
Ž .Computer Networks 31 1999 831–860

Building a high-performance, programmable secure coprocessor

Sean W. Smith ), Steve Weingart 1

Secure Systems and Smart Cards, IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

Abstract

Secure coprocessors enable secure distributed applications by providing safe havens where an application program can
Ž .execute and accumulate state , free of observation and interference by an adversary with direct physical access to the

device. However, for these coprocessors to be effective, participants in such applications must be able to verify that they are
interacting with an authentic program on an authentic, untampered device. Furthermore, secure coprocessors that support
general-purpose computation and will be manufactured and distributed as commercial products must provide these core
sanctuary and authentication properties while also meeting many additional challenges, including:
Ø the applications, operating system, and underlying security management may all come from different, mutually suspicious

authorities;
Ø configuration and maintenance must occur in a hostile environment, while minimizing disruption of operations;
Ø the device must be able to recover from the vulnerabilities that inevitably emerge in complex software;
Ø physical security dictates that the device itself can never be opened and examined; and
Ø ever-evolving cryptographic requirements dictate that hardware accelerators be supported by reloadable on-card software.
This paper summarizes the hardware, software, and cryptographic architecture we developed to address these problems.
Furthermore, with our colleagues, we have implemented this solution, into a commercially available product. q 1999
Elsevier Science B.V. All rights reserved.

Keywords: Secure coprocessor; Computer security; Privacy; FIPS 140-1; Smart card; Token; Cryptography; Tamper-detection; Code-sig-
ning

1. Introduction

1.1. Secure coprocessors

Many current and proposed distributed applica-
tions face a fundamental security contradiction:
Ø computation must occur in remote devices,
Ø but these devices are vulnerable to physical attack

) Corresponding author. Tel.: q1-914-7847131; Fax: q1-914-
7846225; E-mail: sean@watson.ibm.com.

1 E-mail: c1shw@us.ibm.com.

by adversaries who would benefit from subvert-
ing this computation.
If an adversary can attack a device by altering or

copying its algorithms or stored data, he or she often
can subvert an entire application. The mere potential
of such attack may suffice to make a new application
too risky to consider.

Secure coprocessors – computational devices that
can be trusted to execute their software correctly,
despite physical attack – address these threats. Dis-
tributing such trusted sanctuaries throughout a hos-
tile environment enables secure distributed applica-
tions.

1389-1286r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S1389-1286 98 00019-X



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860832

Higher-end examples of secure coprocessing tech-
nology usually incorporate support for high-perfor-

Žmance cryptography and, indeed, the need to physi-
cally protect the secrets used in a cryptographic
module motivated FIPS 140-1, the US Government

w x .standard 11,14 used for secure coprocessors . For
over 15 years, our team has explored building high-
end devices: robust, general-purpose computational
environments inside secure tamper-responsive physi-

w xcal packages 15,22–24 . This work led to the Abyss,
mAbyss, and Citadel prototypes, and contributed to
the physical security design for some of earlier IBM
cryptographic accelerators.

However, although our efforts have focused on
high-end coprocessors, devices that accept much
more limited computational power and physical se-
curity in exchange for a vast decrease in cost – such
as IC chip cards, PCMCIA tokens, and ‘smart but-
tons’ – might also be considered part of the secure

Žcoprocessing family. As of this writing, no device
has been certified to the tamper-response criteria of
Level 4 of the FIPS 140-1 standard; even the touted

2 .Fortezza achieved only Level 2, tamper evident.
Even though this technology is closely associated

with cryptographic accelerators, much of the exciting
potential of the secure coprocessing model arises
from the notion of putting computation as well as
cryptographic secrets inside the secure box. Yee’s

w xseminal examination of this model 26 built on our
Citadel prototype. Follow-up research by Tygar and

w x Ž w x.Yee 21,27 and others e.g., Refs. 9,13,17 further
explores the potential applications and limits of the
secure coprocessing model.

1.2. Challenge

This research introduced the challenge: how do
we make this vision real? Widespread development
and practical deployment of secure coprocessing ap-
plications requires an infrastructure of secure de-
vices, not just a handful of laboratory prototypes.
Recognizing this need, our team has recently com-
pleted a several-year research and development pro-

2 In November 1998, as this paper went to press, our device
earned the world’s first FIPS 140-1 Level 4 certificate.

ject to design, develop, and distribute such a device
– both as a research tool and as a commercial
product, which reached market August 1997.

This project challenged us with several constraints
w x20 :
Ø the device must offer high-performance computa-

tional and cryptographic resources;
Ø the device must be easily programmable by IBM

and non-IBM developers, even in small quanti-
ties;

Ø the device must exist within the manufacturing,
distribution, maintenance, and trust confines of a

Žcommercial product as opposed to an academic
.prototype from a private vendor.

However, the projected lifecycle of a high-end
secure coprocessor challenged us with security is-
sues:
Ø How does a generic commercial device end up in

a hostile environment, with the proper software
and secrets?

Ø How do participants in distributed applications
distinguish between a properly configured, un-
tampered device, and a maliciously modified one
or a clone?

1.3. OÕerÕiew of our technology

1.3.1. Hardware design
w xFor our product 12 , we answered these questions

by building on the design philosophy that evolved in
our previous prototypes:

ŽØ maximize computational power e.g., use as big a
CPU as is reasonable, and use good cryptographic

3.accelerators ;
Ž .Ø support it with ample dynamic RAM DRAM ;

Ø use a smaller amount of battery-backed RAM
Ž .BBRAM as the non-volatile, secure memory;
and

Ø assemble this on a circuit board with technology
to actively sense tamper and near-instantly ze-
roize the BBRAM.

Fig. 1 sketches this design.

3 Our current hardware features a 66 MHz 486 CPU, and
Ž .accelerators for DES, modular math hence RSA and DSA , and

noise-based random number generation.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 833

Fig. 1. Hardware architecture of our high-end secure coprocessor.

1.3.2. Security design
Active tamper response gives a device a lifecycle

shown in Fig. 2: tamper destroys the contents of
secure memory – in our case, the BBRAM and
DRAM. However, one can logically extend the se-
cure storage area beyond the BBRAM devices them-
selves by storing keys in BBRAM and ciphertext in

4 w xFLASH, or even cryptopaging 26 it onto the host
file system.

1.3.3. Application design
This design leads to a notion of a high-end secure

coprocessor that is substantially more powerful and
secure – albeit larger 5 and more expensive – than
the family’s weaker members, such as chip cards.
ŽThe larger physical package and higher cost permit

.more extensive protections. This approach shapes
the design for application software:
Ø protect the critical portion of the application soft-

ware by having it execute inside the secure copro-
cessor;

4 FLASH is a non-volatile memory technology similar to EE-
PROM. FLASH differs significantly from the more familiar RAM
model in several ways: FLASH can only be reprogrammed by
erasing and then writing an entire sector first; the erase and
rewrite cycles take significantly longer than RAM; and FLASH

Ž 4 5.imposes a finite lifetime currently, usually 10 or 10 on the
maximum number of eraserrewrite cycles for any one sector.

5 For example, our product is a PCI card, although we see no
substantial engineering barriers to repackaging this technology as
a PCMCIA card.

Ø allow this critical portion to be fairly complex;
Ø then structure this critical software to exploit the

tamper protections: tamper destroys only contents
of volatile DRAM and the smaller BBRAM – but
not, for example, the contents of FLASH or ROM.

1.3.4. Software design
Making a commercial product support this appli-

cation design requires giving the device a robust
programming environment, and making it easy for
developers to use this environment – even if they do
not necessarily trust IBM or each other. These goals
led to a multi-layer software architecture:
Ø a foundational Miniboot layer manages security

and configuration;
Ø an operating system or control program layer

manages computational, storage, and crypto-
graphic resources; and

Ø an unprivileged application layer uses these re-
sources to provide services

Fig. 3 sketches this architecture.
Currently, Miniboot consists of two components:

Miniboot 0, residing in ROM, and Miniboot 1,
which resides, like the OS and the application, in
rewritable non-volatile FLASH memory. However,
we are also considering adding support for various
multi-application scenarios, including the simultane-
ous existence of two or more potentially malicious
applications in the same device, as well as one
‘master’ application that dynamically loads addi-
tional applications at run-time.

1.4. This paper

Building a high-performance, programmable se-
cure coprocessor as a mass-produced product – and
not just as a laboratory prototype – requires identify-
ing, articulating, and addressing a host of research
issues regarding security and trust. This paper dis-

Fig. 2. Sample lifecycle of a high-end secure coprocessor with
active tamper response.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860834

Fig. 3. Software architecture for our high-end secure coprocessor. Our current software only supports one application, not dynamically
loaded.

cusses the security architecture we designed and
Ž .with our colleagues implemented.
Ø Section 2 presents the security goals and commer-

cial constraints we faced.
Ø Section 3 introduces our approach to solving them.
Ø Sections 4–8 presents the different interlocking

pieces of our solution.
Ø Sections 9 and 10 summarize how these pieces

work together to satisfy the security goals.
Section 11 presents some thoughts for future di-

rections.

2. Requirements

In order to be effective, our solution must simul-
taneously fulfil two different sets of requirements.
The device must provide the core security properties
necessary for secure coprocessing applications. But
the device must also be a practical, commercial
product; this goal gives rise to many additional
constraints, which can interact with the security
properties in subtle ways.

2.1. Commercial requirements

Our device must exist as a programmable, gen-
eral-purpose computer – because the fundamental

Ž w x.secure coprocessing model e.g., Refs. 26,27 re-

quires that computation, not just cryptography, re-
side inside the secure box. This notion – and previ-
ous experience with commercial security hardware
Ž w x.e.g., Ref. 1 – gives rise to many constraints.

2.1.1. DeÕelopment
To begin with, the goal of supporting the

widespread development and deployment of applica-
tions implies:
Ø The device must be easily programmable.
Ø The device must have a general-purpose operat-

Žing system, with debugging support when appro-
.priate .

Ø The device must support a large population of
authorities developing and releasing application
and OS code, deployed in various combinations
on different instantiations of the same basic de-
vice.

Ø The device must support vertical partitioning: an
application from one vendor, an OS from another,
bootstrap code from a third.

Ø These vendors may not necessarily trust each
other – hence, the architecture should permit no
‘backdoors.’

2.1.2. Manufacturing
The process of manufacturing and distribution

must be as simple as possible:
Ø We need to minimize the number of variations of

Žthe device, as manufactured or shipped since



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 835

each new variation dramatically increases admin-
.istrative overhead .

Ø It must be possible to configure the software on
the device after shipment, in what we must regard
as a hostile environment.

Ø We must reduce or eliminate the need to store a
Ž .large database of records secret or otherwise

pertaining to individual devices.
Ø As an international corporation based in the United

States, we must abide by US export regulations.

2.1.3. Maintenance
The complexity of the proposed software – and

the cost of a high-end device – mean that it must be
possible to update the software already installed in a
device.
Ø These updates should be safe, easy, and minimize

disruption of device operation.
- When possible, the updates should be per-
formed remotely, in the ‘hostile’ field, without
requiring the presence of a trusted security
officer.
- When reasonable, internal application state
should persist across updates.

Ø Particular versions of software may be so defec-
tive as to be non-functional or downright mali-
cious. Safe, easy updates must be possible even
then.

Ø Due to its complexity and ever-evolving nature,
Žthe code supporting high-end cryptography in-

6 .cluding public-key, hashing, and randomness
must itself be updatable. But repair should be
possible even if this software is non-functional.

2.2. Security requirements

The primary value of a secure coprocessor is its
ability to provide a trusted sanctuary in a hostile
environment. This goal leads to two core security
requirements:
Ø The device must really provide a safe haven for

application software to execute and accumulate
secrets.

6 Our hardware accelerator for RSA and DSA merely does
modular arithmetic; hence, additional software support is neces-
sary.

Ø It must be possible to remotely distinguish be-
tween a message from a genuine application on
an untampered device, and a message from a
clever adversary.
We consider these requirements in turn.

2.2.1. Safe execution
It must be possible for the card, placed in a

hostile environment, to distinguish between genuine
software updates from the appropriate trusted sources,
and attacks from a clever adversary.

The foundation of secure coprocessing applica-
tions is that the coprocessor really provides safe
haven. For example, suppose that we are implement-
ing decentralized electronic cash by having two se-
cure devices shake hands and then transactionally

Ž w x.exchange money e.g., Ref. 27 . Such a cash pro-
gram may store two critical parameters in BBRAM:
the private key of this wallet, and the current balance
of this wallet. Minimally, it must be the case that
physical attack really destroys the private key. How-
ever, it must also be the case that the stored balance
never change except through appropriate action of

Žthe cash program. For example, the balance should
not change due to defective memory management or

.lack of fault-tolerance in updates.
Formalizing this requirement brings out many

subtleties, especially in light of the flexible ship-
ment, loading, and update scenarios required by
Section 2.1 above. For example:
Ø What if an adversary physically modifies the

device before the cash program was installed?
Ø What if an adversary ‘updates’ the cash program

with a malicious version?
Ø What if an adversary updates the operating sys-

tem underneath the cash program with a mali-
cious version?

Ø What if the adversary already updated the operat-
ing system with a malicious version before the
cash program was installed?

Ø What if the adversary replaced the public-key
cryptography code with one that provides back-
doors?

Ø What if a sibling application finds and exploits a
flaw in the protections provided by the underlying
operating system?
After much consideration, we developed safe exe-

cution criteria that address the authority in charge of



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860836

a particular software layer, and the execution enÕi-
ronment – the code and hardware – that has accesses
to the secrets belonging to that layer.
Ø Control of software. If Authority N has owner-

ship of a particular software layer in a particular
device, then only Authority N, or a designated
superior, can load code into that layer in that
device.

Ø Access to secrets. The secrets belonging to this
layer are accessible only by code that Authority N
trusts, executing on hardware that Authority N
trusts, in the appropriate context.

2.2.2. Authenticated execution
Providing a safe haven for code to run does not

do much good, if it is not possible to distinguish this
safe haven from an impostor. It must thus be possi-
ble to:
Ø authenticate an untampered deÕice;
Ø authenticate its software configuration; and
Ø do this remotely, via computational means.

The first requirement is the most natural. Con-
sider again example of decentralized cash. An adver-
sary who runs this application on an exposed com-
puter but convinces the world it is really running on
a secure device has compromised the entire cash
system – since he or she can freely counterfeit
money by incrementing the stored balance.

The second requirement – authenticating the soft-
ware configuration – is often overlooked but equally
important. In the cash example, running a mali-
ciously modified wallet application on a secure de-
Õice also gives an adversary the ability to counterfeit
money. For another example, running a Certificate
Authority on a physically secure machine without
knowing for certain what key generation software is

w xreally installed leaves one open to attack 28 .
The third requirement – remote verification – is

driven by two main concerns. First, in the most
general distributed application scenarios, participants
may be separated by great physical distance, and
have no trusted witnesses at each other’s site. Physi-
cal inspection is not possible, and even the strongest
tamper-evidence technology is not effective without
a good audit procedure.

Furthermore, we are reluctant to trust the effec-
tiveness of commercially feasible tamper-eÕidence

technology against the dedicated adversaries that
Žmight target a high-end device. Tamper-evidence

technology only attempts to ensure that tampering
.leaves clear visual signs. We are afraid that a device

that is opened, modified and reassembled may ap-
pear perfect enough to fool even trained analysts.

This potential for perfect reassembly raises the
serious possibility of attack during distribution and
configuration. In many deployment scenarios, no one
will have both the skills and the motivation to detect
physical tamper. The user who takes the device out
of its shipping carton will probably not have the
ability to carry out the forensic physical analysis
necessary to detect a sophisticated attack with high
assurance. Furthermore, the user may be the adver-
sary – who probably should not be trusted to report
whether or not his or her device shows signs of the
physical attack he or she just attempted. Those par-

Ž .ties such as, perhaps, the manufacturer with both
the skills and the motivation to detect tamper may be
reluctant to accept the potential liability of a ‘false
negative’ tamper evaluation.

For all these reasons, our tamper-protection ap-
Žproach does not rely on tamper-evidence alone see

.Section 4 .

3. Overview of our architecture

In order to meet the requirements of Section 2,
our architecture must ensure secure loading and exe-
cution of code, while also accommodating the flexi-
bility and trust scenarios dictated by commercial
constraints.

3.1. Secrets

Discussions of secure coprocessor technology
usually begin with ‘physical attack zeroizes secrets’.
Our security architecture must begin by ensuring that
tamper actually destroys secrets that actually meant
something. We do this with three main techniques:
Ø The secrets go away with physical attack. Sec-

tion 4 presents our tamper-detection circuitry and
protocol techniques. These ensure that physical
attack results in the actual zeroization of sensitive
memory.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 837

Ø The secrets started out secret. Section 5 pre-
sents our factory initialization and regene-
rationrrecertification protocols. These ensure that
the secrets, when first established, were neither
known nor predictable outside the card, and do
not require assumptions of indefinite security of
any given keypair.

Ø The secrets stayed secret despite software at-
tack. Section 6 presents our hardware ratchet lock
techniques. These techniques ensure that, despite
arbitrarily bad compromise of rewritable soft-
ware, sufficiently many secrets remain to enable
recovery of the device.

3.2. Code

Second, we must ensure that code is loaded and
updated in a safe way. Discussions of code-down-
loading usually begin with ‘just sign the code’.
However, focusing on code-signing alone neglects
several additional subtleties that this security archi-
tecture must address. Further complications arise
from the commercial requirement that this architec-
ture accommodate a pool of mutually suspicious
developers, who produce code that is loaded and
updated in the hostile field, with no trusted couriers.
Ø Code loads and updates. We must have tech-

niques that address questions such as:
– What about updates to the code that checks
the signatures for updates?

Ø Against whose public key should we check the
signature?

– Does code end up installed in the correct
place?
– What happens when another authority up-
dates a layer on which one’s code depends?

Ø Code integrity. For the code loading techniques
to be effective, we must also address issues such
as:

– What about the integrity of the code that
checks the signature?
– Can adversarial code rewrite other layers?

Section 7 presents our techniques for code in-
tegrity, and Section 8 presents our protocols for code
loading. Together, these ensure that the code in a
layer is changed and executed only in an environ-
ment trusted by the appropriate code authority.

3.3. AchieÕing the security requirements

Our full architecture carefully combines the build-
ing blocks described in Sections 4–8 to achieve the
required security properties:
Ø Code executes in a secure environment. Section

9 presents how our secrecy management and code
integrity techniques interact to achieve the re-
quirements of Section 2.2.1: software loaded onto
the card can execute and accumulate state in a
continuously trusted environment, despite the risks
introduced by dependency on underlying software
controlled by a potentially hostile authority.

Ø Participants can remotely authenticate real
code on a real device. Section 10 presents how
our secrecy management and code integrity tech-
niques interact to achieve the requirement of Sec-
tion 2.2.2: any third party can distinguish between
a message from a particular program in a particu-
lar configuration of an untampered device, and a
message from a clever adversary.

4. Defending against physical threats

The main goal of physical security is to ensure
that the hardware can know if it remains in an
unmolested state – and if so, that it continues to
work in the way it was intended to work. To achieve
physical security, we start with our basic computa-
tionalrcrypto device and add additional circuitry and
components to detect tampering by direct physical
penetration or by unusual operating conditions. If
the circuit detects a condition that would compro-
mise correct operation, the circuit responds in a
manner to prevent theft of secrets or misuse of the
secure coprocessor.

4.1. OÕerÕiew

Traditionally, physical security design has taken
several approaches:
Ø tamper eÕidence, where packaging forces tamper

to leave indelible physical changes;



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860838

Ø tamper resistance, where the device packaging
makes tamper difficult;

Ø tamper detection, where the device actually is
aware of tamper;

Ø tamper response, where the device actively takes
countermeasures upon tamper.
We feel that commercially feasible tamper-evi-

dence technology and tamper-resistance technology
cannot withstand the dedicated attacks that a high-
performance, multi-chip coprocessor might face.
Consequently, our design incorporates an interleav-
ing of resistance and detectionrresponse techniques,
so that penetrations are sufficiently difficult to trig-
ger device response.
Ø Section 4.2 will discuss our techniques to detect

penetration attacks.
Ø Section 4.3 will discuss how our device responds

once tamper is detected.
Ø Section 4.4 will discuss the additional steps we

take to ensure that tamper response is effective
and meaningful – particularly against physical
attacks other than penetration.
Historically, work in this area placed the largest

w xeffort on physical penetration 8,22,23 . Preventing
an adversary from penetrating the secure coprocessor
and probing the circuit to discover the contained
secrets is still the first step in a physical security
design. Although some standards have emerged as

w xgroundwork and guidelines 14,24,25 , exact tech-
niques are still evolving.

A significant amount of recent work examines
efforts to cause incorrect device operation, and thus

w xallow bypass of security functions 2,3 . Other recent
work capitalizes on small induced failures in crypto-
graphic algorithms to make discovery of keys easier
w x6,7 . Consequently, as feasible tampering attacks
have become more sophisticated through time and
practice, it has become necessary to improve all
aspects of a physical security system. Over the years
many techniques have been developed, but they all
face the same problem: no proÕably tamper-proof
system exists. Designs get better and better, but so do
the adversary’s skill and tools. As a result, physical
security is, and will remain, a race between the

Ždefender and the attacker. To date, we have not
been able to compromise our own security, which is
also under evaluation by an independent laboratory

w x .against the FIPS 140-1 Level 4 criteria. 11,14 .

The economic challenge of producing a physically
secure but usable system at a reasonable cost is
difficult.

4.2. Detecting penetration

We have taken the approach of making incremen-
tal improvements on well-known technology, and
layering these techniques. This way, the attacker has
to repeat, at each layer, work that has a low probabil-
ity of success; furthermore, the attacker must work
through the layers that have already been passed
Ž .and may still be active . The basic element is a grid
of conductors which is monitored by circuitry that

Žcan detect changes in the properties open, shorts,
.changes in conductivity of the conductors. The con-

ductors themselves are non-metallic and closely re-
semble the material in which they are embedded-
making discovery, isolation, and manipulation more
difficult. These grids are arranged in several layers
and the sensing circuitry can detect accidental con-
nection between layers as well as changes in an
indiÕidual layer.

The sensing grids are made of flexible material
and are wrapped around and attached to the secure
coprocessor package as if it were being gift-wrapped.
Connections to and from the secure coprocessor are
made via a thin flexible cable which is brought out
between the folds in the sensing grids so that no

Žopenings are left in the package. Using a standard
.connector would leave such openings.

After we wrap the package, we embed it in a
potting material. As mentioned above, this material
closely resembles the material of the conductors in
the sensing grids. Besides making it harder to find
the conductors, this physical and chemical resem-
blance makes it nearly impossible for an attacker to
penetrate the potting without also affecting the con-
ductors. Then we enclose the entire package in a
grounded shield to reduce susceptibility to electro-
magnetic interference, and to reduce detectable elec-
tromagnetic emanations.

4.3. Responding to tamper

The most natural tamper response in a secure
coprocessor is to erase secrets that are contained in

Ž .the unit, usually by erasing zeroizing a Static
Ž .Random Access Memory SRAM that contains the



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 839

secrets, then erasing the operating memory and ceas-
ing operation. An SRAM can be made persistent
with a small battery, and can, under many condi-
tions, be easily erased.

This is what we do in our device: battery-backed
Ž .SRAM BBRAM exists as storage for secrets. Upon

detection of tamper, we zeroize the BBRAM and
disable the rest of the device by holding it in reset.
The tamper detectionrresponse circuitry is actiÕe at
all times whether the coprocessor is powered or not
– the detectionrresponse circuitry runs on the same
battery that maintains the BBRAM when the unit is
unpowered.

Tamper can happen quickly. In order to erase
quickly, we crowbar the SRAM by switching its
power connection to ground. At the same time, we
force all data, address and control lines to a high
impedance state, in order to prevent back-powering
of the SRAM via those lines. This technique is
employed because it is simple, effective, and it does
not depend on the CPU being sufficiently operational
for sufficiently long to overwrite the contents of the
SRAM on tamper.

4.4. Detecting other physical attacks

To prevent attacks based on manipulating the
operating conditions, including those that would
make it difficult to respond to tamper and erase the
secrets in SRAM, several additional sensors have
been added to the security circuitry to detect and
respond to changes in operating conditions.

4.4.1. Attacks on zeroization
For zeroization to be effective, certain environ-

mental conditions must be met. For example, low
temperatures will allow an SRAM to retain its data
even with the power connection shorted to ground.
To prevent this, a temperature sensor in our device
will cause the protection circuit to erase the SRAM
if the temperature goes below a present level.

Ionizing radiation will also cause an SRAM to
retain its data, and may disrupt circuit operation. For
this reason, our device also detects significant
amounts of ionizing radiation and triggers the tamper
response if detected.

Storing the same value in a bit in SRAM over
long periods can also cause that value to imprint.

Our software protocols take this threat into account,
by periodically inverting this data.

4.4.2. Other attacks
An adversary might also compromise security by

causing incorrect operation through careful manipu-
lation of various environmental parameters. As a
consequence, a device needs to detect and defend
against such attacks.

One such environmental parameter is supply volt-
age, which has to be monitored for several thresh-
olds. For example, at each power-down, the voltage
will go from an acceptable level to a low voltage,
then to no supply voltage. But the detection and
response circuitry needs to be always active – so at
some point, it has to switch over to battery operation.
A symmetric transition occurs at power-up.

Whenever the voltage goes below the acceptable
operating level of the CPU and its associated cir-
cuitry, these components are all held in a reset state
until the voltage reaches the operating point. When
the voltage reaches the operating point, the circuitry
is allowed to run. If the voltage exceeds the specified
upper limit for guaranteed correct operation, it is
considered a tamper, and the tamper circuitry is
activated.

Another method by which correct operation can
be compromised is by manipulating the clock signals
that go to the coprocessor. To defend against these
sorts of problems, we use phase locked loops and
independently generated internal clocks to prevent
clock signals with missing or extra pulses, or ones
that are either too fast or slow.

High temperatures can cause improper operation
of the device CPU, and even damage it. So, high
temperatures cause the device to be held in reset
from the operational limit to the storage limit. Detec-
tion of temperature above the storage limit is treated
as a tamper event.

5. Device initialization

Section 4 discussed how we erase device secrets
upon tamper. One might deduce that a natural conse-
quence would be that ‘knowledge of secrets’ implies
‘device is real and untampered’. But for this conclu-
sion to hold, we need more premises.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860840

Ø the secrets were secret when they were first estab-
lished;

Ø the device was real and untampered when its
secrets were established;

Ø weakening of cryptography does not compromise
the secrets;

Ø operation of the device has not caused the secrets
to be exposed.
This section discusses how we provide the first

three properties. Section 6 will discuss how we
provide the fourth.

5.1. Factory initialization

As one might naturally suspect, an untampered
device authenticates itself as such using crypto-
graphic secrets stored in secure memory. The pri-
mary secret is the private half of an RSA or DSA

Žkeypair. Section 10 elaborates on the use of this
.private key. Some symmetric-key secrets are also

Žnecessary for some special cases as Sections 5.2.3
.and 8.3 will discuss .

The device keypair is generated at deÕice initial-
ization. To minimize risk of exposure, a device
generates its own keypair internally, within the tam-
per-protected environment and using seeds produced
from the internal hardware random number genera-
tor. The device holds its private key in secure
BBRAM, but exports its public key. An external

( )Certification Authority CA adds identifying infor-
mation about the device and its software configura-
tion, signs a certificate for this device, and returns
the certificate to the device.

ŽThe device-specific symmetric keys are also gen-
Ž . .erated internally at initialization see Section 8.3 .

Clearly, the CA must have some reason to believe
that the device in question really is an authentic,
untampered device. To address this question – and
avoid the risks of undetectable physical modification
Ž .Section 4.1 – we initialize the cards in the factory,
as the last step of manufacturing.

Although factory initialization removes the risks
associated with insecure shipping and storage, it does
introduce one substantial drawback: the device must
remain within the safe storage temperature range
Ž .Section 4.4 . But when considering the point of
initialization, a manufacturer faces a tradeoff be-

tween ease of distribution and security: we have
chosen security.

5.2. Field operations

5.2.1. Regeneration
An initialized device has the ability to regenerate

its keypair. Regeneration frees a device from depend-
ing forever on one keypair, or key length, or even
cryptosystem. Performing regeneration atomically 7

with other actions, such as reloading the crypto code
Ž . ŽSection 8 , also proves useful as Section 10 will

.discuss . For stronger forward integrity, implementa-
tions could combine this technique with expiration
dates.

To regenerate its keypair, a device does the fol-
lowing:
Ø create a new keypair from internal randomness,
Ø use the old private key to sign a transition

certificate for the new public key, including data
such as the reason for the change, and

Ø atomically complete the change, by deleting the
old private key and making the new pair and
certificate ‘official’.
The current list of transition certificates, com-

bined with the initial device certificate, certifies the
current device private key. Fig. 4 illustrates this
process.

5.2.2. Recertification
The CA for devices can also recertify 8 the de-

vice, by atomically replacing the old certificate and
Ž .possibly empty chain of transition certificates with
a single new certificate. Fig. 5 illustrates this pro-

Žcess. Clearly, it would be a good idea for the CA to
verify that the claimed public key really is the
current public key of an untampered device in the

.appropriate family.
This technique can also frees the CA from de-

pending forever on a single keypair, key length, or
even cryptosystem. Fig. 6 illustrates this variation.

7 An atomic change is one that happens entirely, or not at all
— despite failures and interruptions. Atomicity for complex con-
figuration-changing operations is in an important property.

8 To avoid denial-of-service attacks, Miniboot treats recertifica-
tion as a privileged command requiring authentication, like code
loading.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 841

Fig. 4. The device may regenerate its internal keypair, and atomi-
cally create a transition certificate for the new public key signed
with the old private key.

Again, for stronger forward integrity, implementa-
tions could combine this technique with expiration
dates.

5.2.3. ReÕiÕal
Scenarios arise where the tamper detection cir-

cuitry in a device has zeroized its secrets, but the
device is otherwise untampered. As Section 4 dis-
cusses, certain environmental changes – such as cold
storage or bungled battery removal – trigger tamper
response in our design, since otherwise these changes
would provide an avenue for undetected tamper.
Such scenarios are arguably inevitable in many tam-
per-response designs – since a device cannot easily
wait to see if a tamper attempt is successful before
responding.

Satisfying an initial commercial constraint of ‘save
hardware whenever possible’ requires a way of re-
ÕiÕing such a zeroized but otherwise untampered
device. However, such a revival procedure intro-
duces a significant vulnerability: how do we distin-
guish between zeroized but untampered device, and a
tampered device? Fig. 7 illustrates this problem.

How do we perform this authentication?
As discussed earlier, we cannot rely on physical

evidence to determine whether a given card is un-
tampered – since we fear that a dedicated, well-

Žfunded adversary could modify a device e.g., by
.changing the internal FLASH components and then

Fig. 5. The CA can recertify a device, by replacing its current device certificate and transition certificate sequence with a new device
certificate, certifying the latest public key.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860842

Fig. 6. The CA can use device recertification in order to avoid depending forever on the same keypair.

re-assemble it sufficiently well that it passes direct
physical inspection. Indeed, the need for factory-ini-
tialization was driven by this concern:

We can only rely on secrets in tamper-pro-
tected secure memory to distinguish a real
device from a tampered device.

Indeed, the problem is basically unsolvable – how
can we distinguish an untampered but zeroized card
from a tampered reconstruction, when, by definition,

Fig. 7. Tamper response zeroizes the secrets in an initialized
device, and leaves either an untampered but zeroized device, or a
tampered device. A procedure to revive a zeroized device must be
able distinguish between the two, or else risk introducing tam-
pered devices back into the pool of allegedly untampered ones.

every aspect of the untampered card is visible to a
dedicated adversary?

To accommodate both the commercial and secu-
rity constraints, our architecture compromises:
Ø Revival is possible. We provide a way for a

trusted authority to revive an allegedly untam-
pered but zeroized card, based on authentication
via non-volatile, non-zeroizable ‘secrets’ stored
inside a particular device component. Clearly, this
technique is risky, since a dedicated adversary
can obtain a device’s revival secrets via destruc-
tive analysis of the device, and then build a fake
device that can spoof the revival authority.

Ø Revival is safe. To accommodate this risk, we
force revival to atomically destroy all secrets
within a device, and to leave it without a certified
private key. A trusted CA must then re-initialize
the device, before the device can ‘prove’ itself
genuine. This initialization requires the creation
of a new device certificate, which provides the
CA with an avenue to explicitly indicate the card

Žhas been revived e.g., ‘‘if it produces signatures
that verify against Device Public Key N, then it is
allegedly a real, untampered device that has un-

.dergone revival – so beware’’ . Thus, we prevent
a device that has undergone this risky procedure
from impersonating an untampered device that
has never been zeroized and revived.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 843

Furthermore, given the difficulty of effectively
authenticating an untampered but zeroized card, and
the potential risks of a mistake, the support team for
the commercial product has decided not to support
this option in practice.

5.3. Trusting the manufacturer

A discussion of untamperedness leads to the ques-
tion: why should the user trust the manufacturer of
the device? Considering this question gives rise to
three sets of issues.
Ø Contents. Does the black box really contain the

advertised circuits and firmware? The paranoid
user can verify this probabilistically by physically

Žopening and examining a number of devices. The
necessary design criteria and object code listings
could be made available to customers under spe-

.cial contract.
Ø CA Private Key. Does the factory CA ever cer-

tify bogus devices? Such abuse is a risk with any
public-key hierarchy. But, the paranoid user can
always establish their own key hierarchy, and
then design applications that accept as genuine
only those devices with a secondary certificate
from this alternate authority.

Ø Initialization. Was the device actually initialized
in the advertised manner? Given the control a
manufacturer might have, it is hard to see how we
can conclusively establish that the initialization
secrets in a card are indeed relics of the execution
of the correct code. However, the cut-and-ex-
amine approach above can convince a paranoid
user that the key creation and management soft-
ware in an already initialized device is genuine.
This assurance, coupled with the regeneration
technique of Section 5.2.1 above, provides a solu-
tion for the paranoid user: causing their device to
regenerate after shipment gives it a new private
key that must have been produced in the adver-
tised safe fashion.

6. Defending against software threats

6.1. MotiÕation

Section 4 discussed how we ensure that the core
secrets are zeroized upon physical attack, and Sec-

tion 5 discussed how we ensure that they were secret
to begin with. However, these techniques still leave
an exposure: did the device secrets remain secret
throughout operation?

For example, suppose a few months after release,
some penetration specialists discover a hole in the
OS that allows untrusted user code to execute with
full supervisor privilege. Our code loading protocol
Ž .Section 8 allows us to ship out a patch, and a
device installing this patch can sign a receipt with its
private key.

One might suspect verifying this signature would
imply the hole has been patched in that device.
Unfortunately, this conclusion would be wrong: a
hole that allows untrusted code full privileges would
also grant it access to the private key – that is,
without additional hardware countermeasures. This
section discusses the countermeasures we use.

6.2. Software threat model

This risk is particularly dire in light of the com-
mercial constraints of multiple layers of complex
software, from multiple authorities, remotely in-
stalled and updated in hostile environments. History
shows that complex systems are, quite often, perme-
able. Consequently, we address this risk by assuming
that all rewritable software in the device may be-
have arbitrarily badly.

Drawing our defense boundary here frees us from
the quagmire 9 of having low-level miniboot code
evaluate incoming code for safety. It also accommo-
dates the wishes of system software designers who
want full access to ‘Ring 0’ in the underlying Intel
x86 CPU architecture.

Declaring this assumption often raises objections
from systems programmers. We pro-actively raise
some counterarguments. First, although all code
loaded into the device is somehow ‘controlled,’ we

9 With the advent of Java, preventing hostile downloaded code
Ž .from damaging a system has again become a popular topic. Our

architecture responds to this challenge by allowing ‘applets’ to do
whatever they want – except they can neither access critical

Žauthentication secrets, nor alter critical code which includes the
.code that can access these secrets . Furthermore, these restrictions

are enforced by hardware, independent of the OS and CPU.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860844

need to accommodate the pessimistic view that ‘con-
trolled software’ means, at best, good intentions.
Second, although an OS might provide two levels of
privilege, history 10 is full of examples where low-
level programs usurp higher-level privileges. Finally,
as implementers ourselves, we need to acknowledge
the very real possibility of error by accommodating
mistakes as well as malice.

6.3. Hardware access locks

In order to limit the abilities of rogue but privi-
leged software, we use hardware locks: independent
circuitry that restricts the activities of code executing
on the main CPU. We chose to use a simple hard-
ware approach for several reasons, including:
Ø We cannot rely on the device operating system,

since we do not know what it will be – and a
corrupt or faulty OS might be what we need to
defend against.

Ø We cannot rely on the protection rings of the
device CPU, because the rewritable OS and Mini-
boot layers require maximal CPU privilege.
Fig. 1 shows how the hardware locks fit into the

overall design: the locks are independent devices that
can interact with the main CPU, but control access to
the FLASH and to BBRAM.

However, this approach raises a problem. Critical
memory needs protection from bad code. How can
our simple hardware distinguish between good code
and bad code?

We considered and discarded two options:
Ø False Start: Good code could write a password

to the lock. Although this approach simplifies the
necessary circuitry, we had doubts about effec-
tively hiding the passwords from rogue software.

Ø False Start: The lock determines when good code
is executing by monitoring the address bus during
instruction fetches.
This approach greatly complicates the circuitry.
We felt that correct implementation would be
difficult, given the complexities of instruction
fetching in modern CPUs, and the subtleties in-

10 For examples, consult the on-line archives of the Computer
Emergency Response Team at Carnegie Mellon University.

volved in detecting not just the address of an
instruction, but the context in which it is exe-
cuted. For example, it is not sufficient merely to
recognize that a sequence of instructions came
from the address range for privileged code; the
locks would have to further distinguish between
– these instructions, executing as privileged code;
– these instructions, executing as a subroutine,
called by unprivileged code;
– these instructions, executing as privileged code,
but with a sabotaged interrupt table.

6.3.1. Solution: time-based ratchet
We finally developed a lock approach based on

Žthe observation that reset a hardware signal that
.causes all device circuitry return to a known state

forces the device CPU to begin execution from a
fixed address in ROM: known, trusted, permanent
code. As execution proceeds, it passes through a
non-repeating sequence of code blocks with different
levels of trust, permanence, and privilege require-
ments. Fig. 8 illustrates this sequence:
Ø Reset starts Miniboot 0, from ROM;
Ø Miniboot 0 passes control to Miniboot 1, and

never executes again.
Ø Miniboot 1 passes control to the OS, and never

executes again.
Ø The OS may perform some start-up code.
Ø While retaining supervisor control, the OS may

then execute application code.
ŽØ The application executing under control of the

.OS may itself do some start-up work, then
Ž .potentially incur dependence on less trusted code
or input.
Our lock design models this sequence with a trust

ratchet, currently represented as a nonnegative inte-
ger. A small microcontroller stores the the ratchet
value in a register. Upon hardware reset, the micro-
controller resets the ratchet to 0; through interaction
with the device CPU, the microcontroller can ad-
vance the ratchet – but can neÕer turn it back. As
each block finishes its execution, it advances the

Žratchet to the next appropriate value. Our implemen-
tation also enforces a maximum ratchet value, and
ensures that ratchet cannot be advanced beyond this

.value. Fig. 8 also illustrates how this trust ratchet
models the execution sequence.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 845

Fig. 8. Hardware reset forces the CPU to begin executing Miniboot 0 out of ROM; execution then proceeds through a non-repeating
sequence of phases, determined by code and context. Hardware reset also forces the trust ratchet to zero; each block of code advance the
ratchet before passing control to the next block in the sequence. However, no code block can decrement the ratchet.

The microcontroller then grants or refuses mem-
ory accesses, depending on the current ratchet value.

6.3.2. Decreasing trust
The effectiveness of this trust ratchet critically

depends on two facts:
Ø The code blocks can be organized into a hierar-

Žchy of decreasing privilege levels e.g., like clas-
w xsical work in protection rings 16 or lattice mod-

w x.els of information flow 5,10 .
Ø In our software architecture, these privilege levels

strictly decrease in real time!
This time sequencing, coupled with the indepen-

dence of the lock hardware from the CPU and the
Žfact that the hardware design and its physical encap-

.sulation forces any reset of the locks to also reset
the CPU, give the ratchet its power:
Ø The only way to get the most-privileged level

Ž .‘Ratchet 0’ is to force a hardware reset of the
entire system, and begin executing Miniboot 0
from a hardwired address in ROM, in a known
state.

Ø The only way to get a non-maximal privilege
Ž .level ‘Ratchet N,’ for N)0 is to be passed

control by code executing at a an earlier, higher-
privileged ratchet level.

Ž .Ø Neither rogue software nor any other software
can turn the ratchet back to an earlier, higher-
privileged level – short of resetting the entire
system.
The only avenue for rogue software at Ratchet N

to steal the privileges of ratchet K-N would be to
somehow alter the software that executes at rachet K

Žor earlier. However, as Section 7.2 will show, we
.use the ratchet to prevent these attacks as well.

6.3.3. Generalizations
Although this discussion used a simple total order

on ratchet values, nothing prevents using a partial
order. Indeed, as Section 7.2 discusses, our initial
implementation of the microcontroller firmware does
just that, in order to allow for some avenues for
future expansion.

6.4. PriÕacy and integrity of secrets

The hardware locks enable us to address the
challenge of Section 6.1: how do we keep rogue
software from stealing or modifying critical authenti-
cation secrets? We do this by establishing protected
pages: regions 11 of battery-backed RAM which are
locked once the ratchet advances beyond a certain
level. The hardware locks can then permit or deny
write access to each of these pages – rogue code
might still issue a read or write to that address, but
the memory device itself will never see it.

Table 1 illustrates the access policy we chose:
Ž .each Ratchet level R for 0FRF3 has its own

protected page, with the property that Page P can
only be read or written in ratchet level RFP.

( )We use lockable BBRAM LBBRAM to refer to
the portion of BBRAM consisting of the protected

11 The term ‘page’ here refers solely to a particular region of
BBRAM – and not to special components of any particular CPU
memory architecture.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860846

Table 1
Hardware locks protect the privacy and integrity of critical secrets

Ratchet 0 Ratchet 1 Ratchet 2 Ratchet 3 Ratchet 4
Ž . Ž . Ž . Ž . Ž .Miniboot 0 Miniboot 1 OS start-up Application start-up Application

Protected page 0 READ, WRITE NO ACCESS NO ACCESS NO ACCESS NO ACCESS
ALLOWED

Protected page 1 READ, WRITE READ, WRITE NO ACCESS NO ACCESS NO ACCESS
ALLOWED ALLOWED

Protected page 2 READ, WRITE READ, WRITE READ, WRITE NO ACCESS NO ACCESS
ALLOWED ALLOWED ALLOWED

Protected page 3 READ, WRITE READ, WRITE READ, WRITE READ, WRITE NO ACCESS
ALLOWED ALLOWED ALLOWED ALLOWED

Žpages. As with all BBRAM in the device, these
regions preserve their contents across periods of no

.power, but zeroize their contents upon tamper. Cur-
rently, these pages are used for outgoing authentica-

Ž .tion Section 10 ; Page 0 also holds some secrets
Ž .used for ROM-based loading Section 8 .

We partition the remainder of BBRAM into two
regions: one belonging to the OS exclusively, and
one belonging to the application. Within this non-
lockable BBRAM, we expect the OS to protect its
own data from the application’s.

7. Code integrity

The previous sections presented how our architec-
ture ensures that secrets remain accessible only to
allegedly trusted code, executing on an untampered
device. To be effective, our architecture must inte-
grate these defenses with techniques to ensure that
this executing code really is trusted.

This section presents how we address the problem
of code integrity:
Ø Sections 7.1 and 7.2 describe how we defend

against code from being formally modified, ex-
cept through the official code loading procedure.

Ø Sections 7.3 and 7.4 describes how we defend
against modifications due to other types of fail-
ures.

Ø Section 7.5 summarizes how we knit these tech-
niques together to ensure the device securely
boots.
Note that although our long-term vision of the

Ž .software architecture Fig. 3 includes simultane-

ously resident sibling applications and dynamically-
loaded applications, this section confines itself to our
current implementation, of one application, resident
in FLASH.

7.1. Loading and cryptography

We confine to Miniboot the tasks of deciding and
carrying out alteration of code layers. Although pre-
vious work considered a hierarchical approach to

Žloading, our commercial requirements multiple-layer
software, controlled by mutually suspicious authori-
ties, updated in the hostile field, while sometimes

.preserving state led to trust scenarios that were
simplified by centralizing trust management.

Ž .Miniboot 1 in rewritable FLASH contains code
to support public-key cryptography and hashing, and
carries out the primary code installation and update
tasks – which include updating itself.

Ž .Miniboot 0 in boot-block ROM contains primi-
tive code to perform DES using the DES-support

w xhardware, and uses secret-key authentication 19 to
perform the emergency operations necessary to re-
pair a device whose Miniboot 1 does not function.

ŽSection 8 will discuss the protocols Miniboot
.uses.

7.2. Protection against malice

As experience in vulnerability analysis often re-
veals, practice often deviates from policy. Without
additional countermeasures, the policy of ‘Miniboot
is in charge of installing and updating all code



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 847

Table 2
The hardware locks protect the integrity of critical FLASH segments

Ratchet 0 Ratchet 1 Ratchet 2 Ratchet 3 Ratchet 4
Ž . Ž . Ž . Ž . Ž .Miniboot 0 Miniboot 1 OS start-up Application start-up Application

Protected segment 1 READ, WRITE READ, WRITE READ ALLOWED, READ ALLOWED, READ ALLOWED,
Ž .Miniboot 1 ALLOWED ALLOWED WRITE PROHIBITED WRITE PROHIBITED WRITE PROHIBITED
Protected segment 2 READ, WRITE READ, WRITE READ ALLOWED, READ ALLOWED, READ ALLOWED,
ŽOperating Systemr ALLOWED ALLOWED WRITE PROHIBITED WRITE PROHIBITED WRITE PROHIBITED

.Control Program
Protected segment 3 READ, WRITE READ, WRITE READ ALLOWED, READ ALLOWED, READ ALLOWED,
Ž .Application ALLOWED ALLOWED WRITE PROHIBITED WRITE PROHIBITED WRITE PROHIBITED

layers’ does not necessarily imply that ‘the contents
of code layers are always changed in accordance
with the design of Miniboot, as installed’. For exam-
ple:
Ø Without sufficient countermeasures, malicious

code might itself rewrite code layers.
Ø Without sufficient countermeasures, malicious

code might rewrite the Miniboot 1 code layer, and
cause Miniboot to incorrectly ‘maintain’ other
layers.
To ensure that practice meets policy, we use the

Ž .trust ratchet Section 6 to guard rewriting of the
code layers in rewritable FLASH. We group sets of
FLASH sectors into protected segments, one 12 for
each rewritable layer of code. The hardware locks
can then permit or deny write access to each of these
segments – rogue code might still issue a write to
that address, but the memory device itself will never
see it.

Table 2 illustrates the write policy we chose for
protected FLASH. We could have limited Ratchet 0

Žwrite-access to Segment 1 alone since in practice,
.Miniboot 0 only writes Miniboot 1 . However, it

makes little security sense to withhold privileges
from earlier, higher-trust ratchet levels – since the
earlier-level code could always usurp these privi-
leges by advancing the ratchet without passing con-
trol.

As a consequence of applying hardware locks to
FLASH, malicious code cannot rewrite code layers

12 Again, the term ‘segment’ is used here solely to denote to
these sets of FLASH sectors – and not to special components of a
CPU memory architecture.

unless it modifies Miniboot 1. But this is not possi-
ble – in order to modify Miniboot 1, an adversary
has to either alter ROM, or already have altered

ŽMiniboot 1. Note these safeguards apply only in the
realm of attacks that do not result in zeroizing the
device. An attacker could bypass all these defenses
by opening the device and replacing the FLASH
components – but we assume that the defenses of
Section 4 would ensure that such an attack would

.trigger tamper detection and response.
In order to permit changing to a hierarchical

approach without changing the hardware design, the
currently implemented lock firmware permits Ratchet
1 to advance instead to a Ratchet 2X, that acts like
Ratchet 2, but permits rewriting of Segment 3. Es-
sentially, our trust ratchet, as implemented, is al-
ready ranging over a non-total partial order.

7.3. Protection against reburn failure

In our current hardware implementation, multiple
FLASH sectors make up one protected segment.
Nevertheless, we erase and rewrite each segment as a
whole, in order to simplify data structures and to
accommodate future hardware with larger sectors.

This decision leaves us open to a significant risk:
a failure or power-down might occur during the
non-zero time interval between the time Miniboot
starts erasing a code layer to be rewritten, and the
time that the rewrite successfully completes. This
risk gets even more interesting, in light of the fact
that rewrite of a code layer may also involve changes
to other state variables and LBBRAM fields.

When crafting the design and implementation, we
followed the rule that the system must remain in a



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860848

safe state no matter what interruptions occur during
operations. This principle is especially relevant to the
process of erasing and reburning software resident in
FLASH.
Ø Since Miniboot 1 carries out loading and contains

the public-key crypto support, we allocate two
regions for it in FLASH Segment 1, so that the
old copy exists and is usable up until the new
copy has been successfully installed. This ap-
proach permits using Miniboot 1 for public-key-
based recovery from failures during Miniboot 1
updates.

Ø When reburning the OS or an application, we
temporarily demote its state, so that on the next
reset after a failed reburn, Miniboot recognizes
that the FLASH layer is now unreliable, and
cleans up appropriately.
For more complex transitions, we extend this

approach: all changes atomically succeed together, or
fail either back to the original state, or to a safe
intermediate failure state.

7.4. Protection against storage errors

Hardware locks on FLASH protect the code lay-
ers from being rewritten maliciously. However, bits

Ž .in FLASH devices even in boot block ROM can
change without being formally rewritten – due to the
effects of random hardware errors in these bits them-
selves.

To protect against spurious errors, we include a
64-bit DES-based MAC with each code layer. Mini-
boot 0 checks itself before proceeding; Miniboot 0
checks Miniboot 1 before passing control; Miniboot
1 checks the remaining segments. The use of a 64-bit
MAC from CBC-DES was chosen purely for engi-
neering reasons: it gave a better chance at detecting
errors over datasets the size of the protected seg-
ments than a single 32-bit CRC, and was easier to

Žimplement even in ROM, given the presence of
.DES hardware than more complex CRC schemes.

We reiterate that we do not rely solely on single-
DES to protect code integrity. Rather, our use of
DES as a checksum is solely to protect against
random storage errors in a write-protected FLASH
segment. An adversary might exhaustively find other
executables that also match the DES MAC of the
correct code; but in order to do anything with these

executables, the adversary must get write-access to
that FLASH segment – in which case, the adversary
also has write-access to the checksum, so his exhaus-
tive search was unnecessary.

7.5. Secure bootstrapping

To ensure secure bootstrapping, we use several
techniques together:
Ø The hardware locks on FLASH keep rogue code

from altering Miniboot or other code layers.
Ž .Ø The loading protocols Section 8 keep Miniboot

from burning adversary code into FLASH.
Ø The checksums keep the device from executing

code that has randomly changed.
Ž .If an adversary can cause e.g., through radiation

extensive, deliberate changes to a FLASH layer so
that it still satisfies the checksum it stores, then he
can defeat these countermeasures. However, we be-
lieve that the physical defenses of Section 4 would
keep such an attack from being successful:
Ø The physical shielding in the device would make

it nearly impossible to produce such carefully
focused radiation.

Ø Radiation sufficiently strong to alter bits should
also trigger tamper response.
Consequently, securely bootstrapping a custom-

designed, tamper-protected device is easier than the
general problem of securely bootstrapping a

Žgeneral-purpose, exposed machine e.g., Refs.
w x.4,9,26 .

7.5.1. Execution sequence
Our boot sequence follows from a common-sense

assembly of our basic techniques. Hardware reset
forces execution to begin in Miniboot 0 in ROM.
Miniboot 0 begins with Power-on Self Test 0
( )POST0 , which evaluates the hardware required for
the rest of Miniboot 0 to execute. Miniboot 0 verifies
the MACs for itself and Miniboot 1. If an external
party presents an alleged command for Miniboot 0
Ž Ž ..e.g., to repair Miniboot 1 Section 8 , Miniboot 0
will evaluate and respond to the request, then halt.
Otherwise Miniboot 0 advances the trust ratchet to 1,

Ž .and if Layer 1 is reliable jumps to Miniboot 1.
Except for some minor, non-secret device-driver

parameters, no DRAM state is saved across the
ŽMiniboot 0 to Miniboot 1 transition. In either Mini-



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 849

boot, any error or stateful change causes it to halt, in
.order to simplify analysis. Interrupts are disabled.

Miniboot 1 begins with POST1, which evaluates
the remainder of the hardware. Miniboot 1 also
verifies MACs for Layers 2 and 3. If an external
party presents an alleged command for Miniboot 1
Ž .e.g., to reload Layer 2 , Miniboot 1 will evaluate
and respond to the request, then halt. Otherwise

ŽMiniboot 1 advances the trust ratchet to 2, and if
.Layer 2 is reliable jumps to Layer 2, the OS.

The OS then proceeds with its bootstrap. If the
OS needs to protect data from an application that
may find holes in the OS, the OS can advance the
trust ratchet to 3 before invoking Layer 3 code.
Similarly, the application can advance the ratchet
further, if it needs to protect its private data.

8. Code loading

8.1. OÕerÕiew

One of the last remaining pieces of our architec-
ture is the secure installation and update of trusted
code.

In order to accommodate our overall goal of
enabling widespread development and deployment of
secure coprocessor applications, we need to consider
the practical aspects of this process. We review the
principal constraints:
Ø Shipped empty. In order to minimize variations

of the hardware and to accommodate US export
regulations, it was decided that all devices would
leave the factory with only the minimal software

13 Ž .configuration Miniboot only . The manufac-
Žturer does not know at ship time and may per-

.haps never know later where a particular device
is going, and what OS and application software
will be installed on it.

Ø Impersonal broadcast. To simplify the process
of distributing code, the code-loading protocol

Žshould permit the process to be one-round from
. Žauthority to device , be impersonal the authority

13 Our design and implementation actually accommodates any
level of pre-shipment configuration, should this decision change.

does not need to customize the load for each
.device , and have the ability to be carried out on a

public network.
Ø Updatable. As discussed in Section 2.1, we need

to be able to update code already installed in
devices.

Ø Minimal disruption. An emphatic customer re-
quirement was that, whenever reasonable and de-
sired, application state be preserved across up-
dates.

Ø Recoverable. We need to be able to recover an
untampered device from failures in its rewritable
software – which may include malicious or acci-
dental bugs in the code, as well as failures in the
FLASH storage of the code, or interruption of an
update.

Ø Loss of cryptography. The complexity of public-
key cryptography and hashing code forced it to
reside in a rewritable FLASH layer – so the
recoverability constraint also implies secure re-
coverability without these abilities.

Ø Mutually suspicious, independent authorities.
In any particular device, the software layers may
be controlled by different authorities who may
not trust each other, and may have different opin-
ions and strategies for software update.

Ø Hostile environments. We can make no assump-
tions about the user machine itself, or the exis-
tence of trusted couriers or trusted security offi-
cers.
To address these constraints, we developed and

followed some guidelines:
Ø We make sure that Miniboot keeps its integrity,

and that only Miniboot can change the other
layers.

Ø We ensure that the appropriate authorities can
obtain and retain control over their layers – de-
spite changes to underlying, higher-trust layers.

Ø We use public-key cryptography whenever possi-
ble.
Section 8.2 below outlines who can be in charge

of installing and changing code. Section 8.3 dis-
cusses how a device can authenticate them. Section
8.4 discusses how an ‘empty’ card in the hostile field
can learn who is in charge of its code layers. Sec-
tions 8.5 and 8.6 discuss how the appropriate author-
ities can authorize code installations and updates.
Section 8.7 summarizes software configuration man-



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860850

Fig. 9. Authorities over software segments are organized into a tree.

agement for devices. Section 8.8. illustrates the de-
velopment process with a simple example.

8.2. Authorities

As Fig. 9 illustrates, we organize software au-
thorities – parties who might authorize the loading
of new software – into a tree. The root is the sole
owner of Miniboot; the next generation are the au-
thorities of different operating systems; the next are
the authorities over the various applications that run
on top of these operating systems. We stress that
these parties are external entities, and apply to the
entire family of devices, not just one.

Hierarchy in software architecture implies depen-
dence of software. The correctness and security of
the application layer depends on the correctness and
security of the operating system, which in turn de-
pends on Miniboot 1, which in turn depends on

ŽMiniboot 0. This relation was implied by the de-
.creasing privileges of the trust ratchet.

Similarly, hierarchy in the authority tree implies
dominance: the authority over Miniboot dominates
all operating system authorities; the authority over a
particular operating system dominates the authorities
over all applications for that operating system.

8.3. Authenticating the authorities

Public-key authentication. Wherever possible, a
device uses a public-key signature to authenticate a
message allegedly from one of its code authorities.

The public key against which this message is veri-
fied is stored in the FLASH segment for that code

Žlayer, along with the code and other parameters see
.Fig. 10 .

Using public-key signatures makes it possible to
accommodate the ‘impersonal broadcast’ constraint.
Storing an authority’s public key along with the
code, in the FLASH layer owned by that authority,
enables the authority to change its keypair over time,

Žat its own discretion. Adding expiration dates and
revocation lists would provide greater forward in-

.tegrity.
However, effectively verifying such a signature

requires two things:
Ø the code layer is already loaded and still has

Žintegrity so the device actually knows the public
.key to use ; and

ŽØ Miniboot 1 still functions so the device knows
.what to do with this pubic key .

These facts create the need for two styles of
loading:
Ø ordinary loading, when these conditions both

hold; and
Ø emergency loading, when at least one fails.

Fig. 10. Sketch of the contents of code layer.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 851

Secret-key authentication. The lack of public-key
cryptography forces the device to use a secret-key
handshake to authenticate communications from the
Miniboot 0 authority. The shared secrets are stored
in Protected Page 0, in LBBRAM. Such a scheme
requires that the authority share these secrets. Our

w xscheme 19 reconciles this need with the no-data-
bases requirement by having the device itself store a
signed, encrypted message from the authority to
itself. During factory initialization, the device itself
generates the secrets and encrypts this message; the
authority signs the message and returns it to the
device for safekeeping. During authentication, the
device returns the message to the authority.

8.4. Ownership

Clearly, our architecture has to accommodate the
fact that each rewritable code layer may have con-
tents that are either reliable or unreliable. However,
in order to provided the necessary configuration
flexibility, the OS and application layers each have
additional parameters, reflecting which external au-
thority is in charge of them.

Our architecture addresses this need by giving
each of these layers the state space sketched in Fig.
11:
Ø The code layer may be owned or unowned.
Ø The contents of an owned code layer may be

reliable. However, some owned layers – and all
unowned ones – are unreliable.

Ø A reliable code layer may actually be runnable.
However, some reliable layers – and all unreli-
able ones – may be unrunnable.
This code is stored in EEPROM fields in the

hardware lock, write-protected beyond Ratchet 1.
For 0-N-3, the authority over Layer N in a

device can issue a Miniboot command giving an
unowned Layer Nq1 to a particular authority. For

Fig. 11. State space of the OS and application code layers.

Fig. 12. An ordinary load command for layer N consists of the
new code, new public key, and trust parameters, signed by the
authority over that layer, this signature is evaluated against the
public key currently stored in that layer.

2FNF3, the authority over Layer N can issue a
command surrendering ownership – but the device
can evaluate this command only if Layer N is cur-

Žrently reliable. Otherwise, the device does not know
.the necessary public key.

8.5. Ordinary loading

8.5.1. General scheme
Code Layer N, for 1FNF3, is rewritable. Un-

der ordinary circumstances, the authority over layer
N can update the code in that layer by issuing an
update command signed by that authority’s private
key. This command includes the new code, a new

Žpublic key for that authority which could be the
.same as the old one, per that authority’s key policy ,

and target information to identify the devices for
Žwhich this command is valid. The device using

.Miniboot 1 then verifies this signature directly
against the public key currently stored in that layer.
Fig. 12 sketches this structure.

8.5.2. Target
The target data included with all command signa-

tures allows an authority to ensure that their com-
mand applies only in an appropriate trusted environ-
ment. An untampered device will accept the signa-
ture as valid only if the device is a member of this

Žset. The authority can verify that the load ‘took’ via
Ž . .a signed receipt from Miniboot see Section 10 .

For example, suppose an application developer
determines that version 2 of a particular OS has a
serious security vulnerability. Target data permits



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860852

this developer to ensure that their application is
loadable only on devices with version 3 or greater of
that operating system.

8.5.3. Underlying updates
The OS has complete control over the application,

and complete access to its secrets; Miniboot has
complete control over both the OS and the applica-
tion. This control creates the potential for serious
backdoors. For example, can the OS authority trust
that the Miniboot authority will always ship updates
that are both secure and compatible? Can the appli-
cation authority trust that the OS authority uses
appropriate safeguards and policy to protect the pri-
vate key he or she uses to authorize software up-
grades?

To address these risks, we permit Authority N to
include, when loading its code, trust parameters
expressing how it feels about future changes to each
rewritable layer K-N. For now, these parameters
have three values: always trust, neÕer trust, or trust
only if the update command for K is countersigned
by N.

As a consequence, an ordinary load of Layer N
can be accompanied by, for N-MF3, a coun-
tersignature from Authority M, expressing compati-
bility. Fig. 13 sketches this structure.

8.5.4. Update policy
Trust parameters and countersignatures help us

balance the requirements to support hot updates,
against the risks of dominant authorities replacing
underlying code.

Fig. 13. An ordinary load command for layer N can include an
optional countersignature by the authority over a dependent layer
M. This countersignature is evaluated against the public key
currently stored in layer M.

Fig. 14. Ordinary loading of code into a layer is directly authenti-
Ž .cated by the authority over that layer dashed arrows ; emergency

loading is directly authenticated by the authority underlying that
Ž .layer solid arrows .

An ordinary reload of Layer N, if successful,
preserves the current secrets of Layer N, and leaves
Layer N runnable.

For N-MF3, an ordinary reload of Layer N, if
successful, preserves the current secrets of Layer M
if and only if Layer M had been reliable, and either:
Ø its trust parameter for N was always, or
Ø its trust parameter for N was countersigned, and

a valid countersignature from M was included.
Otherwise, the secrets of M are atomically de-

stroyed with the update.
An ordinary load of a layer always preserves that

layer’s secrets, because presumably an authority can
trust their own private key.

8.6. Emergency loading

As Section 8.4 observes, evaluating Authority
N ’s signature on a command to update Layer N
requires that Layer N have reliable contents. Many
scenarios arise where Layer N will not be reliable –
including the initial load of the OS and application in
newly shipped cards, and repair of these layers after
an interruption during reburn.

Consequently, we require an emergency method
to load code into a layer without using the contents
of that layer. As Fig. 14 shows, an emergency load
command for Layer N must be authenticated by

ŽLayer Ny1. As discussed below, our architecture
includes countermeasures to eliminate the potential

.backdoors this indirection introduces.

8.6.1. OS, application layers
To emergency load the OS or Application layers,

the authority signs a command similar to the ordi-
nary load, but the authority underneath them signs a



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 853

statement attesting to the public key. Fig. 15 illus-
trates this. The device evaluates the signature on this
emergency certificate against the public key in the
underlying segment, then evaluates the main signa-
ture against the public key in the certificate.

This two-step process facilitates software distribu-
tion: the emergency authority can sign such a certifi-
cate once, when the next-level authority first joins
the tree. This process also isolates the code and
activities of the next-level authority from the under-
lying authority.

8.6.2. Risks of siblings
Burning a segment without using the contents of

that segment introduces a problem: keeping an emer-
gency load of one authority’s software from over-
writing installed software from a sibling authority.
We address this risk by giving each authority an
ownerID, assigned by the Ny1 authority when

Ž .establishing ownership for N Section 8.4 , and stored

Ž .Fig. 15. An emergency load command for Ns2, 3 consists of
the new code, new public key, and trust parameters, signed by the
authority over that layer; and an emergency certificate signed by
the authority over the underlying layer. The main signature is
evaluated against the public key in the certificate; the certificate
signature is evaluated against the public key stored in the underly-
ing layer.

outside the code layer. The public-key certificate
later used in the emergency load of N specifies the
particular ownerID, which the device checks.

8.6.3. Emergency reloading of Miniboot
Even though we mirror Miniboot 1, recoverability

still required that we have a way of burning it
without using it, in order to recover from emergen-
cies when the Miniboot 1 code layer does not func-

Žtion. Since we must use ROM only and not Mini-
.boot 1 , we cannot use public-key cryptography, but

instead use mutual authentication between the device
and the Miniboot 0 authority, based on device-
specific secret keys-see Section 8.3.

8.6.4. Closing the backdoors
Emergency loading introduces the potential for

backdoors, since reloading Layer N does not require
the participation of the authority over that segment.
For example, an OS authority could, by malice or
error, put anyone’s public key in the emergency
certificate for a particular application authority.

Since the device cannot really be sure that an
emergency load for Layer N really came from the
genuine Authority N, Miniboot enforces two precau-
tions:
Ø It erases the current Layer N secrets but leaves

Žthe segment runnable from this clean start since
.the alleged owner trusts it .

Ø It erases all secrets belonging to later layers, and
Žleaves them unrunnable since their owners can-

Žnot directly express trust of this new load see
..Section 9 .

These actions take place atomically, as part of a
successful emergency load.

8.7. Summary

This architecture establishes individual commands
for Authority N to:
Ø establish owner of Layer Nq1,
Ø attest to the public key of Layer Nq1,
Ø install and update code in Layer N,
Ø express opinions about the trustworthiness of fu-

ture changes to Layer K-N.
Except for emergency repairs to Miniboot 1, all

these commands are authenticated via public-key
signatures, can occur over a public network, and can



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860854

be restricted to particular devices in particular con-
figurations.

Depending on how an authority chooses to control
its keypairs and target its commands, these com-
mands can be assembled into sequences that meet

w xthe criteria of Section 2.1. A separate report 20
explores some of the scenarios this flexibility en-
ables.

8.8. Example code deÕelopment scenario

We illustrate how this architecture supports flexi-
ble code development with a simple example.

Suppose Alice is in charge of Miniboot 1, and
Bob wants to become a Layer 2 owner, in order to
develop and release Layer 2 software on some cards.

Bob generates his keypair, and gives a copy of his
public key to Alice. Alice then does three things for
Bob:
Ø She assigns Bob a 2-byte ownerID value that

distinguishes him among all the other children of
Ž .Alice. Recall Fig. 9.

Ø She signs an ‘Establish Owner 2’ command for
Bob.

Ø She signs an ‘Emergency Signature’ for an
‘Emergency Burn 2’ saying that Owner 2 Bob has

Ž .that public key. Recall Fig. 15.
Bob then goes away, writes his code, prepares the

remainder of his ‘Emergency Burn 2’ command, and
attaches the signature from Alice.

Now, suppose customer Carol wants to load Bob’s
program into Layer 2 on her card. She first buys a

Žvirgin device which has an unowned Layer 2, but
.has Miniboot 1 and Alice’s public key in Layer 1 .

Carol gets from Bob his ‘Establish Owner 2’ and
‘Emergency Burn 2’ command, and plays them into
her virgin card via Miniboot 1. It verifies Alice’s
signatures and accepts them. Layer 2 in Carol’s card
is now owned by Bob, and contains Bob’s Program
and Bob’s Public key.

If Bob wants to update his code andror keypair,
he simply prepares an ‘Ordinary Burn 2’ command,
and transmits it to Carol’s card. Carol’s card checks
his signature on the update against the public key it
has already stored for him.

Note that Bob never exposes to Alice his private
key, his code, his pattern of updates, or the identity
of his customers. Furthermore, if Bonnie is another

Layer 2 developer, she shares no secrets with Bob,
and updates for Bonnie’s software will not be ac-
cepted by cards owned by Bob’s.

The architecture also support other variations in
the installationrdevelopment process; for example,
maybe Bob buys the cards himself, configures them,
then ships them to Carol.

Ž .The case for Layer 3 developers is similar.

9. Securing the execution

This section summarizes how our architecture
builds on the above techniques to satisfy the security

Žrequirements of Section 2.2.1. Although a formal
proof is beyond the scope of this paper, we have
completed a side-project to formally specify these
properties, formally model the behavior of the sys-
tem, and mechanically verify that the system pre-

w x .serves these properties 18 .

9.1. Control of software

Loading software in code Layer N in a particular
device requires the cooperation of at least one cur-
rent authority, over some 0FKFN.
Ø From the code integrity protections of Section 8,

the only way to change the software is through
Miniboot.

Ø From the authentication requirements for software
Žloading and installation which Table 3 summa-

.rizes , any path to changing Layer N in the future
requires an authenticated command from some
KFN now.

ŽØ From the hardware locks protecting Page 0 and
the intractability assumptions underlying cryptog-

.raphy , the only way to produce this command is
to access the private key store of that authority.

9.2. Access to secrets

9.2.1. Policy
The multiple levels of software in the device are

hierarchically dependent: the correct execution of the
application depends on the correct execution of the
operating system, which in turn depends on the
correct execution of Miniboot. However, when con-
sidered along the fact that these levels of software
might be independently configured and updated by



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 855

Table 3
Summary of authentication requirements for Miniboot commands affecting layer N

Miniboot command Authentication required

Establish owner of layer N Authority Ny1
Surrender owner of layer N Authority N
Emergency load of layer N Authority Ny1

of layer K-N Authority Ky1
Ordinary load of layer N Authority N

Ž .of layer K-N Authority K trust from authority N

authorities who may not necessarily trust each other,
this dependence gives rise to many risks.

We addressed these risks by formulating and en-
forcing a policy for secure execution:

A program can run and accumulate state only
while the device can continuously maintain
a trusted execution environment for that pro-
gram.

The execution enÕironment includes both under-
lying untampered device, as well as the code in this
and underlying layers. The secrets of a code layer
are the contents of its portion of BBRAM.

The authority responsible for a layer must do the
trusting of that layer’s environment – but the device
itself has to verify that trust. To simplify implemen-
tation, we decided that changes to a layer’s environ-
ment must be verified as trusted before the change
takes effect, and that the device must be able to
verify the expression of trust directly against that
authority’s public key.

9.2.2. Correctness
Induction establishes that our architecture meets

the policy. Let us consider Layer N; the inductive
assumption is the device can directly verify that
Authority N trusts the execution environment for
Layer N.

9.2.3. Initial state
A successful emergency load of layer N leaves N

in a runnable state, with cleared secrets. This load
establishes a relationship between the device and a
particular Authority N. The device can subsequently
directly authenticate commands from this authority,
since it now knows the public key.

This load can only succeed if the execution envi-
ronment is deemed trustworthy, as expressed by the
target information in Authority N ’s signature.

9.2.4. Run-time
During ordinary execution, secure bootstrapping

Ž .Section 7 and the hardware locks on LBBRAM
Ž .Section 6 ensure that only code currently in the
execution environment can directly access Layer N ’s
secrets – and by inductive assumption, Authority N
trusts this software not to compromise these secrets.

9.2.5. Changes
The execution environment for Layer N can

change due to reloads, to tamper, and to other failure
scenarios. Our architecture preserves the Layer N
secrets if and only if the change preserves the trust
invariant. Table 4 summarizes how these changes
affect the state of Layer N; Table 5 summarize how
the new state of Layer N affects the secrets of Layer
N.

A runnable Layer N stops being runnable if the
change in execution environment causes the induc-
tive assumption to fail – unless this change was an
emergency load of Layer N, in which case the Layer
N secrets are cleared back to an initial state.
Ø Layer N becomes unowned if the environment

changes in way that makes it impossible for
Authority N to express trust again: the device is

Ž .tampered, or if Layer 1 the public key code
becomes untrusted, or if Layer Ny1 becomes

Žunowned so the ownerID is no longer uniquely
.defined .

Ø Layer N also becomes unowned if Authority N
has explicitly surrendered ownership.

Ø Layer N becomes unreliable if its integrity fails.
ŽAuthority N can still express trust, but only

.indirectly, with the assistance of Authority Ny1.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860856

Table 4
Summary of how the state of Layer N changes with changes to its execution environment

Action Transformation of layer N state

RELIABLE layer N fails checksum NOT RELIABLE
Layer 2-N is OWNED but NOT RUNNABLE NOT RUNNABLE
Layer 2-N is UNOWNED UNOWNED
Layer 1 is NOT RELIABLE
Device is ZEROIZED

Establish owner of layer N OWNED
Surrender owner of layer N UNOWNED

of layer N RUNNABLE
Emergency load of layer K-N Ks2 NOT RUNNABLE

Ks1 UNOWNED
Ordinary load of layer N RUNNABLE

of layer K-N Trusted by auth N no change
Untrusted by auth N Ks2 NOT RUNNABLE

Ks1 UNOWNED

Ø Otherwise, Layer N stops being runnable if an
untrusted change occurred.

Layer N stays runnable only for three changes:
Ø An emergency load of Layer N.
Ø An ordinary reload of Layer N.
Ø An ordinary reload of Layer K-N, for which

Authority N directly expressed trust by either
signing an ‘always trust K ’ trust parameter at last
load of Layer N, or by signing an ‘trust K if
countersigned’ at last load of N, and signing a
countersignature now.
Only the latter two changes preserve the trust

invariant – and, as Table 5 shows, only these pre-
serve the Layer N secrets.

9.2.6. Implementation
Code that is already part of the trusted enÕiron-

ment carries out the erasure of secrets and other state
changes. In particular, the combined efforts of Mini-

Ž .boot 0 permanently in ROM and the Miniboot 1
Ž .currently in Layer 1 hence already trusted take care

of the clean-up required by an authority that does not
trust a new Miniboot 1 – despite failures during the
load process.

10. Authenticating the execution

10.1. The problem

The final piece of our security strategy involves
the requirement of Section 2.2.2: how to authenticate
computation allegedly occurring on an untampered

Ždevice with a particular software configuration. Sec-
tion 8.3 explained how the device can authenticate
the external world; this section explains how the

.external world can authenticate the device.
It must be possible for a remote participant to

distinguish between a message from the real thing,
and a message from a clever adversary. This authen-
tication is clearly required for distributed applica-
tions using coprocessors. As noted earlier, the e-wal-

Table 5
Summary of how changes to the state of Layer N changes its secrets

Action Transformation of layer N secrets

Layer N is NOT RUNNABLE ZEROIZED
Layer N is RUNNABLE Emergency load of layer N Cleared to initial state

Otherwise PRESERVED



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 857

w xlet example of Yee 26 only works if it’s the real
wallet on a real device. But this authentication is also
required even for more pedestrian coprocessor appli-
cations, such as physically secure high-end crypto-
graphic modules. For example, a sloppy definition of
‘secure’ software update on crypto modules may
require only that the appropriate authority be able to
update the code in an untampered device. If a secu-
rity officer has two devices, one genuine and one
evilly modified, but can never distinguish between
them, then it does not matter if the genuine one can
be genuinely updated. This problem gets even worse
if updates all occur remotely, on devices deployed in
hostile environments.

10.2. Risks

Perhaps the most natural solution to authentica-
tion is to sign messages with the device private key

Ž .that is established in initialization Section 5 and
erased upon tamper. However, this approach, on its
own, does not address the threats introduced by the
multi-level, updatable, software structure. For exam-
ple:
Ø Application threats. What prevents one applica-

tion from signing messages claiming to be from a
different application, or from the operating sys-
tem or Miniboot? What prevents an application
from requesting sufficiently many ‘legitimate’
signatures to enable cryptanalysis? What if an
Internet-connected application has been compro-
mised by a remote adversary?

Ø OS threats. If use of the device private key is to
be available to applications in real-time, then
Žgiven the infeasibility of address-based hardware

.access control protection of the key depends
entirely on the operating system. What if the
operating system has holes? We are back to the
scenario of Section 6.1.

Ø Miniboot threats. An often-overlooked aspect of
security in real distributed systems is the integrity
of the cryptographic code itself. How can one
distinguish between a good and corrupted version
of Miniboot 1? Not only could a corrupt version
misuse the device private key – it can also lie
about who it is.
This last item is instance of the more general

Õersioning problem. As the software configuration

supporting a particular segment changes over time,
its trustworthiness in the eyes of a remote participant
may change. If one does not consider the old version
of the OS or the new version of an application to be
trustworthy, then one must be able to verify that one
is not talking to them. The authentication scheme
must accommodate these scenarios.

10.3. Our solution

These risks suggest the need for decoupling be-
tween software levels, and between software ver-

Žsions. Our architecture carries out this strategy al-
though currently, we have only implemented the

.bottom level, for Layer 1 .
As Section 5 explained, we build an internal key

hierarchy, starting with the keypair certified for
Miniboot 1 in a device at device initialization. This
private key is stored in Page 1 in LBBRAM – so it
is visible only to Miniboot 1. Our architecture has
Miniboot 1 regenerate its keypair as an atomic part
of each ordinary reload of Miniboot 1. The transition
certificate includes identification of the versions of

ŽMiniboot involved. As Section 8 discusses, each
emergency reload of Miniboot 1 erases its private
key – the authority who just carried out mutual
secret-key authentication must then re-initialize the

.device.
Similarly, as an atomic part of loading any higher

Ž .Layer N for N)1 , our architecture has the under-
lying Layer Ny1 generate a new keypair for Layer
N, and then certify the new public key and deletes
the old private key. This certification includes identi-
fication of the version of the code. Although Mini-
boot could handle the keys for everyone, our current
plan is for Miniboot to certify the outgoing keypair
for the operating system, and for our operating sys-
tem to certify the keypair for the application –
because this scheme more easily accommodates cus-
tomer requirements for application options. The OS
private key will be stored in Page 2 in LBBRAM.

Our approach thus uses two factors:
Ø Certification binds a keypair to the layers and

versions of code that could have had access to the
private key.

Ø The loading protocol along with the hardware-
protected memory structure confines the private
key to exactly those versions.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860858

Fig. 16. Our outgoing authentication strategy requires that, in order to authenticate message M, Program F trust only what’s inside the
dotted line — which it would have to trust anyway.

This approach provides recoverability from com-
promise. Code deemed untrustworthy cannot spoof
without the assistance of code deemed trustworthy.
An untampered device with a trusted Miniboot 1 can
always authenticate and repair itself with public-key
techniques; an untampered device with trusted ROM
can always authenticate itself and repair Miniboot 1
with secret-key techniques.

This approach also arguably minimizes necessary
trust. For example, in Fig. 16, if Program F is going
to believe in the authenticity of the mystery message,
then it arguably must trust everything inside the
dotted line – because if any of those items leaked
secrets, then the message could not be authenticated
anyway. But our scheme does not force Program F

Žto trust anything outside the dotted line except the
.integrity of the original CA .

11. Conclusions and future work

We plan immediate work into extending the de-
vice. The reloadability of Miniboot 1 and the operat-
ing system allows exploration of upgrading the cryp-

Žtographic algorithms e.g., perhaps to elliptic curves,
.as well as certificate blacklists and expiration as

well as additional trust parameters for policy en-
forcement. Hardware work also remains. In the short
run, we plan to finish addressing the engineering
challenges in moving this technology into PCMCIA
format.

However, the main avenue for future work is to
develop applications for this technology, and to en-
able others to develop applications for it. We view
this project not as an end-result, but rather as a tool,
to finally make possible widespread development
and deployment of secure coprocessor solutions.

Acknowledgements

The authors gratefully acknowledge the contribu-
tions of entire Watson development team, including
Vernon Austel, Dave Baukus, Suresh Chari, Joan
Dyer, Gideon Eisenstadter, Bob Gezelter, Juan Gon-
zalez, Jeff Kravitz, Mark Lindemann, Joe McArthur,
Dennis Nagel, Elaine Palmer, Ron Perez, Pankaj
Rohatgi, David Toll, and Bennet Yee; the IBM
Global Security Analysis Lab at Watson, and the
IBM development teams in Vimercate, Charlotte,
and Poughkeepsie. We also wish to thank Ran
Canetti, Michel Hack, and Mike Matyas for their



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860 859

helpful advice, and Bill Arnold, Liam Comerford,
Doug Tygar, Steve White, and Bennet Yee for their
inspirational pioneering work, and the anonymous
referees for their helpful comments.

References

w x1 D.G. Abraham, G.M. Dolan, G.P. Double, J.V. Stevens,
Ž .Transaction security systems, IBM Systems Journal 30 1991

206–229.
w x2 R. Anderson, M. Kuhn, Tamper resistance – a cautionary

note, 2nd USENIX Workshop on Electronic Commerce,
November 1996.

w x3 R. Anderson, M. Kuhn, Low cost attacks on tamper resistant
devices, Preprint, 1997.

w x4 W.A. Arbaugh, D.J. Farber, J.M. Smith, A secure and reli-
able bootstrap architecture, IEEE Computer Society Conf. on
Security and Privacy, 1997.

w x5 D.E. Bell, L.J. LaPadula, Secure computer systems: mathe-
matical foundations and model, Technical Report M74-244,
MITRE, May 1973.

w x6 E. Biham, A. Shamir, Differential fault analysis: a new
cryptanalytic attack on secret key cryptosystems, Preprint,
1997.

w x7 D. Boneh, R.A. DeMillo, R.J. Lipton, On the importance of
checking computations, Preprint, 1996.

w x8 D. Chaum, Design concepts for tamper responding systems,
CRYPTO 83.

w x9 P.C. Clark, L.J. Hoffmann, BITS: a smartcard protected
Ž .operating system, Communications of the ACM 37 1994

66–70.
w x10 D.E. Denning, A lattice model of secure information flow,

Ž .Communications of the ACM 19 1976 236–243.
w x11 W. Havener, R. Medlock, R. Mitchell, R. Walcott, Derived

test requirements for FIPS PUB 140-1, National Institute of
Standards and Technology, March 1995.

w x12 IBM PCI Cryptographic Coprocessor, Product Brochure
G325-1118, August 1997.

w x13 M.F. Jones, B. Schneier, Securing the World Wide Web:
smart tokens and their implementation, 4th Int. World Wide
Web Conf., December 1995.

w x14 National Institute of Standards and Technology, Security
Requirements for Cryptographic Modules, Federal Informa-
tion Processing Standards Publication 140-1, 1994.

w x15 E.R. Palmer, An introduction to Citadel – a secure crypto
coprocessor for workstations, Computer Science Research
Report RC 18373, IBM T.J. Watson Research Center,
September 1992.

w x16 M.D. Schroeder, J.H. Saltzer, A hardware architecture for
implementing protection rings, Communications of the ACM

Ž .15 1972 157–170.
w x17 S.W. Smith, Secure coprocessing applications and research

issues, Los Alamos Unclassified Release LA-UR-96-2805,
Los Alamos National Laboratory, August 1996.

w x18 S.W. Smith, V. Austel, Trusting trusted hardware: towards a
formal model for programmable secure coprocessors, 3rd
USENIX Workshop on Electronic Commerce, September
1998.

w x19 S.W. Smith, S.M. Matyas, Authentication for secure devices
with limited cryptography, IBM T.J. Watson Research Cen-
ter, Design notes, August 1997.

w x20 S.W. Smith, E.R. Palmer, S.H. Weingart, Using a high-per-
formance, programmable secure coprocessor, Proc. 2nd Int.
Conf. on Financial Cryptography, Springer, Berlin, 1998.

w x21 J.D. Tygar, B.S. Yee, Dyad: A system for using physically
secure coprocessors, Proc. Joint Harvard–MIT Workshop on
Technological Strategies for the Protection of Intellectual
Property in the Network Multimedia Environment, April
1993.

w x22 S.H. Weingart, Physical security for the mABYSS system,
IEEE Computer Society Conf. on Security and Privacy,
1987.

w x23 S.R. White, L.D. Comerford, ABYSS: a trusted architecture
for software protection, IEEE Computer Society Conf. on
Security and Privacy, 1987.

w x24 S.R. White, S.H. Weingart, W.C. Arnold, E.R. Palmer, Intro-
duction to the Citadel architecture: security in physically
exposed environments, Technical Report RC 16672, Dis-
tributed Systems Security Group, IBM T.J. Watson Research
Center, March 1991.

w x25 S.H. Weingart, S.R. White, W.C. Arnold, G.P. Double, An
evaluation system for the physical security of computing
systems, 6th Annual Computer Security Applications Conf.,
1990.

w x26 B.S. Yee, Using secure coprocessors, Ph.D. Thesis, Com-
puter Science Technical Report CMU-CS-94-149, Carnegie
Mellon University, May 1994.

w x27 B.S. Yee, J.D. Tygar, Secure coprocessors in electronic
commerce applications, 1st USENIX Workshop on Elec-
tronic Commerce, July 1995.

w x28 A. Young, M. Yung, The dark side of black-box cryptogra-
phy – or – should we trust Capstone? CRYPTO 1996, LNCS
1109.

Sean W. Smith received a B.A. in
Mathematics from Princeton University

Ž .in 1987, and an M.S. 1988 and Ph.D.
Ž .1994 in Computer Science from

ŽCarnegie Mellon University Pittsburgh,
.Pennsylvania, USA . He worked as a

post-doctoral fellow and then as a mem-
ber of the technical staff in the Com-
puter Research and Applications Group
at Los Alamos National Laboratory, per-
forming vulnerability analyses and other
security research for the United States

government. He joined IBM Thomas J. Watson Research Center
in 1996, where he has served as security co-architect and as part
of the development team for the IBM 4758 secure coprocessor.
His research interests focus on practical and theoretical aspects of
security and reliability in distributed computation.



( )S.W. Smith, S. WeingartrComputer Networks 31 1999 831–860860

Steve H. Weingart received a BSEE
Žfrom the University of Miami Coral

.Gables, FL, USA in 1978. From 1975
until 1980 he worked in biomedical re-
search and instrument development. In
1980 he joined Philips Laboratories as
an electrical engineer, and in 1982 he
joined IBM at the Thomas J. Watson
Research Center. Most of his work since
1983 has been centered on secure copro-
cessors, cryptographic hardware archi-
tecture and design, and the design and

implementation of tamper detecting and responding packaging for
secure coprocessors. He participated in the NIST panel convened
to assist in the development of the FIPS 140-1 standard.


