse-based (looking for predefined
bad behavior) or anomaly-based (looking for deviations from predefined
good behavior) [29], though other groupings also exist (for example, [37]
mentions specification-based and behavioral detection).

The key to success for any IDS is its ability to mediate the host it
protects—that is, the IDS must capture any actions that could change
the state of the host system, and determine whether or not the actions
could move the system into an untrustworthy state; conversely, attackers
succeed by evading such mediation.

In the ideal case, an IDS will possess two important characteristics:
The IDS will be separated in some manner from the rest of the system,
letting it monitor the system while shielding it from host exploits (iso-
lation); the IDS will monitor every action that occurs on the system
(complete mediation).

However, while such goals are commendable, in practice they may
be too costly to attain when faced with the resource constraints of an
embedded control system. In contrast, Autoscopy opts for less expen-
sive methods of system mediation—namely, an in-kernel approach that
allows us to adjust the mediation scope as desired.

2.3 Virtualization vs. Self Defense
In the computer security community, virtualization most often means

simulating a specific hardware environment that can function as if it



6

were an actual system. Typically, one or more of these simulations, or
virtual machines (VMs), are run such that they are isolated from the
actual system and other VMs, with a virtual machine monitor (VMM)
in place to moderate a VM’s access to the real hardware.

Virtualization has become a commonly-used security measure, since
in theory a compromised program remains trapped inside the VM that
contains it, and thus cannot affect the underlying system it runs on.
Several recent IDS proposals ([10, 16, 25]) leverage this feature to sepa-
rate their detecting program from the system that it monitors, achieving
the isolation goal from Section 2.2. However, such a setup is computa-
tionally expensive—recall the 40% overhead added by the hypervisor
in [25]—and an embedded control system may not have the available
resources to support such a configuration feasibly.

To avoid the overhead of a virtualized or other external solution, we
propose using an internal approach to intrusion detection, one that al-
lows the kernel to monitor itself for malicious behavior. The idea of
giving the kernel a view of its own intrusion status dates at least as far
back as 1996, when Forrest et al. [6] proposed building a system-specific
view of “normal” behavior, which could then be used for comparisons
with future process behavior. The approach of Autoscopy can be viewed
through the same lens, as we provide the kernel with a module that
allows it to perform intrusion detection using its own structures, and
determine whether an action is trustworthy or not.

2.4 Kprobes
In recent years, several operating systems have introduced tracing

frameworks to give appropriately authorized users standard and easy
access to the internals of the system at the granularity level of kernel
symbols—for example, DTrace [4] for Solaris and Kprobes [17] for Linux.

Kprobes can be inserted to the kernel at any arbitrary address within
kernel text, unless the address is explicitly blocked from probing. Once
inserted, a breakpoint will be placed at the address specified by the
Kprobe, causing the kernel to trap upon reaching the address and pass
control to the kprobe notifier mechanism [17]. The instruction at the
specified address will be single-stepped, and the user-defined handler
functions run just before and just after the instruction, allowing us to
monitor and/or modify the state of the system at that point.

2.5 Where We Are Now
In the current state of affairs, embedded control systems already play a

large role in power grid control, and will play a larger one with the rollout



Reeves, Ramaswamy, Locasto, Bratus & Smith 7

of the smart grid. Securing these devices is important, but any security
mechanisms used cannot become too costly for the control system to
do its job. SCADA embedded control systems impose extra constraints
that make virtualized approaches to intrusion detection too costly or
impractical.

Our proposed intrusion detection system is meant to fill this protec-
tion gap within our critical infrastructure.

3. Related Work
It should be noted that a large part of kernel rootkit technique analysis

that defined the threat space and informed defenders originated in hacker
research publications and public forums such as the Phrack magazine and
the Bugtraq mailing list. There the discussion of system call hijacking
and countermeasures can be traced back to at least 1997 (see the classic
hacker guide [27] for a summary of this early work). A full survey of
such research is far beyond the scope of this paper; however, interested
reader should examine Phrack from issue #50 [26] onward.

A lot of work in the intrusion detection field has been based on the
availability of a hypervisor or other virtualization primitive. Petroni and
Hicks’s SBCFI system [25] uses VMs to create a separate, secure space
for their control-flow monitoring program, from which they validate both
the kernel text and any control-flow transfers in the monitored OS. Both
Litty, Lagar-Cavilla, and Lie’s Patagonix system [16] and Jiang, Wang,
and Xu’s VMWatcher approach [10] use hypervisors to protect their
monitoring programs, but take different approaches to bridging the se-
mantic gap between the hypervisor and the OS—Patagonix relies on
the behavior of the hardware to verify the code being executed, while
VMWatcher simply reconstructs the internal semantics of the monitored
system for an IDS within the secured VM to use. Riley, Jiang, and Xu’s
NICKLE system [31] and the HookSafe proposal from Wang et al. [40]
use trusted shadow copies of data to protect against rootkits—NICKLE
uses a VMM to create a copy of a VM’s memory space containing only
authenticated kernel instructions, to ensure that unauthenticated code
is not allowed to run in kernel space, while HookSafe copies the kernel
hooks of an OS into a page-aligned memory area, where it can take ad-
vantage of the page-level protection within the hardware to moderate
access to them.

There have been many other malware detection proposals that do not
require a hypervisor, but they suffer from other drawbacks that affect
their usefulness on an embedded control system. For example, Kolbitsch
et al. [11] build a behavior graph of individual malware samples using



8

system calls the malware invokes, then try to match unknown programs
to its graphs to see if it finds a match. However, much like traditional
antivirus systems, it requires prior analysis of malware samples, and de-
ploying updates to embedded devices—which may be remotely deployed
in areas with questionable network coverage—remains a challenge. In-
tegrating a security policy into programs has also been investigated, but
the ideas could require a nontrivial amount of effort adapting to the new
systems. As an example, the proposal of Hicks et al. [7] to bring together
a security-typed language with the OS services that handle mandatory
access control would most likely require rewriting a large number of
legacy applications.

Kprobes have also been used for a number of different tasks. Most of
these proposals focus on debugging the kernel, or analyzing the per-
formance of the kernel (for example, Prasad et al.’s Systemtap pro-
gram [28]), but more recently several novel Kprobe uses have been devel-
oped, such as using them for packet capturing [12] and monitoring the
energy usage of a system [35]. To the best of our knowledge, however,
our work is the first to leverage Kprobes as a tool for system protection.

4. The Design of Autoscopy
In this section, we will briefly overview the basic Autoscopy system,

and how its setup makes it uniquely suited to operate on an embedded
control system. (The second author’s thesis [30] contains more detail.)

4.1 How Autoscopy Works
Autoscopy does not look for specific instances of malware on its host—

instead, the program watches for a specific type of control-flow alteration
commonly associated with malicious programs. The control flow of a
given program is defined as the sequence of code instructions that are
executed by the host system when this program is run. Diverting con-
trol flow within a system has been a favored tactic of malware authors
for some time, and as such, using control-flow constraints as a secu-
rity device has been a well-explored area of research (see [1] for a good
discussion of the topic).

Specifically, Autoscopy looks for a certain type of pointer hijacking,
where a malicious function interposes itself between a function pointer
and the original function that was pointed to. The pointer is hijacked to
instead point to the malicious function, which will then call the original
target function of the pointer somewhere within itself. This way, a mali-
cious program can use the original target function to preserve the illusion
of normalcy on the system by giving the user the output he or she ex-



Reeves, Ramaswamy, Locasto, Bratus & Smith 9

pects, while allowing the malware to perform whatever actions it desires
(for example, scrubbing the output to hide itself and its activities).

The system consists of two phases:

The Learning Phase. In this phase, Autoscopy scans the kernel
for function pointers to protect, and collects information about “nor-
mal” behavior on the system. First, Autoscopy scans kernel memory for
function pointers by dereferencing every address it finds, looking for any
address that could point to another location within the kernel. (This list
can be verified against the kernel’s System.map file if desired.) Next, the
system places a Kprobe on every potential function pointer it finds, then
silently monitors the probe as the system operates, collecting whatever
control-flow information it requires for the detection method being used.
(Multiple rounds of probing may be necessary, and any probes that are
never activated are removed from consideration.) The end result is a
list of all of the functions Autoscopy has tagged as called by a function
pointer, complete with the necessary detection information.

To get a complete picture of trusted behavior, we used the Linux
Test Project [15] to exercise as much of the kernel as possible, to try to
bring rarely-used functions under our protection scope and reduce false
positives from frequently-used ones. However, this method may leave
out some of the more task-specific behavior, so we recommend working
actual use cases into the learning phase on top of using any test suites.

The Detection Phase. Here, Autoscopy again inserts Kprobes on
the functions tagged in the learning phase, but instead of collecting in-
formation about system behavior, it verifies the information against the
“normal” behavior data compiled earlier. Any anomalous control-flows
we find can be either announced immediately or logged for collection at
the administrator’s discretion.

4.2 Autoscopy Detection Methods
We have used two detection methods over the course of our research:

Argument Similarity. We define the argument similarity between
two functions as the number of equivalent arguments (both in terms of
position and value) that the functions share. Using this method, we
collect the register values, or context, of the pointer addresses within
the learning phase, then examine both the current and future direction
of the control-flow of each probed address during the detection phase.
We examine the current control-flow state by looking at the call stack,
then check the future direction by placing probes on functions called



10

by the currently-probed function. If more than half of the arguments
between the currently probed function and a function discovered above
or below it within the current control flow, Autoscopy flags the finding
as suspicious behavior. (We chose this 1

2 threshold after manual analysis
of the rootkit control hijacking techniques we observed.)

Trusted Location Lists. This method simply uses the return
address specified upon entering a probed function as a way to verify
whether the control flow has been modified. While location-based ver-
ification is nothing new (defensive tools such as s0ftpj.org KSTAT and
KSEC offered it at least since 2000 [36]; academic treatment can be
found in, e.g., Levine, Grizzard, and Owen [14]), it allows us to make
a simple decision about whether the current control flow is trustworthy
or not. For this technique, we collect the return addresses that we en-
counter at each probe during the learning phase, then use the collected
data to build trusted location lists that we can verify against in the de-
tection phase. Any return addresses found that were not encountered
during the learning phase are logged for analysis.

Moving from using argument similarity to building trusted location
lists increases the flexibility of our program, but also placed more re-
strictions on our malware detection capabilities (we discuss this more in
Section 4.3).

4.3 Advantages of Autoscopy
In its current state, Autoscopy offers several advantages, especially

for use on an embedded control system:

Lower space and processing requirements. Unlike some other
IDS solutions, Autoscopy spares us the overhead of a hypervisor or other
high-cost virtualization mechanism. Additionally, our prototype lever-
ages the built-in Kprobes [17] framework of the Linux kernel rather than
reinventing the wheel, reducing the amount of code required.

Flexibility across multiple architectures. This benefit was
the main reason we moved to using trusted location lists. The imple-
mentation of argument similarity from [30] involved disassembling entire
functions to locate the hooks in question. With trusted location lists,
however, only one instruction (the function call) needs to be disassem-
bled per probe. This switch helps limit the amount of knowledge about
the underlying architecture and instruction set that we need, which in
turn limits the amount of code we need to change when porting to a
host built using a different architecture.



Reeves, Ramaswamy, Locasto, Bratus & Smith 11

The allowance of legitimate pointer hijacking. If desired,
Autoscopy can be used in conjunction with other programs that alter
the control flow of a system for security or other legitimate reasons (for
example, Lares [23] from Payne et al., although it also uses a VM).
Autoscopy will simply tag the program’s behavior as trusted during the
learning phase. (This indiscriminate tagging, however, can also also be
a drawback, as mentioned in Section 4.4.)

A simple way to adjust our mediation scope. While the
question of what and what not to monitor may require a deeper analysis,
changing the number of locations to probe is as simple as adding or
removing them from the list of kernel hooks generated in the learning
phase.

4.4 Drawbacks of Autoscopy
For all of the advantages Autoscopy offers, however, it also has several

shortcomings that need to be taken into account:

The program is a target for malware. By operating within the
kernel, Autoscopy is as open to compromise as the host system itself.
While we can take additional measures to protect the integrity of the
program and kernel—[30] suggests W⊕X/NX [19] or Copilot [24]—these
programs may run up against the resource constraints of the embedded
control system.

The program requires a trusted base state. Because argument
similarity checked both above and below a probed function during its
malware check, we were able to detect malware that had been installed
both before and after Autoscopy’s deployment. However, since we con-
struct our trusted lists by simply whitelisting every return address we
see from a probed function, any malware installed before starting the
learning phase will be classified as trusted behavior. Therefore, the sys-
tem that hosts Autoscopy needs to be placed in a trusted base state
before executing the learning phase, to make sure that any malicious
behavior is classified properly.

The program must be tuned to the host it resides on. As
noted in Section 2.1, “embedded control systems” encompass a large
group of devices, and Autoscopy will require some tweaking to run on
each one. To do so, we need to address a large number of issues, that
mainly fall into three categories:



12

1 Kernel Differences. We need to make sure the kernel is config-
ured properly to support our program. These issues range from
simple compilation configuration choices (such as enabling Kprobes)
to differences in the kernel text across versions of the operating sys-
tem (such as making sure kernel functions used by Autoscopy are
exported for module use).

2 Architecture Differences. We need to make sure our system is
properly adapted to the architecture of its host. For example, we
need to know which register or memory location holds the return
address of a function, and how to access it.

3 Tool Availability. We must ensure that any outside tools or li-
braries used by Autoscopy are available across multiple platforms.
For example, Autoscopy originally used udis86 [39], an x86-specific
disassembler library, which meant that a similar tool had to be lo-
cated for use on other architectures. This issue has been made less
important by the switch to building trusted lists, as less disassem-
bly is required.

Luckily, although these concerns make configuring Autoscopy to run
on different platforms a non-trivial task, it is a one-time cost that we
must only incur before installation.

4.5 Threats Against Autoscopy
Here, we elaborate on some of the potential attacks against Autoscopy.

Data Modification. If an attacker has the capability to read and
write to arbitrary locations on the system, he or she could conceivably
modify the underlying data structures to punch a hole in Autoscopy’s
defenses—for example, it could modify a Kprobe or trusted location list
to include the addresses of malicious functions.

Program Circumvention. Autoscopy detects malware by check-
ing for the use of legitimate kernel functions from illegitimate locations.
However, if an attacker instead used its own code to duplicate the func-
tionality of a kernel function, he or she could avoid any probed functions
and bypass Autoscopy completely.

While these attacks are a concern, we have still raised the bar that
a malicious program must clear to subvert our system by forcing mal-
ware to increase its footprint on the host, either in terms of processor
cycles (as more will be needed to locate the appropriate data structures)



Reeves, Ramaswamy, Locasto, Bratus & Smith 13

Technique Demonstrated By Can Find?

Syscall Table Hooking superkit Y
Syscall Table Entry Hooking kbdv3, Rial, Synapsys v0.4 Y

Interrupt Table Hooking enyelkm v1.0 Y
Interrupt Table Entry Hooking DR v0.1 Y

/proc Entry Hooking DR v0.1, Adore–ng 2.6 Y
VFS Hooking Adore–ng 2.6 Y

Kernel Text Modification Phantasmagoria N

Table 1. A partial listing of techniques used by malware to subvert an operating
system, some examples of text and/or code that demonstrated these techniques, and
whether or not Autoscopy was able to detect these techniques. (See [30] for a complete
list of rootkits used for testing.)

or codebase size (to accommodate the extra functions needed to dupli-
cate kernel behavior). These issues, in turn, increase the chances of the
malware being noticed on the host system.

If available, we can also use other tricks to protect Autoscopy’s data—
for example, placing our trusted lists in a read-only memory chip. Once
again, however, the constraints of our embedded host may make this
idea infeasible.

5. Preliminary Evaluation of Autoscopy
For our initial Autoscopy prototype, we tested our program on a stan-

dard laptop system running Ubuntu 7.04 and using the 2.6.19.7 version
of the Linux kernel. We evaluated Autoscopy on two criteria: its ability
to detect common control-flow altering techniques, and the amount of
overhead (in terms of both additional time required and bandwidth re-
duction) that it imposed on its host. Our tests showed that Autoscopy
performed well in both areas.

5.1 Detection of Hook Hijacking
We tested Autoscopy against a collection of control-flow-altering rootk-

its representative of kernel hook hijacking techniques, two of which we
developed as proof-of-concept (again, see [30] for more detail). Although
most of these sample rootkits are prototypes publicly released to demon-
strate a set of hooking techniques rather than actual stealth malware
captured in the wild, they were written to showcase a broad range of
control-flow-altering techniques and the respective control flow behav-
iors. These techniques are listed in Table 1; Autoscopy was able to detect
every one of the hooking behaviors listed.



14

5.2 Performance Overhead
We measured the impact of Autoscopy using five benchmark pro-

grams: two standard benchmark suites (SPEC CPU2000 [38] and lm-
bench [18]) two large compilation projects (compiling a version of the
Apache web server and the Linux kernel), and one test involving the
creation of a large file. In the vast majority of these tests, we found
that Autoscopy imposed an additional time cost of 5% or less on the
system. (In fact, some of our tests indicated that the system ran faster
with Autoscopy installed, which we interpreted to mean that Autoscopy
had no noticeable impact on the system.) Only one test (the bandwidth
measurement of reading a file) showed a large discrepancy between its
results with and without Autoscopy installed, which we hypothesized
was the result of the kernel preempting the I/O path or interfering with
disk caching when probed. (Table 2 lists the benchmarks used.) Over-
all, however, the system was not heavily inconvenienced by Autoscopy’s
presence.

5.3 False Positives
To try to combat false positives (where we “detect” a non-existent

rootkit), our original prototype uses a type-checking device that classi-
fies hooks based on the structure that they are enclosed in (which may
be none at all for global functions), and the offset of the hook within
its enclosing structure. This classification prevents us from flagging a
control flow that contains two similar-but-not-equivalent indirect calls
as suspicious behavior.

False negatives (not finding an existing rootkit) present an interesting
challenge for Autoscopy, as locating potential hook-hijacking locations
depends on the definition of normal system behavior that we generate.
For example, if a function is called indirectly from a pointer within the
kernel, but the function is never called in this manner during Autoscopy’s
learning phase, then our system will not probe this location and leave
an opening for the hook to be hijacked silently. Therefore, having a
comprehensive test suite for use when conducting our learning phase is
crucial for avoiding these kind of events.

5.4 Prototype Shortcomings
In transitioning to our new trusted location list setup, we discovered

several issues in our Autoscopy prototype that could affect our per-
formance results. For example, each probe in the learning phase only
reserved enough space for a single function call (which was overwritten



Reeves, Ramaswamy, Locasto, Bratus & Smith 15

SPEC CPU2000 Benchmark
Name

Native (s) Autoscoped (s) Overhead

164.gzip 458.851 461.66 +0.609%
168.wupwise 420.882 419.282 -0.382%
176.gcc 211.464 209.825 -0.781%
256.bzip2 458.536 457.16 -0.303%
254.perlbmk 344.356 346.046 +0.489%
255.vortex 461.006 467.283 +1.343%
177.mesa 431.273 439.97 +1.977%

lmbench Latency Measurements Native
(µs)

Autoscoped
(µs)

Overhead

Simple syscall 0.1230 0.1228 -0.163%
Simple read 0.2299 0.2332 +1.415%
Simple write 0.1897 0.1853 -2.375%
Simple fstat 0.2867 0.2880 +0.451%
Simple open/close 7.1809 8.0293 +10.566%

lmbench Bandwidth Measure-
ments

Native
(Mbps)

Autoscoped
(Mbps)

Overhead

Mmap Read 6622.19 6612.64 +0.144%
File Read 2528.72 1994.18 +21.139%
libc bcopy unaligned 6514.82 6505.84 +0.138%
Memory Read 6579.30 6589.08 -0.149%
Memory Write 6369.95 6353.28 +0.262%

Benchmark Name Native (s) Autoscoped (s) Overhead

Apache httpd 2.2.10 Compilation 184.090 187.664 +1.904%
Random 256MB File Creation 141.788 147.78 +4.055%
Linux kernel 2.6.19.7 Compilation 5687.716 5981.036 +4.904%

Table 2. The initial benchmark results for Autoscopy. Note that with the lmbench
bandwidth measurements, smaller numbers indicate more overhead.

every time the probe was hit), and checked for indirect function calls
only after it finished with the probe, meaning that a) if a function was
called both indirectly and directly, it could be overlooked by the learning
phase if it was last called directly before being checked, and b) if a func-
tion was called indirectly from multiple locations, all but one of these
locations would be tagged as a false positive. This issue and others like
it have be identified and corrected in our current version of Autoscopy;
however, testing of the newer version is still ongoing.

6. Ongoing Work
Our ultimate goal is to demonstrate the feasibility of using Autoscopy

to protect production systems within the power grid, without prohibiting
the device from performing its required tasks. To do this, we plan to
port Autoscopy to some examples of embedded control devices currently



16

used within the power grid, to evaluate the program’s performance on
real equipment.

Currently, we are collaborating with Schweitzer Engineering Labora-
tories [33] to see how an Autoscopy-enabled power device would perform
in simulated use cases, as compared to using a virtual machine and hy-
pervisor. They have suggested two devices to use in our Autoscopy tests:
an x86-based general computing platform, and a weaker PowerPC-based
device. The differences between the two systems, in terms of both archi-
tecture and resource availability, will provide a good test of Autoscopy’s
flexibility and lightweight design.

To provide a suitable comparison, we will also test a basic virtual-
ized configuration on both power devices, placing the kernel inside a
VM monitored by a hypervisor and running the same tests as with the
Autoscopy-enabled devices. This will provide a benchmark to show how
Autoscopy performs in relation to a hypervisor-based solution. Our plan
is to evaluate Autoscopy and our hypervisor alternative in terms of the
overhead they impose on our power systems, to see whether our in-kernel
approach can offer better performance through less interference.

7. Conclusion
In this paper, we presented a practical approach to intrusion detection

that operates within the OS kernel and leverages its built-in tracing
frameworks to minimize the performance overhead on its host. We built
the prototype Autoscopy system, demonstrated its effectiveness in a non-
embedded setting, argued that such an approach is feasible for protecting
embedded control systems within the power grid, and outlined our plans
to test our theories and compare our Autoscopy program to existing
hypervisor-based IDS solutions. Given the critical, time-sensitive nature
of the tasks performed by devices within the power grid, Autoscopy
offers the flexibility to balance its detection abilities with the overhead
it imposes on the system.

Acknowledgements
The authors would like to thank Dave Whitehead and Dennis Gammel at Schweitzer

Laboratories and Tim Yardley of the University of Illinois at Urbana-Champaign for
their advice and assistance in putting together our Autoscopy test plan. Portions of
sections 1 through 5 are based in part on the thesis work of the second author [30].

This material is based upon work supported by the Department of Energy under
Award Number DE-OE0000097. This report was prepared as an account of work
sponsored in part by an agency of the United States Government. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



Reeves, Ramaswamy, Locasto, Bratus & Smith 17

References
[1] M. Abadi, M. Budiu, U. Erlingsson and J. Ligatti, Control-Flow Integrity: Prin-

ciples, Implementations, and Applications, Proceedings of the 12th ACM Con-
ference on Computer and Communications Security, 2005.

[2] About 212 Million “Smart” Electric Meters in 2014, Says ABI Research, Trans-
mission and Distribution World, 2010 (tdworld.com/smart grid automation/

abi-research-smart-meters-0210/).
[3] S. Bratus, M. Locasto, A. Ramaswamy and S. Smith, VM-based Security

Overkill: A Lament for Applied Systems Security Research, Proceedings of the
2010 Workshop on New Security Paradigms, 2010.

[4] B. Cantrill, M. Shapiro and A. Leventhal, Dynamic Instrumentation of Produc-
tion Systems, Proceedings of the 2004 USENIX Annual Technical Conference,
2004.

[5] N. Falliere, L. O’Murchu and E. Chien, W32.Stuxnet Dossier, 2011
(www.symantec.com/content/en/us/enterprise/media/security response/

whitepapers/w32 stuxnet dossier.pdf).
[6] S. Forrest, S. Hofmeyr, A. Somayaji and T. Longstaff, A Sense of Self for Unix

Processes, Proceedings of the 1996 IEEE Symposium on Security and Privacy,
1996.

[7] B. Hicks, S. Rueda, T. Jaeger and P. McDaniel, From Trusted to Secure: Building
and Executing Applications that Enforce System Security, Proceedings of the
2007 USENIX Annual Technical Conference, 2007.

[8] P. Innella and O. McMillan, An Introduction to IDS, Symantec Connect, 2001
(www.symantec.com/connect/articles/introduction-ids).

[9] IEEE Standard Communication Delivery Time Performance Requirements
for Electric Power Substation Automation, IEEE Standard 1646-2004, 2005
(ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=1405811).

[10] X. Jiang, X. Wang and D. Xu, Stealthy Malware Detection Through VMM-
Based “Out-of-the-Box” Semantic View Reconstruction, Proceedings of the 14th
ACM Conference on Computer and Communications Security, 2007.

[11] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou and X. Wang,
Effective and Efficient Malware Detection at the End Host, Proceedings of the
18th USENIX Security Symposium, 2009.

[12] B. Lee, S. Moon and Y. Lee, Application-Specific Packet Capturing Using Kernel
Probes, Proceedings of the 11th IFIP/IEEE International Conference on Sym-
posium on Integrated Network Management, 2009.

[13] M. LeMay and C. Gunter, Cumulative Attestation Kernels for Embedded Sys-
tems, 14th European Symposium on Research in Computer Security, 2009.

[14] J. Levine, J. Grizzard and H. Owen, A Methodology to Detect and Characterize
Kernel Level Rootkit Exploits Involving Redirection of the System Call Table,
Proceedings of the 2nd IEEE International Information Assurance Workshop,
2004.

[15] Linux Test Project (http://ltp.sourceforge.net/).
[16] L. Litty, H. A. Lagar-Cavilla and D. Lie, Hypervisor Support for Identifying

Covertly Executing Binaries, Proceedings of the 17th Conference on Security
Symposium, 2008.

[17] A. Mavinakayanahall, P. Panchamukhi, J. Keniston, A. Keshavamurthy and M.
Hiramatsu, Probing the Guts of Kprobes, Proceedings of the Ottawa Linux Sym-
posium, 2006.

[18] L. McVoy and C. Staelin, lmbench: Portable Tools for Performance Analysis,
Proceedings of the 1996 USENIX Annual Technical Conference, 1996.



18

[19] Ingo Molnar, NX (No eXecute) Support for x86, 2.6.7-rc2-bk2, Email to the
Linux Kernel Mailing List, 2004 (http://lkml.org/lkml/2004/6/2/228).

[20] Motorola Solutions, Inc., ACE3600 Specifications Sheet (http://www.motorola.
com/web/Business/Products/SCADA%20Products/ACE3600/%5FDocuments/

Static%20Files/ACE3600%20Specifications%20Sheet.pdf?pLibItem=1).
[21] The Openwall Project, Openwall GNU/*/Linux (Owl)—A Security-Advanced

Server Platform, 2011 (http://www.openwall.com/Owl/).
[22] PaX - Homepage, 2011 (http://pax.grsecurity.net/).
[23] B. Payne, M. Carbone, M. Sharif and W. Lee, Lares: An Architecture for Secure

Active Monitoring Using Virtualization, Proceedings of the IEEE Symposium on
Security and Privacy, 2008.

[24] N. Petroni Jr., T. Fraser, J. Molina and W. Arbaugh, Copilot - A Coprocessor-
Based Kernel Runtime Integrity Monitor, Proceedings of the 13th USENIX Se-
curity Symposium, 2004.

[25] N. Petroni Jr. and M. Hicks, Automated Detection of Persistent Kernel Control-
Flow Attacks, Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, 2007.

[26] Phrack Magazine #50, 1997 (http://www.phrack.org/issues.html?issue=50).
[27] pragmatic/THC, (nearly) Complete Linux Loadable Kernel Modules, 1999

(http://dl.packetstormsecurity.net/docs/hack/LKM HACKING.html).
[28] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Keniston and B. Chen, Locating

System Problems Using Dynamic Instrumentation, Proceedings of the 2005 Linux
Symposium, 2005.

[29] P. Proctor, The Practical Intrusion Detection Handbook, Prentice Hall (Upper
Saddle River, NJ), 2001.

[30] A. Ramaswamy, Autoscopy: Detecting Pattern-Searching Rootkits via Control
Flow Tracing, Masters Thesis, Dartmouth College, Hanover, New Hampshire,
2009.

[31] R. Riley, X. Jiang and D. Xu, Guest-Transparent Prevention of Kernel Rootk-
its with VMM-Based Memory Shadowing, Proceedings of the 11th International
Symposium on Recent Advances in Intrusion Detection, 2008.

[32] Dan Rosenberg and Jon Oberheide, Interview, May 2011, (http://resources.
infosecinstitute.com/exploiting-gresecuritypax/).

[33] Schweitzer Engineering Laboratories, Inc. (http://www.selinc.com/).
[34] Schweitzer Engineering Laboratories, Inc., SEL-3354 Embedded Automation

Computing Platform - Data Sheet (www.selinc.com/WorkArea/DownloadAsset.
aspx?id=6196).

[35] D. Singh and W. J. Kaiser, The Atom LEAP Platform for Energy-Efficient Em-
bedded Computing, Technical Report, Center for Embedded Network Sensing,
University of California, Los Angeles, California, 2010.

[36] s0ftpr0ject - Tools and Projects (http://www.s0ftpj.org/en/tools.html).
[37] R. Sommer and V. Paxson, Outside the Closed World: On Using Machine Learn-

ing for Network Intrusion Detection, Proceedings of the 2010 IEEE Symposium
on Security and Privacy, 2010.

[38] Standard Performance Evaluation Corporation, SPEC CPU2000 Benchmark
Suite (http://www.spec.org/cpu2000/).

[39] V. Thampi, udis86 Disassembler Library, 2009 (http://udis86.sf.net/).
[40] Z. Wang, X. Jiang, W. Cui and P. Ning, Countering Kernel Rootkits with

Lightweight Hook Protection, Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, 2009.


