
Secure Distributed Time for
Secure Distributed Protocols

Sean W. Smith

September 1994
CMU-CS-94-177

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Doug Tygar, chair
Stephen Brookes
David B. Johnson

Maurice Herlihy, Brown University

c1994 Sean W. Smith

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract
F33615-90-C-1465, Arpa Order No. 7597. Support also was sponsored by the Air Force Materiel Command (AFMC)
and the Advanced Research Projects Agency (ARPA) under contract number F19628-93-C-0193. In addition, IBM,
Motorola, and the NSF/Presidential Young Investigator Award under Grant No. CCR-8858087, TRW, and the U.S.
Postal Service gave their support. The author received support from an ONR Graduate Fellowship.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of AFMC or ARPA, the
U.S. Government, NSF, ONR, TRW, IBM, Motorola, or the U.S. Postal Service.



Keywords: Distributed systems, concurrency, security and protection, checkpoint/restart,
fault tolerance



Abstract

This thesis develops a framework for secure distributed time, and uses this framework to build
secure protocols for practical problems. In distributed systems, many important problems—such as
detecting potential causality, obtaining global states, and recovering from process failure—center
on temporal relations more general than the linear order of real time. Systems with asynchronous
message passing require a partial order time model, and systems with multiple levels of abstraction
require multiple levels of time models. Building clock primitives for these time models facilitates
building protocols for these application problems. However, protocols built (even tacitly) on
such clocks open themselves to security and privacy risks, since tracking these temporal relations
requires sharing and trusting private information.

This thesis addresses these issues of time and security by constructing a distributed time formalism
that supports hierarchies of general time models, and then constructing clock primitives—the
Signed Vector Timestamp protocol and the Sealed Vector Timestamp protocol—that provide security
and privacy. Framing application problems in terms of this distributed time framework grants
insight that often allows us to build protocols more general and flexible than were previously
possible. Separating clocks from protocols grants additional flexibility by allowing us to keep their
design issues mutually transparent.

This thesis explores three applications of this secure distributed time framework. We transparently
add security and privacy to immediate ordered service protocols. We build basic distributed
snapshot protocols and transparently add security, privacy, and increased flexibility. Finally, we
use the framework to build a new optimistic rollback recovery protocol that substantially improves
on previous work by providing full asynchrony while also reducing the worst-case bound for
rollbacks after a failure from exponential to one per process; further, developing this protocol
within the distributed time framework transparently allows for security and privacy.
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Chapter 1

Introduction

Many problems in distributed systems center on temporal relations more general than the linear
order of real time, or even on a single layer of a more general order. Put simply, distributed systems
need distributed time. Recognizing the central role that distributed time plays creates opportunities:

� Using the appropriate temporal relations can allow deeper insight into the nature of applica-
tion problems.

� Providing clock primitives for these temporal relations permits construction of clearer, more
flexible, and more general protocols for these problems.

However, recognizing the central role that distributed time plays also leads to recognizing a signif-
icant problem:

� Protocols built (even implicitly) on distributed time are open to security and privacy risks,
since tracking these temporal relations requires sharing private information, and requires
trusting the information that is shared. Attacks on the lower-level clocks lead to attacks on
the higher-level protocols.

This thesis identifies and resolves these issues by building a framework for secure distributed
time, and by using this framework to build secure distributed protocols.

1.1. Distributed Time

Our first intuitions organize experience into a linear sequence of discrete events. However, this
approach is inappropriate for asynchronous distributed systems, where information is distributed
and perception is delayed. Distributed environments require a distributed notion of time, to abstract
away not only irrelevant physical detail but also irrelevant temporal and computational detail. By
better expressing distributed systems concepts that are difficult to talk about in terms of real time,
and by distinguishing what “actually happens” from what physically occurs, a theory of distributed
time provides a natural framework for solving problems in distributed environments.



Chapter 2 lays the groundwork for these tasks by reviewing the theory of distributed time we
developed for this thesis. This theory improves on previous work on time in distributed systems by
supporting temporal relations more general than partial orders, by supporting abstraction through
multiple levels of temporal relations, by separating the family of temporal relations an application
consults from the particular clock implementations that track them, and by providing a single arena
in which to consider these issues for a wide range of applications.

One central claim of this thesis is that distributed time provides a framework for building
general protocols for distributed systems application problems. We can first phrase problems in
terms of distributed time, and then phrase protocols in terms of distributed time clock primitives.
Chapter 2 through Chapter 4 develop this claim by considering several application problems:

� Potential Causality Determining whether one event could potentially have influenced
another requires sorting events in the partial order determined by the asynchronous compu-
tation, rather than in the linear order determined by real time. Clocks for partial order time
directly support building protocols for problems such as orphan detection and immediate
ordered service that reduce to sorting based on potential causality.

� Snapshots and Global States Distribution and asynchrony make it difficult for a
process to determine the state of the system at any given instant, since anything that the
process can perceive about other processes will be out-of-date. However, phrasing snapshots
as timeslices from a time model provides a way to use clocks for these models to capture
general snapshots and to reason about global states. Phrasing the problem this way allows
us to extend a basic protocol by substituting clocks for more general temporal relations, and
to address performance concerns by substituting clock implementations.

� Optimistic Rollback Recovery The problem of rollback recovery arises when a process,
due to some type of failure, must roll back events and restart execution (possibly with
modified replay). Recovery is optimistic when other processes may depend on the lost
events at the failed process. Since optimistic recovery requires tracking dependency, many
previous approaches use some form of partial order clocks, and thus already dovetail nicely
with our work. However, effectively performing this recovery asynchronously requires
tracking potential knowledge of failures as well. This potential knowledge relation is also
expressed by a partial order time model—but a lower-level model than the dependency
model. The distributed time framework provides the tools needed to clearly talk about such
hierarchies of time—and thus to develop new rollback protocols that improve on previous
work.

The distributed time framework introduces orthogonality between clocks and the higher-level
protocols that use them. Besides permitting more flexible protocols, this orthogonality has an
additional benefit: we can consider clock issues on the clock level, independently of the protocol
issues. This approach offers advantages:

� Orthogonality between Time Models and Protocols Separating clocks from proto-
cols provides a separation between time models and protocols. We can transparently change
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the scope of a protocol by substituting clocks for a different time model—for example,
a change to the model underlying the snapshot protocols allows us to capture snapshots
satisfying the property of having no messages in transit.

� Unification of Protocols The distributed time framework unites protocols that individ-
ually deal with distributed time issues. This unification directly allows tasks such as taking
an offline snapshot after rollback with modified replay. For example, rollback with modified
replay creates three distinct versions of the computation: the failed computation, the virtual
failure-free computation, and the underlying failure-plus-recovery computation. For each of
these computations, scenarios exist where a snapshot would be useful. The distributed time
framework directly supports this flexibility.

1.2. Security and Privacy

In a distributed system, a process can detect the local passage of real time by examining an
independent physical device, such as a quartz clock. However, to track more general temporal
relations, a process must collect and share private information. Consequently, dealing with these
relations—even implicitly—exposes protocols to security and privacy risks:

� Is the information a process receives correct?

� Is the information a process shares being used for dishonest purposes?

This sharing and trusting creates opportunities for Byzantine (malicious) processes to manipulate
the clock protocols, and consequently to manipulate application protocols built on these clock
protocols. The orthogonality that distributed time introduces between clocks and protocols thus
has the additional significant benefit of creating a single arena in which to examine and resolve these
security issues. Installing clocks that protect against security and privacy attacks will transparently
provide this protection to higher-level protocols.

The latter part of this thesis examines these security and privacy aspects of distributed time.
Chapter 5 begins this examination by considering secure clocks. For example, the standard time-
stamp vector mechanism for partial order time permits numerous attacks. We catalog these attacks,
and present two protocols that provide protection: the Signed Vector Timestamp protocol and the
and Sealed Vector Timestamp protocol. We discuss scalability and implementation issues, and
outline avenues for further research into secure clocks.

Chapter 6 then uses these techniques to add security and privacy protection to the distributed
protocols developed in Chapters 2 through 4.
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1.3. Overview of Previous Work

Previous work has explored partial order time for distributed systems, both through mathematical
models and through protocol construction. The mathematical work provided foundational insights
but did not support construction of clocks and protocols; the protocol work did not provide a fully
general framework, and consequently did not exploit the full power of the temporal abstraction
being performed. Further, the security challenges raised by using clocks for relations more general
than linear time were unidentified and unsolved.

Time The notion that the linear order of real time may be inappropriate for asynchronous dis-
tributed systems emerges in earlier work. Jefferson [Je85] used linear time that departs from the real
time order. Lamport [La78] used partial orders to track causal dependency in distributed systems.
Pratt [Pr86] argued for the universality of partial order time. Partial order temporal relations have
also emerged in the areas of semantics (e.g., [Gr75, Pe80, GaPr87, CCMP89, Win89]) and artificial
intelligence (e.g., [Ba93, Bo93, Ts87, YaAl93]). Using partial orders for distributed systems is
sometimes called logical time; Fidge [Fi91] presents a good survey paper, and very recently Yang
and Marsland [YaMa93, YaMa94] have published a collection of some of the principal papers on
these issues (and the orthogonal issues of total order clock synchronization).

Asynchrony Previous work [BiJo87, PBS89, SES89] has also explored the communication
problems introduced by asynchrony: by the fact that the underlying temporal structure is not the
linear order of real time. One proposed solution to this problem is to fix a partial order structure as
the causal order and to enforce (via multicasting) that processes perceive a consistent view of this
order. (The appropriateness and scalability of this solution has lately generated no small amount of
controversy [ChSk93, Bi94, Co94, Re94].) Other approaches to this problem include frameworks
to adapt protocols for the asynchronous partial order environment after developing them in simpler
environments [Aw85, Mo85, NeTo90] .

Protocols Partial order time has also appeared in various forms in distributed systems appli-
cations. Some of these areas include distributed debugging [Fi89, Sp89], distributed snapshots
[ChLa85, AhKs89, Ma93] and the use of distributed snapshots in debugging [CoMa91, MaNe91,
MaSa91, GaWa94]. Partial order time has also been used in deadlock detection [Ma87, TaLo91],
immediate ordered service [KeKo89], and rollback recovery [StYe85, Jo89, JoZw90, ElZw92,
PeKe93].

Clocks Lamport [La78] proposed a clock mechanism that allows processes in an asynchronous
distributed system to track a total order consistent with the underlying partial order. Fidge [Fi88]
and Mattern [Ma89] formally explored partial order time and concurrently introduced the vector
timestamp mechanism. (Protocols essentially identical to the vector timestamps mechanism also
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independently appeared in other work [StYe85, KeKo89]). Other research has explored opti-
mizations to the vector clock protocol [SiKs90], trading decreased accuracy for decreased size
[ACGS91], and limits to vector size [CB91] and to clock accuracy [Va93].

Security The author [Sm91] identified security problems in the vector clock and Lamport clock
mechanisms, and introduced the Signed Vector Timestamp protocol. Reiter and Gong [ReGo93]
also explored this area and independently discovered this protocol. Amman and Jajordia [AmJa93]
explored some issues in securely generating timestamps in the face of confinement levels.

1.4. Thesis Contributions

This thesis uses a framework for general temporal relations to advance the state of the art both in
distributed protocol design and also in security and privacy for distributed systems.

Time To begin with, this thesis provides a fully-developed formalism to talk about clocks for
temporal relations that differ from the linear order of real time. This formalism improves on the
foundational work by allowing us to talk about arbitrary relations (not just partial orders, and not
just the single partial order of information flow) and hierarchies of abstraction (not just a single
level), and allowing us to build clocks for these relations and protocols based on these clocks.

Protocols This thesis then applies this framework to the example problems of distributed snap-
shots and optimistic rollback recovery. We can define global states in terms of distributed time
relations, and build snapshot protocols in terms of clock queries; this approach allows us to substi-
tute clock implementations (e.g., for increased security) and to substitute underlying time models
(e.g., to capture specialized properties or to examine alternate virtual computations). The ability to
talk about multiple levels of time allows us to build an optimistic rollback recovery protocol that
provides fully asynchronous recovery while also reducing the worst case number of rollbacks after
a failure from exponential (as in Strom and Yemini’s asynchronous protocol [StYe85]) to at most
one per process. Further, the single framework of distributed time allows us to consider in one
place problems and protocols separately affecting time abstraction .

Secure Clocks This research was the first to identify security and privacy problems inherent in
partial order time. This thesis presents both the first secure partial order clock protocol, as well as
the most secure clock protocol to date. This latter protocol provides security and privacy despite
any number of corrupt agents–and extends to partial order temporal structures that differ from the
underlying partial order of information flow.

5



Secure Protocols This thesis demonstrates a systematic and transparent way to add secu-
rity and privacy protection to protocols developed within this secure distributed time framework.
Consequently, this work shows how to solve application problems using partial order time—while
also defending against espionage and Byzantine attacks. We show how to add this protection
to example protocols for providing immediate ordered service, taking distributed snapshots, and
performing optimistic rollback recovery.

As computer systems become increasingly distributed and user applications become more
attractive to attack, the issues of time and security will only become more important. This thesis
lays the groundwork for solving these problems.

(A glossary follows the text of this thesis. This glossary presents four lists: terms, clock
primitives, time models, and symbols.)
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Chapter 2

Distributed Time

This chapter reviews the theory of distributed time, a general framework (developed as part of
this thesis research) for temporal relations in distributed systems. Section 2.1 presents the moti-
vation behind the theory. Section 2.2 presents tools for representing and abstracting computation.
Section 2.3 discusses timeslices and global states. Section 2.4 specifies and builds some clock
primitives. Section 2.5 examines some example applications. Section 2.6 relates this chapter to
our earlier, more detailed publication on distributed time [Sm93].

2.1. Overview

Beyond Real Time Normally we think of a computation as a sequence of states and events
ordered by real time. However, even this natural view performs abstraction from full physical
detail to discrete events. Describing asynchronous distributed computation requires extending this
abstraction to time: if two events occur without knowledge of each other, then their real time
sequence does not matter and also may not be observable [La78, Pr86]. Consequently, many
application problems are simplified by thinking of time as the partial order determined by potential
information flow. (This relation is sometimes referred to as the “Lamport order,” after [La78], and
also the “causal order,” since it expresses potential causality.)

Beyond Partial Order Time Pioneering work in partial order time [Fi88, Ma89] leaves us
thinking about computation as a temporal relation on a set of objects—except each object actually
represents the activity in a region of space-time, and the relation does not follow directly from real
time order on these regions. Many application issues suggest that we should continue removing
irrelevant temporal and computational detail—that we should continue the process of abstraction:

� Using multiple levels of partial order time clarifies distributed computations that fail and
recover.

� Omitting the details of recovery facilitates describing the failure-free virtual computation.



� The temporal relations of interest may not necessarily follow from the information flow
partial order. One example is the partial order describing the virtual computation after re-
covery; another are the zigzag paths in Xu and Netzer’s recent work [XuNe93] in checkpoint
coordination.

� The temporal relations of interest may not necessarily be a mathematical order. (As
Section 2.2.3 discusses, an order is a relation both transitive and antisymmetric.) For
example, relaxing the transitivity requirement clarifies discussion of confinement barriers
and individual steps in information flow. Relaxing the acyclic requirement allows a natural
way to unite sets of events into atomic units: cycles.

Extending partial order time to a general framework for temporal abstraction provides the tools to
talk about these scenarios. Put simply, describing a distributed computation requires a theory of
distributed time.

Distributed Time for Distributed Protocols A theory of distributed time has practical
motivations and uses. Consider the computation performed by asynchronous distributed systems,
with processes that possess no common clock, that fail and restart, and that frequently may be
disconnected or even powered down. Many application problems that arise in these systems
reduce to asking questions about temporal relations other than the natural real time sequence.
Thinking in terms of these alternative temporal relations clarifies these problems; providing clocks
for these relations simplifies protocol design. Indeed, building protocols for these problems requires
confronting these clock issues in one form or another. However, exploiting the power of alternative
temporal relations requires understanding the underlying framework. The remainder of this chapter
develops these formal mechanisms of distributed time.

This research improves on earlier work by providing a single, general theory of distributed
time suitable for a wide range of applications. By supporting temporal relations more general than
partial orders and by supporting hierarchies of temporal abstraction, this theory can express the
computational abstraction appropriate for families of application problems. By providing a general
approach to distributed time, this theory allows us to unify in a single framework protocols that
separately consult and affect time, and to consider once the clock issues central to each separate
protocol. By introducing orthogonality between temporal relations and the clocks that track them,
this theory allows us to consider (and alter) clock implementations without changing higher-level
protocols.

Considering these goals raises some critical issues:

� We want to represent a computation as some abstract set of “things that happened,” with a
relation indicating the temporal order in which these things happened.

� The components in these abstractions themselves represent various parts of a literal descrip-
tion of what physically happened.
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� These abstractions should permit temporal relations more general than that of linear time.

� We need to distinguish between the way we obtain the abstract representations and the
representations themselves, since we may have multiple routes to the same representation.

� We want to be able to apply abstractions to abstractions.

We conclude that a general theory of distributed time should contain three components:

� a standard format for these abstract representations (so we can talk about computations);

� a way to specify time models: representational transformations on these objects (so we can
abstract from one representation to another); and

� a way to translate some level of physical description into this format (so our chains of
abstraction have some footing in reality).

Distributed time models provide several advantages:

� If the desired physical description is unavailable, our time model should express the best
observable approximation.

� If the complete physical description obscures key concepts, then our time model should
abstract to a more appropriate description.

� If the processes collectively pretend that the “current” computation differs from the one
a complete physical description would record, then our time model should express this
abstraction.

2.2. Description and Abstraction

2.2.1. Systems

In the theory of distributed time, we model the system as a collection of process automata that
send and receive messages asynchronously (and unreliably). Each process has a send queue and
a receive queue, not necessarily FIFO. When a process sends a message, it appends the message
to its send queue. At some undetermined time later, the network removes the message from the
send queue. Eventually the message may appear in the receive queue of the destination process,
which may then receive the message. (Thus, each message may be received at most once.) We
assume that each message is sufficiently distinct (perhaps using identifier tags) so that we can
unambiguously identify the send corresponding to a given receive.
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Each process also has a state transition rule �. The � rule may differ at each process and may
even be nondeterministic (specifying a set of possible new states at each transition). We constrain
the � rule to force processes to behave reasonably with respect to messages. That is, during a
transition, a process may do one of three things:

� try to receive a message from its input queue,

� send a message, or

� perform internal computation.

Sending or receiving a message changes the internal state at a process. A process may receive
messages by periodically polling its queue, or by continually looping on a poll (thereby blocking)
until a message is received. We also permit interrupt-driven receive events: a process may attempt
to perform an internal computation, with the caveat that if a message is present in the input queue,
the process will receive that instead.

A process operates in real time and changes state at indeterminate intervals. We model this
behavior by saying that each process has a black box that generates ticks nondeterministically (but
generating only finitely many in any finite period of real time). When receiving a tick, a process
transforms state instantaneously according to its state transition rule. If a tick arrives at real time
u, the old state persists for times t satisfying t � u; the new state exists for t > u.

A system computation is what happens when the processes are set to their initial conditions and
fed with nondeterministic ticks.

2.2.2. Traces

Probably the most practical ground-level view of computation is a linear trace. A trace is an
exhaustive physical description analogous to a movie reel, each frame stamped with a real time
value and recording the states of each process. We require that the cameraman obtaining the trace to
be lucky but not necessarily regular: the interval of time between frames need not be constant, but
at least one frame must be taken between any two consecutive ticks (or message arrivals/departures)
in the system. Table I shows an example.

So that traces have non-zero duration, we require that they have at least two frames.

In some sense, a trace is a hypothetical construct, since obtaining one requires access to the
complete physical state of each process at any instant in real time. Nevertheless, traces serve as a
starting point, describing the physical action in a computation.
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time t = 0:0 t = 0:8 t = 1:5 t = 2:2 t = 3:0 t = 4:2 t = 4:8
p: state initial 17 17 17 23 23 23

p: send queue 6 fMg 6 6 6 6 6

p: receive queue 6 6 6 6 6 6 6

q: state initial initial initial 32 32 32 12
q: send queue 6 6 6 6 6 6 6

q: receive queue 6 6 6 6 6 fMg 6

Table I In this simple example of a system trace,
process p sends a message M to process q.

2.2.3. Computation Graphs

In order to express computation as a temporal relation on some set of abstract, discrete objects,
distributed time uses a computation graph format where nodes represent the objects, and directed
edges represent precedence. This construction is similar to ordered multisets, but allows us to
express relations more general than orders, and to use language already in the common parlance of
systems scientists.

Notation An atom of a graph is a node or an edge. A minimal node in a computation graph
is one that has no node preceding it: a node with in-degree zero. Similarly, a maximal node in a
computation graph is one that has no node following it. We usually use lower-case Greek letters
to refer to computation graphs, upper-case Roman from the front of the alphabet to refer to nodes,
and upper-case Roman from the end of the alphabet to refer to sets of nodes.

Precedence and Concurrence For nodesA andB in a computation graph, we writeA�!B
to indicate that node A precedes node B, and A = !B to indicate that A and B are incomparable:
neither precedes the other. We say that incomparable nodes are concurrent.

We write A �! B to indicate that either A�!B or A = B.

The precedence relation specified by a computation graph is an order when it satisfies two
conditions:

� The relation is antisymmetric (or acyclic): for any A;B, if A�!B and B �!A then
A = B.

� The relation is transitive: for any A;B;C, if A�!B and B �! C then A�! C.
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We use graphs to permit temporal relations more general than orders. In particular, defining
precedence by edges, rather than paths, permits nontransitive relations.

Prefixes and Past-Closure Suppose �0 is a subgraph of computation graph �. We say that
�0 is a a prefix of � when �0 is connected and contains all minimal nodes of �. We say that �0 is
past-closed when common nodes have the same history in � and �0. (That is, for any node B in
�0, if node A precedes B in �, then A exists and precedes B in �0.) The past-closure of a subgraph
�0 is the the intersection of all past-closed subgraphs of � that contain �0.

Ground-level Computation Graphs Directly translating traces into computation graph for-
mat yields ground-level computation graphs. Ground-level graphs have six types of nodes: a photo
node, representing the state of a process captured in a frame of the trace, and nodes representing
each way that process state might transform:

� when a process sends a message,

� when a process receives a message,

� when a process computes something internally (i.e., a state transition not involving input or
output),

� when a message departs from the send queue at a process, or

� when a message arrives at a receive queue at a process.

We transform a trace into its ground-level graph by constructing a photo node for each process
in each frame of the trace. Should two consecutive photos of a process indicate a state change,
we insert the appropriate transition node. Directed edges connect the consecutive nodes at each
process.

Figure 2.1 shows an example of this construction.

Representation Each atom in a ground-level computation graph represents some part of the
computational space-time expressed by the trace. The space coordinate of the region an atom
represents is determined by the process: the process p atoms represent activity at process p. The
time span is determined by the following rules:

� Each photo node represents the instant in time of that frame.

� Each transition node represents the unknown instant in time the transition occurred.

� Each directed edge between two nodes represents the open interval between the instants
represented by the endpoints.
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Figure 2.1 A ground-level computation graph is the lowest level abstraction of a
computation. This sketch shows the ground-level graph for the computation whose
trace appears in Table I.

Figure 2.2 shows an example of this representation.

Event vs. State Considering how to build computation graphs brings up an important question
[Pr92]: should the fundamental object (the nodes) represent events or states? Should the main
unit of description be the dynamic “thing that happens” at a process, or the static “interval of
holding a specified bit-pattern?” Ground-level graphs admit both types of objects: photo nodes
describe process state, while the other nodes describe inferred (rather than directly observed) state
transitions.

Each approach can be useful, and the distributed time formalism supports both.

2.2.4. Time Models

Representative Transformations A ground-level graph provides too much detail. A time
model is a mechanism to generate more abstract descriptions. Formally, time models are represen-
tative transformations on computation graphs. This description highlights the two key properties:

� Transformation A time modelM is a partial function on computation graphs. Applying
M to a graph � (for whichM is defined) produces a new, more abstract graphM(�).

� Representation If modelM is defined on graph �, each atom ofM(�) may represent
atoms in the original graph �. However, this representation may be a Chicago-style democ-
racy: some atoms ofM(�) may represent no one, and some atoms of � may have multiple
representatives. We formalize this arrangement by saying that the application of M to �
induces a representation map from the atoms ofM(�) to sets of atoms of �. This map, which
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Figure 2.2 Each atom in a ground-level computation graph represents part of
the space-time region in which the computation occurs. This diagram shows how
the process p part of the ground-level graph from Figure 2.1 partitions the time
experience of process p in the computation from Table I.

we denote as hM; � i, takes each atom in the new graph to the set of atoms it represents in
the original graph.

Figure 2.3 shows an example of this relationship.

Composition and Hierarchies The functional nature of time models allows us to compose
them. This allows us to place models—and computation graphs—into hierarchies. For example,
M1 might take a set of ground-level computation graphs G0 to a set of more abstract graphs G1.
This abstraction might lose information, in the sense thatM1 might take several graphs in G0 to a
single graph in G1. ModelM2 may abstract from G1 to G2; the composition modelM2 �M1 takes
the ground-level graphs directly to G2.

The representation map for composed models follows naturally. For a computation graph �,
let � = M1(�) and  = M2(�) = (M2 �M1)(�). We find out what an atom A in  represents
under the representation map forM2 �M1 by the following steps:

1. We apply the map forM2 to find out what A represents in �.

2. We then apply the map forM1 to find out what each atom in this set represents in �.

3. We take the union of the results of this second round.
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α:

M(α):

M,α M,αM,αM

Figure 2.3 Time modelM transforms computation graph � to computation graph
M(�). The representation map hM; � i takes each atom ofM(�) back to the set of
atoms in � it represents. The bold arrow indicates the action ofM; the gray arrows
indicate the action of hM; � i.

We state this formally in the equation:

hM2 �M1; � i(A) �
[

B2hM2;M1(�) i(A)

hM1; � i(B)

Figure 2.4 illustrates this construction.

Refinement Suppose two models M1;M2 have the property that for all computation graphs
� and �0, M1(�) = M1(�0) implies M2(�) = M2(�0). Knowing the M1 image of a graph is
sufficient to determine theM2 image. We say thatM1 refines toM2, and writeM1 >M2.

WhenM1 >M2, modelM2 provides a more abstract view of the underlying computation, but
in a way that is still well-defined in terms of the viewM1 provides.

Abstraction Hierarchies Refinement is clearly transitive. This fact allows us to put models
into abstraction hierarchies: chains of models that successively refine to each other.

2.2.5. Properties of Time Models

We now define several time model properties that we will use in this thesis. Temporal relations
determine two of these properties:

� A model is transitively bounded when its transitive closure has a unique maximum node and
a unique minimum node.

� A model is acyclic when its transitive closure has no cycles. (A node in a graph is acyclic
when it does not precede itself.)
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Figure 2.4 To obtain the image of graph � under the compositionM2 �M1, we
first obtain � = M1(�), and then obtain  = M2(�). To apply the representation
map hM2 �M1; � i to an atom in , we first apply hM2; � i(A) to that atom. We
then apply hM1; � i to each atom in the resulting subset of �, and take the union
of the result. In this diagram, solid arrows indicate the action of the time models;
gray arrows indicate the action of the representation maps.
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The remaining properties involve relating the graphs a model produces to the computation
underlying this graph (through the trace and the ground-level computation graph.) First, moving
from anM graph back to the static underlying computation allows us to define two properties:

� We say a time modelM is flow-supported when transitive precedence implies information
flow. Every precedence path is supported by potential information flow. That is, suppose that
A and B are two nodes in a graph � produced byM, and that ground-level graph � satisfies
M(�) = �. IfA�!B in �, then an information flow path exists from the space-time region
A represents (through �) to the space-time region that B represents (through �).

� We say a time model M is flow-virtual when information flow does not necessarily im-
ply precedence. Such a model may express the information flow in a simulated virtual
computation.

We also need to move from anM graph back to the dynamic underlying computation. A trace of
a computation corresponds to a ground-level graph. A computation in progress induces a sequence
of increasing finite traces; hence we can think of an unfolding computation as the sequence of
ground-level graphs

[�i] = �0; �1; :::; �i; :::

corresponding to this sequence of traces. For a graph � produced by a time model M, we can
define the set SM;� of ground-level graph sequences corresponding to unfolding computations that,
at some point, generate � throughM.

SM;� = f[�i] : 9 kM(�k) = �g

We use this set SM;� to define several types of monotonicity:

� A model M is node-monotonic when, for any graph � it produces, each node in � never
vanishes once it exists.

8 nodes A in � 8 [�i] 2 SM;� 9 k 8 j : A 2M(�j) () (j � k)

� A modelM is weakly edge-monotonic when, for any graph � it produces, each edge in �
never vanishes once it exists.

8 edges E in � 8 [�i] 2 SM;� 9 k 8 j : E 2M(�j) () (j � k)

� A modelM is strongly edge-monotonic when an edge exists between two nodes in � only if
it always exists in all graphs containing those two nodes.

8 nodes A;B in � 8 [�i] 2 SM;� 8 j :

A;B 2M(�j) =)
�
(A�!B inM(�j))() (A�!B in �)

�

� A model is weakly monotonic when it is node-monotonic and weakly edge-monotonic.

� A model is strongly monotonic when it is node-monotonic and strongly edge-monotonic.
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2.2.6. Parallel Pairs

Frequently the single perspective from a single time model is not sufficient. A distributed system
provides two simple examples:

� We may want to distinguish between “node B happened immediately after node A” and
“node B happened after node A.”

� We may want to distinguish between the ordering of nodes at an individual process (the local
computation) and the system-wide ordering of nodes at all processes (the global computa-
tion).

Distributed time allows such multiple perspectives.

Composition allows us to distinguish between the basic steps in a computation—e.g., events
A;B;C happened in sequence—and the general ordering. We simply build our modelM to draw
edges for the basic steps and build a standard model TRANS to take the transitive closure of a graph.
Then we can talk about basic steps usingM, and full transitive precedence usingM = TRANS�M.

Events/states in a distributed system can exist and be ordered on two levels: locally, in the
timelines of their processes, and globally, in terms of the entire system. A graph describing the
local computations clearly relates to a graph describing the global computation: join the local
graphs “in parallel,” merge some events, and possibly add some edges.

A parallel pair is such a pair of models (M;M0). Both models act on ground-level graphs.
ModelM produces a graph describing the global computation; modelM0 produces a graph com-
posed of disjoint straightline graphs, each describing a local process timeline. The models in a
parallel pair must satisfy one additional rule: minimal events at processes must correspond to
minimal events in the global graph, and similarly for maximal events. WhenM0 is the local model
in a parallel pair, we denote its process p component by �pM

0.

The two models in a parallel pair must closely correlate. This closeness allows us to define a
time model taking graphs produced by the local model to graphs produced by the global one. We
call this model the factoring model M=M0 . The factoring model satisfies the equation:

M = (M=M0) �M0

Figure 2.5 illustrates the four perspectives that a parallel pair provides.

2.2.7. Properties of Parallel Pairs

Time model properties directly lead to several parallel pair properties:
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Figure 2.5 A time model generates an abstract view of a computation. A parallel
pair generates four views, according to the two independent choices: whether we
use the process timelines or the overall system graph, and whether we consider
basic transitions or transitive precedence. Here, the parallel pair (M;M0) acts on
ground-level �, the computation graph corresponding to system trace T . The local
model M0 takes � to � = M0(�), the collection of process timelines. The global
model M takes � to  = M(�), the overall system description. We can take the
transitive closure of either of these graphs—and of either of these models. The
graph � = M0(�) expresses the full transitive relation induced by the basic steps
in �; the graph  =M(�) expresses the full transitive relation induced by the basic
steps in . The factoring model M=M0 takes theM0 image to the M image; the
factoring model M=M0 takes theM0 image to theM image.
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� A parallel pair is transitively bounded when its global model is transitively bounded.

� A parallel pair is acyclic when its global model is acyclic.

� A parallel pair is weakly monotonic when the transitive closure of each model is weakly
monotonic.

� A parallel pair is strongly monotonic when the transitive closure of each model is strongly
monotonic.

� A parallel pair is flow-supported when each model is flow-supported.

� A parallel pair is flow-virtual when the transitive closure of each model is flow-virtual.

The pairing of time models leads to other properties:

� Each atom at a process affords some view of the activity at the other processes. Two such
atoms at a process are externally equivalent when they afford the same view: either both
are cyclic or both are acyclic, and both have the same transitive global relation to each node
at all other processes. A graph � from the global model in a parallel pair is view-complete
when any edge at any process has, in �, an externally equivalent node at that process. That
is, if any basic step at a process affords some external view in the transitive global graph, a
node exists at that process giving the same view. A parallel pair (M;M0) is view-complete
when all graphs produced by the global modelM are view-complete.

� A consistent parallel pair is one that is view-complete and transitively bounded.

� In an independent parallel pair, each non-extremal node in the global model represents a
unique node in the process model.

Types of Parallel Pairs This thesis will focus primarily on parallel pairs of four types:

� Type 1: those that are consistent;

� Type 2: those that are consistent and independent;

� Type 3: those that are strongly monotonic, consistent, and independent;

� Type 4: those that are flow-supported, strongly monotonic, consistent, and independent.

For n 2 f1; 2; 3g, any Type n pair is a Type n � 1 pair, but some Type n � 1 pairs may not
necessarily be Type n pairs.

We will also consider independently when a parallel pair is flow-virtual.
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The Type 1 and Type 2 conditions describe the internal structure of time models. The Type 3
and Type 4 conditions describe properties useful for specifying clocks for these models. The
flow-virtual condition will be useful in considering security properties of these clocks.

When a parallel pair (M;M0) is Type 2, we will informally identify the nodes in theM graph
with their mates in theM0 graph.

2.2.8. Nonlinear Pairs

A nonlinear pair is a pair of models (M;M0) that meets the definition of parallel pair, except for the
requirement thatM0 produce straightline graphs. The definitions of Section 2.2.6 and Section 2.2.7
apply to nonlinear pairs as well.

2.2.9. Examples

Thinking about time in asynchronous distributed computations as a partial order, determined by the
asynchrony and distribution, holds a number of advantages over thinking of time as a total order,
determined by real time. This section develops time models to transform ground-level computation
graphs to graphs depicting their natural partial order time descriptions.

Partial order time abstracts away irrelevant temporal detail. As we shall see in subsequent
chapters, frequently we need to abstract away irrelevant computational detail as well—deriving
temporal relations more general than the standard partial order, as well as deriving instances of the
standard partial order that do not arise directly from the actual computation.

This section proceeds by removing the irrelevant detail of the network activity, and then building
a partial order time model that will be standard for this thesis.

Abstracting Away Network Activity The goal of partial order time is to express the temporal
ordering perceived by the processes themselves. The first step toward building such models consists
of abstracting away details imperceivable by the processes: the state and transformations of their
queues. Thus we begin by defining the NET ABSTRACT time model which acts on ground-level
computation graphs.

The NET ABSTRACT model abstracts away network activity as follows. In a ground-level graph,
the photo nodes record both the automata state and the queue state at the process. For each photo
node, we retain only the recorded automata state. We delete the nodes marking arrive transitions
and depart transitions. For each process, the nodes in the NET ABSTRACT image correspond to a
subsequence of the nodes in the ground-level graph; we draw edges connecting the nodes in this
sequential order.
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Basically, the NET ABSTRACT image of a graph consists of a copy of the original graph, with the
photo nodes relabeled and the irrelevant transition nodes deleted. The representation map follows
this description. Let � be a ground-level graph, and � = NET ABSTRACT(�). The representation
map h NET ABSTRACT; � i takes each atom in � to its original image in �, with one exception—
deleted transition nodes. Suppose node A in � is a transition node that NET ABSTRACT deletes.
Let E1 and E2 be the edges incident to �. Let E be the edge in � where A would have been. Then

h NET ABSTRACT; � i(E) = fE1; A;E2g

Figure 2.6 shows how the NET ABSTRACT model applies to the sample ground-level computa-
tion graph from Figure 2.1. Figure 2.7 clarifies the representation map.

Timelines The TIMELINES model organizes individual process activity into linear timelines. We
obtain the TIMELINES image of a ground-level computation graph � in several steps:

� We apply NET ABSTRACT to �. Let � be the resulting graph.

� At each process, we create a ? node for the first photo node in �, and a > node for the last
photo node in �.

� We copy each send and receive node in �.

� Removing the send nodes, receive nodes, and extremal photo nodes from � would leave
us with a collection of maximal connected sequences of atoms, each occurring at only one
process. For each such sequence, we create a state node reflecting the process state. (This
state is well-defined: each sequence will have at least one photo node, except possibly the
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Figure 2.6 The NET ABSTRACT model removes irrelevant network detail. This
computation graph shows the result of applying NET ABSTRACT to the graph of
Figure 2.1.
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Figure 2.7 Representation under the NET ABSTRACT model is practically the iden-
tity. This diagram shows how atoms in the process p part of the NET ABSTRACT

graph of Figure 2.6 represent atoms in the process p part of the ground-level graph
from Figure 2.1. The darker gray arrows leading to the deleted depart node are the
only significant change.

first and last sequences at a process. These extremal sequences will pick up their values from
? and >.)

� We connect consecutive nodes at each process with directed edges.

Figure 2.8 sketches this construction.

Representation follows from this construction. Suppose � is a ground-level graph, and we
apply the time models to obtain the graphs:

� = NET ABSTRACT(�)

 = TIMELINES(�)

Each node A in  replaces a sequence S of atoms in �. Node A represents in � the union of what
the elements of S represent.

h TIMELINES; � i(A) =
[

B2S

h NET ABSTRACT; � i(B)

Figure 2.9 sketches this relation.

For process p, the model TIMELINESp produces only the timeline belonging to process p.
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Figure 2.9 Each node in the TIMELINES model represents a sequence of atoms in
the original ground-level graph. This diagram shows how atoms in the process p
part of the TIMELINES graph of Figure 2.8 represents atoms in the process p part of
the ground-level graph from Figure 2.1.
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The Partial Order The PARTIAL ORDER TIME model organizes the timelines of TIMELINES

into a system-wide partial order. We obtain the PARTIAL ORDER TIME image of a ground-level
computation graph � in several steps:

� We apply TIMELINES to �.

� We merge the ? nodes into a single global ? node.

� We merge the > nodes into a single global > node.

� For each received message, we draw a directed edge from its send node to its receive node.

Representation follows directly from TIMELINES representation: the ? and > nodes represent the
union of what the merged nodes represent, and the message edges represent nothing. Figure 2.10
sketches this construction.

Since a trace must have at least two frames, we observe that the minimal PARTIAL ORDER TIME

graph consists of ?, >, and a state node for each process.

This construction ensures that a process cannot have two consecutive “external” nodes (that is,
extremal or message event nodes).

The models (PARTIAL ORDER TIME; TIMELINES) form a Type 4 parallel pair: consistency, in-
dependence, flow-support, and strong monotonicity are all easily established. Indeed, we could
define flow-support in terms of PARTIAL ORDER TIME: a graphM(�) is flow-supported iff

A�!B inM(�) =) A�!B in PARTIAL ORDER TIME(�)

The construction of PARTIAL ORDER TIME naturally suggests how to obtain the factoring model
PARTIAL ORDER TIME=TIMELINES .
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Figure 2.10 The PARTIAL ORDER TIME model produces this graph
when applied to the ground-level graph of Figure 2.1.
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The transitive closure TIMELINES builds a total order on the nodes at each process. The transitive
closure PARTIAL ORDER TIME builds a partial order on the nodes at all processes.

2.3. Timeslices and Global States

This section discusses how the mechanics of distributed time extend to handle the problems of real
and apparent simultaneity in asynchronous distributed systems. Section 2.3.1 defines timeslices in
computation graphs. Section 2.3.2 discusses global states in computations. Section 2.3.3 discusses
the relation between global states and timeslices, and Section 2.3.4 discusses the finer structure of
timeslices.

2.3.1. Timeslices

We construct time models to package periods of activity at processes into events or states, which
appear in the computation graph as nodes. Two nodes that a computation graph leaves unordered are
logically concurrent, in that the graph does not specify one happening before another. A maximal
set of mutually concurrent nodes represents a logical slice of time across this computation; this
meaning follows naturally from the semantics of the computation graph: any other node must
happen either before or after some node in the set.

We define a timeslice1 to be a maximal mutually concurrent set of nodes. That is, X is a
timeslice iff X satisfies two conditions:

1. X is mutually concurrent: no A;B 2 X satisfy A�!B, and

2. X is maximal: no mutually concurrent Y exists properly containing X .

This definition of mutually concurrent automatically prohibits cyclic events from timeslices.

A partial timeslice is a subset of a timeslice—that is, a set of mutually concurrent nodes that is
not necessarily maximal. (If the precedence relation from a computation graph were guaranteed to
be an order,2 then a partial timeslice is simply an antichain.)

1Spezialetti [Sp89] uses the term “timeslice,” and Mattern [Ma89] uses “time slice”; the timeslices there are special
cases of the timeslices here.
2Section 2.2.3 presented a formal definition.
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2.3.2. Global States

The Physical Computation In the physical system, computation takes place in the space-time
region consisting of the cross product of the set of processes with a continuous interval of real time.
A physical global state consists of the state of the entire system at some point in time—that is, a
slice of the space-time region.

Ground-Level Graphs Each atom of a ground-level computation graph� implicitly represents
some subset of the computation space-time region. The collection of subsets represented by all the
atoms in � constitutes a partition of the space-time region. For the space-time slice corresponding
to a physical global state, we can find sets of atoms from the ground-level graph � that represent a
subset of the space-time region that contains this slice. (For a trivial example, consider the set of
all the atoms in the graph.) We say that a set X of atoms of ground-level � is a global state when
it is the minimal subset representing a slice: when X contains the slice but no proper subset of X
does.

Abstract Graphs Suppose time modelM is defined for ground-level graphs. A computation
graph � produced byM is supposed to “forget” which ground-level graph generated it. The graph
� is also supposed to express the objects of interest as nodes. The model M has an explicit
representation map to tell us what these nodes represent in pre-images of �. To talk about global
states in �, we want to talk about three aspects:

� a set X of nodes in �

� that minimally represents a ground-level global state

� in some ground-level graph thatM transforms to �.

Formally, suppose that time modelM is defined on ground-level graphs. A graph � thatM
produces is theM image of at least one ground-level graph �. A set X of nodes in � minimally
represents a global state when some ground-level graph � exists satisfying the conditions:

� M(�) = �;

� X represents a global state Y in �:

Y �
[

A2X

hM; � i(A)

� however, no proper subset of X represents Y .

Figure 2.11 illustrates how node sets from higher-level graphs correspond to global states.
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Figure 2.11 Global states arise from real simultaneity. Here, the region Z in the
space-time diagram at the bottom indicates the activity at time t = 1:9. The atom set
Y in the ground-level graph in the middle is the minimal set mapping to this instant,
and thus is a global state. The node set X in the PARTIAL ORDER TIME graph at top
minimally represents the global state Y . (The set X also is a timeslice.)
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2.3.3. The Relation Between Timeslices and Global States

A ground-level graph � expresses the physical computation. Its abstraction under the time model
M is the graph � =M(�). In general, time models will not be injective: many ground-level graphs
may map to � underM. If the set of ground-level graphs describes “possible” computations, the
set

G = fM(�) : � is a ground-level graphg

describes the possible computations when viewed through the modelM.

The Timeslice Condition If M is well-constructed, then the timeslices in a graph that M
generates represent exactly the significant global states in the physical computations from which
this graph abstracts. Formally, suppose time modelM on ground-level graphs generates the set
G. We develop criteria for a model to have timeslices with the appropriate semantics. ModelM
satisfies the Timeslice Condition iff for each � 2 G,M satisfies these requirements:

1. For each set X of nodes in �, the following are equivalent statements:

� X minimally represents a global state Y in some ground-level graph� withM(�) = �.

� X is a timeslice in �.

2. Each ground-level graph�with� =M(�) and each global state Y in� satisfy the statement:

� If hM; � i(A)\Y 6= 6 for some nodeA, then some timeslice in� minimally represents
Y .

Some partial order models fail to meet the Timeslice Condition. For example, a version of
PARTIAL ORDER TIME that omitted the state nodes would fail: if a process p executes a receive
immediately after a send, then global states corresponding to the real time interval between those
events cannot be represented by timeslices. Figure 2.12 sketches an example.

The view-completeness property from Section 2.2.6 prevents these scenarios where timeslices
cannot extend to all processes.

Theorem 2.1 Suppose (M;M0) is a Type 1 parallel pair. Then all timeslices inM
touch every process.

Proof Suppose timeslice X does not touch process p. Let A be the maximal node at p that
precedes or equals some node in X . Let B be the minimal node at p that follows some node
in X . We must have A�!B, for if B �! A then X could not be a timeslice. All nodes and
edges between A and B must be mutually concurrent with each node in X . Further, the first
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S1
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R2E

Figure 2.12 Consider the partial order produced by the transitive closure of this
event-only graph. Edge E at process p is concurrent with bothR1 and S2 at process
q. However, all nodes at process p either precede R1 or follow S2. Consequently,
this graph is not view-complete. As a result, no timeslice can minimally represent
a global state containing R1 or S2, since any corresponding process p node will not
be concurrent.

and last edges must be acyclic (otherwise A would advance and/or B would move back). View-
completeness gives the existence of nodes at p with the same properties, thus X could not have
been a timeslice.

By including state nodes, the PARTIAL ORDER TIME model of Section 2.2 is easily view-
complete and thus consistent. The construction of PARTIAL ORDER TIME provides some additional
properties:

� Precedence of two nodes in PARTIAL ORDER TIME implies real-time precedence of the ac-
tivity those nodes represent in any underlying computation.

� Each node in PARTIAL ORDER TIME represents a connected region of activity at a process.

� The activity of each process any point in time is represented by some node in
PARTIAL ORDER TIME.

These properties serve to establish the following result:

Theorem 2.2 The PARTIAL ORDER TIME model satisfies the Timeslice Condition.

Proof Let � be a graph generated by PARTIAL ORDER TIME.

Suppose node set X is not a timeslice. Then either X does not touch every process (in which
case it cannot represent a global state), or X is not mutually concurrent (in which case one node of
X must precede another in �, and thus in real time in all traces).
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Suppose node set X is a timeslice. We construct a trace where the activities X represents are
simultaneous. Assign integers to the nodes of � by first setting each node of X to 0, then setting
each node A following X to be one greater than the maximum value of its predecessors and each
A preceding X to be one less than the maximum value of its successors. If �j is the value on ?,
add j to each value. A trace exists that schedules each instantaneous node (?, >, and transition
nodes) labelled i at t = i, and each state node labelled i in the open interval (i � 1; i + 1). Then
timeslice X describes the state of the system at t = j.

In any computation generating �, a physical global state generates a node set X in � touching
every process.

2.3.4. The Structure of Timeslices

By definition, a timeslice is maximal set of mutually concurrent nodes. What do these timeslices
look like? If acyclic, the singletons f>g and f?g are trivially timeslices: no concurrent nodes
exist. What about the other timeslices?

Naively, a timeslice should consist of one node per process. In general models, nodes may
represent activity at multiple processes. Hence in general, the informal “one-per-process” tuple
has two formal characterizations:

� as a vector—an array of nodes, with the constraint that the process p entry occurs at p; and

� as a cut—a set of nodes that contains, for each process p, exactly one node occurring at p.

A cut is the node set of a unique vector, but the node set of an arbitrary vector is not necessarily
a cut. In either case, we can use projection to isolate particular entries—e.g., �pX is the process p
entry of X .

The literature uses consistent cut for a cut that is also a timeslice in the global model. If the node
set of a vector is a timeslice, then it is also a consistent cut (because in parallel pairs, the local process
models are total orders, so distinct nodes at the same process cannot be concurrent). However, not
all timeslices will be consistent cuts—Figure 2.12 shows a counter-example. View-completeness
eliminates this problem for our partial order models, as Theorem 2.1 showed. View-completeness
also provides a convenient extension property for partial timeslices.

Corollary 2.3 Let (M;M0) be a Type 1 parallel pair. Any set of mutually concurrent
nodes fromM extends to a full consistent cut.

The timeslices in a partial order graph will be the extrema singletons (which are easily consistent
cuts, since the extrema represent every process), and the sets consisting of a non-extremal node
from each process.
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Timestamp Vectors Let (M;M0) be a parallel pair. We define the timestamp vector for a node
A to be the vector V(A) consisting of the maximal node at each process that precedes or equals A
in the global model. That is, let B be the process p entry �p V(A). Then B �! A inM, and each
node C at each process p satisfies

C �! A inM =) C 0 �! B0 in �pM
0

(where C 0 is the maximal �pM
0 node that C represents there, and B0 is the minimal).

When the global model of a parallel pair is transitively bounded, all entries of all timestamp
vectors are defined. When the parallel pair is Type 2 as well, the definition becomes much simpler,
since each non-extremal node inM corresponds to a unique node inM0.

View-completeness endows timestamp vectors with another useful property:

Theorem 2.4 Suppose parallel pair (M;M0) is Type 1. Let A1; :::;Ak be mutually
concurrent nodes in a graph fromM; let p be a process at which no Ai occurs, and let
node B be the p-maximal node among the p entries of the vectors V(Ai).

Then there exists a minimal acyclic node C followingB at p, and C is concurrent with
each Ai.

Proof This result follows directly from the proof of Theorem 2.1.

Suppose A is a node in a PARTIAL ORDER TIME graph that does not occur at process p. One
implication of Theorem 2.4 is that the node following the p entry of V(A) is mutually concurrent
with A.

Rollback Vectors We can define rollback vectors as the dual to timestamp vectors. The rollback
vector for a node A is the vector R(A) consisting of the minimal node at each process that follows
or equals A. That is, let B be the process p entry �p R(A). Then A �! B inM, and each node C
at each process p satisfies the statement:

A �! C inM =) B0 �! C0 in �pM
0

(Again, let B0 be the maximal node that B represents in the p timeline, and let C 0 be the minimal
that C that C represents.)

Just as timestamp vectors describe the maximal history cone of an node, rollback vectors
describe the minimal future cone. The term “rollback vector” originates in this fact: if A were to
be instantaneously undone, R(A) describes the frontier of the region to be rolled back. The dual
of Theorem 2.4 holds for rollback vectors.

Precedence of Vectors The linear order on individual timelines induces a natural relation on
vectors: we say that V � W when �p V �! �pW for each process p, but V 6=W .
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The Timeslice Lattice Vectors of nodes, one per process, induce some natural entry-wise
operations—one of which we have already done. For vectors X and Y , define their meet X u Y
to be the vector obtained by taking, for each process p, the minimal p entry from X and Y . Define
the join X t Y symmetrically by taking the entry-wise maximum.

We know that timeslices from Type 1 parallel pairs are consistent cuts, and thus have a vector
structure. In Type 2 parallel pairs, the meet and join operations preserve this property.

Theorem 2.5 Suppose X and Y are consistent cuts in a Type 2 parallel pair. Then
X u Y and X t Y are both consistent cuts.

Proof Suppose Z = X u Y is not a timeslice. Then Z must equal neither X nor Y . There must
exist processes p and q such that X contributes the process p entry of Z and Y contributes the q
entry, but these entries are not mutually concurrent. LetA;B be the p entries ofX;Y (respectively),
and C;D be the q entries. By hypothesis, A�!B but D �!C . If A and D are not concurrent,
then either A�! C (so X is not a timeslice) or D �!B (so Y is not a timeslice).

The case for join is symmetric.

Entry-wise precedence � partially orders consistent cuts; in this order, X t Y is the least con-
sistent cut dominating consistent cuts X and Y and X u Y is the greatest consistent cut dominated
by X and Y . These observations, along with Theorem 2.5, suffice to establish that timeslices form
a lattice: a nonempty, partially-ordered set, such that each pair of elements has a least upper bound
and greatest lower bound in the set [DaPr90].

Theorem 2.6 Timeslices in Type 2 parallel pairs form a lattice.

Adjusted Vectors An easy variation of Theorem 2.6 is that the set of timeslices containing
some specified node also forms a lattice (since meet and join will preserve this membership). The
bounds on this lattice derive directly from timestamp and rollback vectors.

Let A be a non-extremal node at process p in a graph from a Type 1 parallel pair. Theorem 2.4
tells us that for each q 6= p, a minimal acyclic node exists in the q timeline following the q entry of
V(A). Define the adjusted timestamp vector V�(A) by replacing each non-p entry in V(A) by this
“successor.” Similarly define the adjusted rollback vector R�(A) by replacing each non-p entry
with its “predecessor”: the maximal acyclic node preceding the R(A) entry.

For acyclic Type 2 models, this construction is stated more simply: if A occurs at p, obtain
V�(A) by replacing each each non-p entry of V(A) by its immediate successor, and obtain R�(A)
by replacing each non-p entry of R(A) by its immediate successor.
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Theorem 2.7 Let (M;M0) be a Type 1 parallel pair. Let A be an acyclic node from
anM graph. Let fX1; :::;Xkg be the set of all timeslices containing A. Then

V�(A) = X1 uX2 u ::: uXk

R�(A) = X1 tX2 t ::: tXk

Proof From Theorem 2.4, A is either concurrent with or equals each element in its adjusted
vector. From Corollary 2.3, timeslices exist containing A and each of these elements. Thus the
bound can be achieved. By definition, no element from V(A) or R(A) except A can be in a
timeslice with A. Further, no cyclic node can be in a timeslice with A. Thus, these bounds are
tight.

2.4. Clocks for Distributed Time

Section 2.4.1 sketches some clock primitives for time models. Section 2.4.2 sketches some clock
primitives for parallel pairs. Section 2.4.3 considers issues of when clocks have sufficient infor-
mation to answer these queries. Section 2.4.4 discusses how timestamp vectors form a basis for an
implementation of these primitives.

An Implicit Parameter The behavior of clock primitives will all be specified in terms of
the ground-level computation graph current at the time of execution. We denote this graph by
CUR GRAPH. We do not include this graph as an explicit parameter since the processes that will
invoke these primitives will not have explicit access to this graph.

2.4.1. Primitives for Time Models

Suppose time modelM acts on ground-level computation graphs. We define the most fundamental
clock primitive:

� PRECEDES(A;B;M) returns true iff A and B are nodes in the graphM(CUR GRAPH) and
an edge in this graph connects A to B.

PRECEDES allows us to implement two other primitives:

� CONCURRENT(A;B;M) returns true iff A and B are nodes in graphM(CUR GRAPH), and
in this graph, A and B are concurrent.

CONCURRENT(A;B;M) �

:PRECEDES(A;B;M) ^ :PRECEDES(B;A;M)
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� ACYCLIC(A;M) returns true iff node A is acyclic inM(CUR GRAPH).

ACYCLIC(A;M) � :PRECEDES(A;A;M)

This specification raises some questions. Are the primitives well-defined? How do processes
provide these parameters? The remainder of this section considers these issues.

Well-defined Answers Suppose system computation extends the current ground-level com-
putation graph from � to �0. If A�!B in �, will A�!B in �0? If A =�!B in �, will A =�!B
in �0? The monotonicity definitions in Section 2.2.5 provide some answers:

� If the time modelM is strongly monotonic, then the PRECEDES primitive is well-defined.

� If the time modelM is only weakly monotonic, then the PRECEDES primitive still behaves
reasonably, with the exception of occasionally changing from false to true as computation
progresses.

We make the implicit assumption that the models we define primitives for are strongly monotonic.
However, we note that the weakly monotonic case can also be made to work once we handle the
problem of convergence: knowing when a precedence answer become stable.

Node Names Processes using these primitives must specify nodes as parameters. Specifying
these primitives begged the question of how processes themselves should refer to nodes. We
assume that nodes in a computation have unique names. Whether names should be mere identifiers
(e.g., “node 73 at process 12”) or more complete descriptions (e.g., “node 73 at process 12: state
change from q3 to q7”) is another issue. This naming convention carries an implicit assumption:
from the information in a node name, one may extract the process at which the node occurred.

Shifting Models We use these simple primitives to ask about precedence in a model M.
However, a natural extension is to ask about other types of precedence using other models. For
example, in a parallel pair (M;M0), we can ask about individual steps at processes usingM0, or
about precedence at process p using �pM

0. The format of PRECEDES and CONCURRENT already
grants this ability: we use the model parameter to specify the appropriate model. However, shifting
nodes between levels in a parallel pair can be tricky, because a node from a parallel pair exists on
three levels:

� as a node in the global graph;

� as the set of nodes it corresponds to in the disjoint union of the local graphs;

� as the set of nodes, if any, it corresponds to in each process graph.
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In general, shifting levels requires some care to avoid ambiguity. For Type 2 parallel pairs such
as (PARTIAL ORDER TIME; TIMELINES), this multiplicity is simple: each node in the global partial
order represents exactly one node at one process, except for? and >.

2.4.2. Primitives for Pairs

We define some additional primitives for parallel pairs and nonlinear pairs. We assume that our pair
is Type 3: both strongly monotonic and Type 2. (Strong monotonicity assures us that precedence
relations are well-defined; Type 2 provides convenient node structure.)

A Primitive for “Now” First, processes need access the name of their current node. We specify
a primitive:

� CUR NODE(p; (M;M0)) returns the name of the current process p node in the graph
M

0(CUR GRAPH).

We allow only process p to ask CUR NODE(p; (M;M0)).

Vector Operations Processes need to perform vector operations in nonlinear pairs. We specify
two primitives:

� MAX(V;W; (M;M0)) is defined for vectors V and W of nodes fromM(CUR GRAPH), and
returns the entry-wise maximum (usingM0 to sort entries).

� COMPARE(V;W; (M;M0)) is defined for vectors V andW of nodes fromM(CUR GRAPH),
and is true iff V �W (usingM0 to sort entries).

Meta-Primitive We want to define enumerative primitives for our clock suite. We begin by
defining two “meta-primitives” as building blocks. Let A be a variable representing an unspecified
node, and � be a predicate on A. We specify two meta-primitives:

� LIST(A;�(A); �) returns the set of nodes in graph � that, when substituted for A, satisfy
�(A).

� NODE(A;�(A); �) returns the single node A from � satisfying �(A) (and is undefined
otherwise).

These meta-primitives themselves are off-limits for processes.
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Primitives that Enumerate We use LIST and NODE to build clock primitives that enumerate
nodes, rather than merely providing Boolean answers. These primitives apply to Type 3 parallel
pairs only. (Recall that in a Type 2 parallel pair (M;M0), we identify nodes inM with nodes in
M

0.) We specify three primitives:

� NEXT(p;A; (M;M0)) returns theM node that follows node A in the process p timeline.

NEXT(p;A; (M;M0)) �

NODE(B;PRECEDES(A;B; �pM
0); �pM

0(CUR GRAPH))

� PREVIOUS(p;A; (M;M0)) returns theM event that precedes node A in the process p time-
line.

PREVIOUS(p; A; (M;M0)) �

NODE(B;PRECEDES(B;A;�pM
0); �pM

0(CUR GRAPH))

� LIST CONCURRENT(p; A; (M;M0)) returns the acyclicM nodes at process p that are con-
current with event A.

LIST CONCURRENT(p;A; (M;M0)) �

LIST(B;CONCURRENT(A;B;M) ^ ACYCLIC(B;M); �pM
0(CUR GRAPH))

2.4.3. Knowable Pursuits

Section 2.4.1 considered when the temporal relation that a clock primitive examines is well-defined.
However, we have not examined when when a process executing of a clock primitive in an unfolding
computation will have sufficient information to obtain this well-defined answer. For example:

� When should the clock at process p be expected to handle queries about a node A?

� What precedence relations should the clock at p be expected to know about?

To answer these questions, we informally consider an “Elephant-Pig Paradigm”: processes
never forget anything, and always piggyback each link in a precedence path with complete knowl-
edge. Although this paradigm would not be met by real implementations, it serves to a starting
point. Suppose we use parallel pair (M;M0) to describe computation, and nodeC occurs at process
p. We specify some clock guidelines:

� If A�! C inM, then process p at node C may ask about A.

� If A and B both precede C in M, then process p at node C may ask about the relation
between A and C.
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For our models, flow-support reasonably approximates the Elephant-Pig Paradigm. If we
restrict the knowability questions to a parallel pair (M;M0) is also flow-supported (e.g., (M;M0)
is a Type 4 parallel pair), this sketch provides some answers:

� Process q at node C 2M(CUR GRAPH) will get an answer from the queries

PRECEDES(A;B;M0)

PRECEDES(A;B;M)

iff B �! C inM(CUR GRAPH).

� Process q at node C 2M(CUR GRAPH) will get an answer from

NEXT(p;A; (M;M0))

iff this node exists, and precedes or equals C inM(CUR GRAPH).

� Process q at node C 2M(CUR GRAPH) will get an answer from

PREVIOUS(p;B; (M;M0))

iff B �! C inM(CUR GRAPH).

� Realistically, it seems unreasonable for a process to know everything in its past. Consequently,
we restrict LIST CONCURRENT to examine local nodes only. Only process p can query
LIST CONCURRENT(p; A; (M;M0)), only for A preceding the query node.

2.4.4. An Implementation

Vector clocks provide a natural approach for tracking temporal precedence in parallel pairs.
Historically, research in partial order time includes vector-based clock implementations [StYe85,
Fi88, Fi91, Ma87, KeKo89, Ma89]. Indeed, the term “vector time” has surfaced for partial order
time, although we feel this is a misnomer as it confuses an implementation with the underlying
structure. (However, these particular implementations do permit extra elegance in some applica-
tions.)

The vector relation on timestamp vectors follows the temporal relation on the events.

Theorem 2.8 Any two nodes A and B from a Type 1 parallel pair. satisfy the
statement:

V(A) � V(B) ()
�
A�!B ^ B =�!A

�
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Proof Each entry of a timestamp vector for a given event precedes or equals that event. If
A�!B then, then the p entry of V(A) precedes or equals B, and thus precedes or equals the
maximal node at p preceding B. Conversely, suppose V(A) � V(B) and A occurs at process q.
Then A precedes or equals the q entry of V(A), which precedes or equals the q entry of V(B),
which precedes or equals B.

(In fact, this theorem holds for parallel pairs more general than Type 1. Only transitive bounding
is required.)

Strong monotonicity implies that the timestamp vector for an event can actually be defined at
some point in the computation. Flow-completeness implies that the timestamp vector for an event
can actually be defined when the event occurs. Consequently, to implement clocks for Type 4
parallel pairs using timestamp vectors, we just have each process maintain a local counter and a
“current” timestamp vector. When a process sends a message, it piggybacks the timestamp vector
of the send; when a process receives a message, it updates its current vector to be the entry-wise
maximum. Timestamp vectors allow direct implementation of the PRECEDES and CONCURRENT
primitives, and, along with some facility for remembering history and event descriptions, allows
implementation of the remainder of the primitives.

Timestamp vectors also function as clocks for more general types of parallel pairs, such as those
lacking flow-support, and those whose process timelines are themselves partial orders. The imple-
mentation becomes somewhat more complicated in these scenarios, however. For example, non-
flow-supported models suffer from an information gap: when event A occurs at process p, process
p may not have sufficient information to sort A. The answer to the query PRECEDES(M2; A;B; �)
depends on when the query is made—and we need a time modelM1 that refines toM2 to capture
this parameter. (This scenario is an example of parameterized clocks.) Alternatively, when a
process timeline is itself a partial order, we need to distribute information so that other processes
can perform the vector clock algorithm—sorting two events at process p is no longer a matter of
comparing two scalars. (Chapter 4 and Chapter 5 discuss these issues in more detail.)

In principle, rollback vectors also function as clocks (the dual to Theorem 2.8 holds), but
information gaps makes implementation impractical.

2.5. Example Applications

2.5.1. Orphan Detection

An immediate application of distributed time is accurate orphan detection. When an event is
aborted, any event that could have been influenced by the aborted event is an orphan and should
be undone.

39



Tracking this dependence in an asynchronous distributed system is difficult. For example,
using real time to label as an orphan any event with a timestamp greater than the aborted event
will generate false positives, and not extend to work in environments lacking synchronized real
time clocks. Using a total order consistent with the underlying computation also generates false
positives—and fails to extend to scenarios such as rollback recovery, in which the final (replayed)
instance of an event may actually occur later than an event it influenced.

The tools of distributed time solve these problems by allowing us to talk about time as a partial
order, and by allowing us to move transparently from the partial order representing the physical
computation to a more abstract partial order that represents a virtual computation.

2.5.2. Immediate Ordered Service

The problem of immediate ordered service consists of servers processing requests from clients in
an asynchronous distributed system. Each server has a list of outstanding requests. How can the
server choose the “earliest” entry to process without necessitating additional communication and
discussion?

This problem can be solved by applying a partial order time model to the computation, and hav-
ing servers use partial order clocks to sort the incoming requests. The immediate response time of
vector clocks makes that implementation particularly attractive—especially in a distributed, asyn-
chronous, and frequently disconnected environment. (Indeed, the published solution [KeKo89] to
this problem is one of the independent discoveries of the vector clock mechanism.)

2.6. Comparison to our Earlier Publication

We presented much of this material in an earlier publication [Sm93]. That version was usually more
detailed, but was also more preliminary. This section briefly discusses some of the differences.

When defining process automata, the earlier publication allowed processes to know their input
queue was nonempty, but proceed without receiving any message. That approach unintentially
permitted anonymous influence: process p may act on the knowledge that a message has arrived
from process q, but our time models would not establish a precedence path from q to p. The revised
message rule in this thesis prohibits this scenario.

When developing time models, the earlier publication primarily took the event-based approach.
This approach created problems with view-completeness and complicated discussion of certain
application problems. This thesis avoids these problems by including both events and states as
nodes in computation graphs. In this respect, the construction of PARTIAL ORDER TIME in this
thesis differs from the POT model of the earlier publication. (In particular, PARTIAL ORDER TIME

ensures that a state node separates any two event nodes.)
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When defining properties of time models, the earlier publication did not formally examine issues
of information flow. The definitions of flow-supported, flow-virtual, and monotonicity appear for
the first time in this thesis.

Chapters 7 and 8 of the earlier publication gives a much fuller discussion of parallel pairs and
factoring models than Section 2.2.6 of this thesis presents. However, the earlier publication did not
explore nonlinear pairs, and took a different approach to examining the taxonomy of pairs. The
definitions of Type 1 through Type 4 appear appear for the first time in this thesis.

The earlier publication provides a more detailed derivation of the timeslice results. Theorem 2.2
in this thesis reflects Theorems 13.6 through 13.8 of the earlier report.

Theorem 2.6 in this thesis considers only timeslices from Type 2 parallel pairs, although we can
show that consistent cuts in general parallel pairs form lattices, as do timeslices from any transitive
graph. The general case is difficult due to two facts:

� Some consistent cuts may contain nodes that touch more than one process, but not all of
them.

� Some timeslices may not be consistent cuts.

In particular, the definitions here of the u and t operations and the� relation work correctly for
the well-behaved vector-like cuts in independent consistent parallel pairs. More general models
require more careful definitions. Chapter 9 of the earlier publication provides the full details.
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Chapter 3

Distributed Snapshots

3.1. Overview

The distributed snapshot problem provides a straightforward application of the distributed time
framework. In an asynchronous distributed system, what one process perceives about the rest of
system is always out-of-date. This limitation complicates the problem of capturing a snapshot: a
mosaic depicting the global state of the system at some instant.

In real life, we think of time as a linear sequence of moments. Consequently, we find it only
natural to think of computations as linear sequences of global states. Barring anything unusual,
this linear model actually describes the behavior of the system. Unfortunately, the asynchrony and
the distribution in the system make it difficult for processes within a system to obtain global states.
For example, suppose process p at time t wants to take a snapshot of of the global state of the
system at time t, or even at some unspecified time close to t. Although process p needs knowledge
of the other processes in order to put together this picture, any knowledge it may obtain will be
stale, because information travels at a finite speed. Further, the unpredictable message delays mean
process p cannot even know how stale this knowledge is.

The Traditional Solution In their foundational paper on snapshots, Chandy and Lamport
[ChLa85] present an elegant marker-pushing protocol that works despite this limitation.1 A
process initiating the protocol receives an approximately current snapshot with a counter-intuitive
correctness property: while this snapshot may not necessarily describe the state of the system at
any single instant, it describes a consistent state of the system.

That is, suppose process p initiates a snapshot protocol at time t0, and at time t1 receives a
snapshot: a tuple X describing the local state at each process. There exists a well-defined history
function H taking each t in the interval [t0; t1] to its global state H(t): the tuple consisting of
the local process states at t. Intuition suggests that the snapshot X ought to be the value of H at
some instant in this interval. Asynchrony causes this intuition to fail. Lacking perfect knowledge,
process p cannot obtain the H values; lacking real time clocks, process p cannot even obtain the

1Their system model—lossless FIFO message channels—somewhat constrains the asynchrony.



t values. A process’s only sense of time derives from the messages the process receives and the
actions it takes.

Here lies the rub: many valid histories H 0 exist with H(t0) = H 0(t0), H(t1) = H 0(t1) and
where each process perceives the same temporal relations. The global state X may not necessarily
be an intermediate value from the history that actually occurred, but it will be an intermediate value
from an equivalent2 history.

What is more, this is the best we can do. A consistent global state is consistent with the
processes’ observations. Hence a snapshot recording a consistent global state is the most accurate
picture a process can obtain: anything more accurate would require more detailed observations—
which would change the computation.

Even though it may never have occurred, a consistent system state still says useful things about
the computation in progress. For example, if property � is stable—it remains true once it becomes
true—then examining a past consistent system state for � may suffice to determine if � holds at
the current instant.

Subsequent Research Subsequent research in snapshots explored variations on marker-
pushing protocols [SpKe86, LaYa87, Ve89, NeTo90, Ma93], characterized the state lattice that
arises from slices across partial order time [Ma89, Jo89, JoZw90], and modified the message deliv-
ery model by relaxing the FIFO requirement, and by adding various flushing primitives. Work also
progressed in developing applications of distributed snapshots in deadlock detection [Ma87], in
checkpointing [Jo89, JoZw90, Jo93] and in distributed debugging [Fi89, Sp89], including efforts
to use timestamp vectors to capture consistent states with specific properties [CoMa91, MaNe91,
MaSa91, ToGa93, GaWa94]. (Taylor’s work [Ta89, CrTa90] uses a more deterministic notion of
snapshot—processes must know at the time a state occurs that that state is part of a snapshot—and
thus her results do not apply here.)

Using Distributed Time The snapshot problem demonstrates that the standard way of thinking
about computation—as a linear progression of system states—does not work in an asynchronous
distributed system. The unsuitability of linear time makes the snapshot problem an attractive
demonstration area for the distributed time framework.

In Chapter 2 we phrased global states in terms of timeslices from a computation graph, and
specified clocks for these temporal relations. This framework allows straightforward snapshot

2This phenomenon is seductively similar to particle-wave duality. Processes may construct a set of possible paths for
the computation. Although the computation takes one path in particular, processes can never know which one: each
snapshot causes the set to “jump” to one value, not necessarily the real one. Manthey [MaMo83, Ma90a, Ma90b] has
explored the use of computational abstractions to model physics, and compiled a list of physical phenomena that arise
as side-effects of computational behavior. The snapshot problem suggests an interesting extension to this research:
exploring what physical phenomena may arise as side-effects of temporal behavior.
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protocols: processes use their distributed time clocks to assemble timeslices. This approach offers
three significant advantages:

� Flexibility Giving processes the ability to sort events and states in terms of the logical time
model permits snapshot protocols that are much more flexible than the traditional marker-
pushing protocols. For example, we can take multiple snapshots and snapshots containing
an arbitrary past event.

� Orthogonality Between Protocols and Clocks By encapsulating the problems of
tracking time in alternative models into clocks for these models, we separate the implemented
from the implementations. This orthogonality allows us to modify clock protocols—perhaps
due to changing system environments or efficiency goals—without modifying the higher
level application protocols. For example, we can transparently add security and privacy to
these snapshot protocols by using more secure clocks. (Chapters 5 and 6 consider these
issues.)

� Orthogonality Between Protocols and Time Models We define global states and
snapshot protocols relative to a time model. This model encapsulates the logical timing
issues: physical reality may determine some linear order, but we pretend the model describes
what actually happens. However our notion of what actually happens may change. For
example:

– We may want to abstract further than this level—perhaps by pretending only global
states with certain properties occur.

– We may want to increase the separation between this level and physical reality—perhaps
by allowing for rollback with modified replay.

Using the distributed time framework allows transparent alteration of the level of abstraction
in a snapshot protocol by using more abstract time models. (For example, suppose a process
rolls back and performs different computation. At least three virtual computations may arise:
the failed computation, the failure-free virtual computation, and the recovery computation
itself. The distributed time framework allows us to use the same protocol to take snapshots
of all three levels. Chapter 4 discusses these issues further.)

Figure 3.1 sketches this approach.

This Section Section 3.2 defines the snapshot problem in terms of distributed time, sketches
a simple protocol to find snapshots containing any arbitrary event or state (even without FIFO
messages), and uses some of our theoretical results to improve this basic protocol. Section 3.3
considers the implications of using basic snapshot protocols with more abstract time models, and
shows two examples. Section 3.4 explores some advanced issues.
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Figure 3.1 Distributed time simplifies protocol design. In the snapshot appli-
cation, we can describe the target in terms of distributed time: snapshots are
timeslices, instants of logical simultaneity in the temporal relations expressed by a
time model. Clocks for these time models permit thinking directly in terms of these
relations, and thus provide the necessary primitives for snapshot protocols.

3.2. The Basic Problem

This section uses distributed time to examine the basic problem of taking a snapshot. Section 3.2.1
builds a basic snapshot protocol. Section 3.2.2 uses vector clocks and the lattice structure of
timeslices to simplify this protocol.

3.2.1. Building a Basic Protocol

Informally, we think of a global state as what is happening everywhere at some moment in real
time. However, we do not want a description of everything happening everywhere (where would
we write it all down?) but rather a list of convenient abstractions. The restrictions of distributed
asynchrony confine the basic snapshot protocol to capturing what is happening at some moment in
time in some computation consistent with what processes observe. Thus for snapshot applications,
a well-constructed time model should produce graphs that have two properties:

� the nodes express the desired abstractions, and

� the temporal precedence expresses only the observable orderings.
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The PARTIAL ORDER TIME model built in Chapter 2 has these properties.

When a process takes a snapshot, it wants to find a global state from a computation consistent
with what it and the other processes are observing. By Theorem 2.2, these consistent global states
are exactly the timeslices from the global partial order.

The Round Robin Protocol An interesting consequence of Corollary 2.3 is that for Type 2
(consistent and independent) parallel pairs, any set of mutually concurrentnodes—even a singleton—
extends to a consistent cut. This means that the following naive protocol suffices for a process p
to take a snapshot. Let (M;M0) be a Type 3 (consistent, independent, and strongly monotonic)
parallel pair. The protocol assumes the processes are organized into a directed cycle, and performs
the following steps:

1. Process P1 chooses an acyclic node A1 and sends fA1g as a partial timeslice to P2.

2. For each i with 1 < i � n, process Pi receives a partial timeslice from Pi�1 and appends a
local acyclic node mutually concurrent with each node in the timeslice. If i < n, process Pi

sends the new partial timeslice on to Pi+1. If i = n, process Pn sends the completed snapshot
back to P1.

Figure 3.2 presents a more complete description. Processes use LIST CONCURRENT to enumerate
nodes from their own timelines (consistent with the knowledge restriction from Section 2.4.3).
Corollary 2.3 guarantees that Ui will be non-empty.

With modification, the Round Robin Protocol extends to more general parallel pairs. For
example, if the LIST CONCURRENT call were guaranteed to be answerable, we could relax the
(M;M0) requirement to Type 1 (consistent). If we rewrote the protocol to allow missing entries
from theSi and to allow someUi to be empty, we could even dispense with consistency requirement.

Unlike the traditional protocol, the Round Robin Protocol does not require FIFO message
delivery, is offline (in that the initiating process may specify any arbitrary seed node), and allows
each process some leeway in choosing what node to include in the snapshot.

3.2.2. Shortcuts

The Round Robin Protocol is simple and clear; each process receives a partial timeslice, then
finds and appends a local node mutually concurrent with that timeslice. The protocol is also
fairly inefficient; the multiple LIST CONCURRENT calls followed by the set intersection take time,
and n rounds of communication must take place before the initiating process receives the desired
snapshot.

However, examining the Round Robin Protocol in terms of vector clocks reveals shortcuts that
improve efficiency.
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/* process P1 initiates protocol */
procedure INITIATE

/* find acyclic node to seed the snapshot */
repeat

CHOOSE A1 6= ?
until ACYCLIC(A1;M)

/* create partial timeslice S1 and send it off */
S1 fA1g
SEND S1 to P2

/* for each i > 1, process Pi receives a set Si�1 and cooperates */
procedure COOPERATE

/* find the local nodes that are concurrent with each node in Si�1 */
for j = 1 to i� 1

Aj process Pj entry of Si�1

Tj LIST CONCURRENT(Pi;Aj; (M;M0))

/* find the intersection */
Ui 

T
1�j<i Tj

/* extend the partial timeslice */
CHOOSE Ai 2 Ui

Si Si�1 [ fAig

if i < n

/* if incomplete, send the partial timeslice to the next process */
then SEND Si to Pi+1

/* if complete, send the snapshot back to P1 */
else SEND Si to P1

Figure 3.2 In the Round Robin Protocol for distributed snapshots, we assume the
processes are organized into a cycle P1; :::;Pn. Process P1 initiates the protocol by
choosing a local node that is acyclic, and passing a partial timeslice on to P2. For
i > 1, process Pi receives a partial timeslice and cooperates by extending it, and
passing it on.
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The Reduced Round Robin Protocol Theorem 2.4 provides a way to combine the timestamp
vectors for partial timeslices, and to find nodes with which to extend the partial timeslice. This
result allows us to reduce both the messages and the computation in the Round Robin Protocol. Let
(M;M0) be a Type 3 (consistent, independent, and strongly monotonic) parallel pair. The protocol
assumes the processes are organized into a directed cycle, and performs the following steps:

1. Process P1 chooses an acyclic node A1 and sends the vector V(A1) to P2.

2. For each i with 1 < i � n, process Pi receives a vector from Pi�1 and replaces the i entry
with the next acyclic node Ai. Pi them maximizes this vector against the timestamp vector
for Ai. If i < n, process Pi sends the new vector on to Pi+1. If i = n, process Pn sends the
completed snapshot back to P1.

Figure 3.3 presents a more complete description.

This protocol improves on the Round Robin Protocol by encoding the partial timeslice Si as the
first i entries of vector Vi, and using the remaining entries of the vector to mark the upper bound of
the set of nodes preceding Si.

The Completely Reduced Round Robin Protocol Some convenient properties of vector
clocks made the Reduced Robin Protocol possible. As Chapter 2 explained, these properties have
a solid theoretical foundation:

� Timeslices form a lattice.

� The timestamp vector and rollback vector of a node delineate the bounds of the sublattice of
timeslices containing that node.

Theorem 2.7 tells us that if a process wants to know a snapshot containing a node, then the adjusted
timestamp vector of that node suffices. Thus we can reduce the Round Robin Protocol even further.
Let (M;M0) be a Type 3 (consistent, independent, and strongly monotonic) parallel pair. Our
completely reduced protocol performs the following step:

� For a process p to find a snapshot containing node A at q, process p independently asks each
process r 6= q for the value NEXT(r; �rV(A); (M;M0)).

This protocol dispenses with the assumption that processes are organized into a cycle.

In general, concurrence is not transitive—to find the next element of a partial timeslice, a
process must check every element. But snapshots from the adjusted vectors have the advantage of
being canonical, in the sense that the identity of the vector (e.g., “the adjusted timestamp vector of
A”) is sufficient to determine membership. The initiating process still must query other processes,
but these queries may now be independent rather than sequential.
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/* process P1 initiates protoco1 */
procedure INITIATE

/* find acyclic node to seed the snapshot */
repeat

CHOOSE A1 6= ?
until ACYCLIC(A1;M)

/* send off a vector */
V1 V(A1)
SEND V1 to P2

/* for each i > 1, process Pi receives a vector Vi�1 and cooperates */
procedure COOPERATE

/* advance Pi entry to next acyclic node */
Ai �Pi

Vi�1

repeat
Ai NEXT(Pi; Ai; (M;M0))

until ACYCLIC(Ai;M)

/* obtain new vector */
Vi MAX(Vi�1;V(A); (M;M0))

if i < n

/* if incomplete, send the new vector to next process */
then SEND Vi to Pi+1

/* if complete, send the snapshot back to P1 */
else SEND Vi to P1

Figure 3.3 In the Reduced Round Robin Protocol for distributed snapshots, we
assume the processes are organized into a cycle P1; :::;Pn. Process P1 initiates
the protocol by choosing a local node that is acyclic, and its timestamp vector to
P2. For each i > 1, process Pi receives a vector whose first i� 1 entries comprise
a partial timeslice, and whose remaining entries are the maximal nodes preceding
this partial timeslice. Process Pi cooperates by extending the partial timeslice,
updating its vector encoding, and passing it on. The vector maximization step
cannot affect the first i entries, since these form a partial timeslice.
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The most straightforward way to assemble an adjusted vector takes 2 logn communication
steps—use a binary tree to send out the requests, and another to collect them. However, several
natural optimizations suggest themselves. For example, if A is sufficiently far in the past, then
process p may already know some values. Also, various processes may know the components for
other processes.

Theorem 2.7 also gives us ways to collect snapshots without actually having access to clocks.
For example, process p could obtain V�(A) (the adjusted timestamp vector of A) by searching
backwards along the paths of messages arriving beforeA. In fact, the traditional snapshot protocol
uses essentially this technique: initiate broadcast at nodeB, and obtain R�(B) (the adjusted rollback
vector of B).

3.3. Snapshots from Higher-level Models

Both the Round Robin variants and the traditional snapshot protocol obtain a single snapshot. A
single snapshot is satisfactory from a linear view: the question of “what is happening right now”
should only have a single answer. But distributed asynchrony gives multiple correct answers. This
fact made Chandy and Lamport’s work appear counter-intuitive, and helps motivate distributed
time theory.

Many global states may contain some specific node from process p. However, process p

may need access to states different from the one that particular run of a single-snapshot protocol
provides. Process p has only a couple of approaches:

� The desired states may be exactly the timeslices in some higher-level time model supported
by clock primitives. In this case, taking a snapshot in this alternate model suffices.

� Otherwise, process p needs either to extend its snapshot protocol to handle search-and-
backtrack, or to find an efficient way to collect sets of global states (so it can perform the
search locally).

This section focuses on this general snapshot problem (finding a global state satisfying some
arbitrary predicate �) by taking snapshots from higher-level models. Section 3.3.1 outlines an
easy example: when snapshots satisfying � are exactly the timeslices from a higher-level model.
Section 3.3.2 presents a more complicated example: capturing a large class of snapshots by cap-
turing a single snapshot from a higher-level model.
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3.3.1. The Easier Case

Section 2.3.1 showed that if a time model is doing its job, then its timeslices correspond exactly
to the global states in the underlying computations. This correspondence assures a process that by
obtaining one of these timeslices, it is taking a snapshot of a global state.

The Special Timeslice Condition Suppose that a process wants snapshots of global states
that additionally satisfy some arbitrary predicate �. In some sense, the process wants to pretend
the only moments of simultaneity that exist are ones that satisfy �. It would be convenient if a time
model would express this pretense by admitting only the interesting global states as timeslices. To
this end, we revise the earlier Timeslice Condition.

Suppose time modelM on ground-level graphs generates the setG, and predicate� on specifies
which global states are of interest. ModelM satisfies the Special Timeslice Condition for � iff for
each � 2 G,M satisfies these requirements:

1. For each set X of nodes in �, the following are equivalent statements:

� X minimally represents a global state Y satisfying � in some ground-level graph �

withM(�) = �.

� X is a timeslice in �.

2. Each ground-level graph � with � =M(�) and each global state Y in � with �(Y ) satisfy
the statement:

� if hM; � i(A)\Y 6= 6 for some nodeA, then some timeslice in � minimally represents
Y .

We build time models by specifying nodes and precedence; timeslices follow from this basic
construction. Hence the arbitrary predicate�must possess a fair degree of structure (and the model
builder a fair degree of insight) in order to lead to a time model satisfying the Special Timeslice
Condition. For this approach to work, the predicate must decompose to incomparability under
some nicely behaved precedence relation.

Example: No Messages In Transit As an example, suppose a process wanted only global
states where no messages are in transit. No send event preceding a snapshot X has its receive event
followingX . Whether send and receive events themselves ought to be permitted to be members of
such snapshots is another issue: if process p is in the very act of sending or receiving a message,
is that message in transit or not? We choose the cleanest approach: we permit the node before the
send or after the receive, but not the transitional events themselves.

In the PARTIAL ORDER TIME model, a consistent cutX with this no-transit property is genuinely
a cut of the PARTIAL ORDER TIME graph: any path from ? to > must touch a node in X . (Other
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consistent cuts will not partition the graph, since message edges connect the past of the cut to the
future of the cut.)

If process p never wants to see a send event having occurred without also seeing the correspond-
ing receive event, it essentially wants to pretend that corresponding send and receive events occur
simultaneously. We formalize this pretense by defining the STRONG model, that adds an edge from
each receive event to its send event. The STRONG model also must handle the case of unreceived
messages. We take the approach of adding an edge from > to the send event of each unreceived
message.3 We then merge the atoms cyclic with> into>. We define the STRONG PARTIAL ORDER

model to be the composition:

STRONG PARTIAL ORDER � STRONG � PARTIAL ORDER TIME

The new STRONG PARTIAL ORDER model exhibits much of the same theoretical structure as
its original version. For example, (STRONG PARTIAL ORDER; TIMELINES) is still a consistent and
independent parallel pair, so Theorem 2.1, Corollary 2.3, Theorem 2.4, Theorem 2.5, Theorem 2.6,
and Theorem 2.7 all still hold.

Conveniently, the STRONG model prohibits send and receive events from STRONG timeslices,
since these events are cyclic. This model thus obtains the desired result:

Theorem 3.1 The STRONG PARTIAL ORDER model satisfies the Special Timeslice
Condition for global states with no messages in transit.

Proof Suppose messageM from p to q is sent atS and received atR. In STRONG PARTIAL ORDER,
any node preceding R precedes any node following S. If message M is sent by process p at S but
is unreceived, then all nodes following S in PARTIAL ORDER TIME are cyclic, and prohibited from
timeslices.

Cycles of nodes become atomic units—if timeslices define perceivable moments, then cyclic
sets can never be perceived as only partially complete. This observation suggests that transaction
behavior may fit nicely into the framework of distributed time. (Section 7.2 discusses this topic
further.)

Suppose the clock primitives for the global order extend to the STRONG version. A process
may obtain a snapshot guaranteed to be a global state with neither send nor receive, nor message
in transit, simply by carrying out a partial order time snapshot protocol, modified by substituting
clock primitives for the new model.

Unfortunately, the cyclic STRONG PARTIAL ORDER model no longer satisfies the convenient
information properties of Section 2.4.3. For example, suppose process p executes a send event S

3According to this fix, all messages are received, only some messages are not received until the end of time.
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of a message that is later received by process q in receive event R. Process p at S may know that
R �! S in STRONG PARTIAL ORDER—however, process p may not know anything else about R.

More precisely, (STRONG PARTIAL ORDER; TIMELINES) is neither strongly monotonic nor flow-
supported (although it at least offers the advantage that processes can know that unmatched send
events exist, so at least convergence can actually be determined). Specifying and implementing
clocks for such cyclic models becomes rather tricky. In our original scheme, the PRECEDES
primitive has two answers. However, the query “does A precede B in STRONG PARTIAL ORDER?”
admits a third answer: “not enough information yet.”

The proper answer to the new query depends on when it is asked. Consequently, we need
a third time model to express the degree of information flow for clock primitives.4 This model
should fit between the original partial order and its composition with STRONG; the abstraction
hierarchy framework from distributed time theory provides the necessary machinery. This concept
of parameterized clocks also extends to handle the case when various circumstances (such as faults
or malice) prevent the convenient information assumptions in well-behaved partial order models
from holding.

3.3.2. A Harder Case

Theorem 2.7 tells us that the adjusted timestamp vector of a node is a timeslice. One might conjec-
ture that any nontrivial timeslice is the adjusted vector of one of its nodes. In fact, this conjecture
is false—Figure 3.4 shows a counter-example. However, we can still establish something rather
interesting: that adjusted vectors uniquely describe any nontrivial timeslice, and that we can obtain
these descriptions by taking timeslices from higher-level time models.

For the snapshot problem, these results have two implications:

� A process might obtain snapshot X , but determine that a different one is necessary. The
descriptions give a way of quickly specifying and obtaining a new one.

� A process can obtain a group of related snapshots by taking a single snapshot in the higher-
level model.

(Charron-Bost [CB89] establishes a related result: in partial orders, a bijection exists between
antichains (i.e., partial timeslices) and past-closed graph prefixes. Besides being developed in
a different framework, our results are distinct because past-closed graph prefixes do not map
injectively to timeslices.)

4Section 6.2 explores these issues further.
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V*(A)

V*(B)

A

B

X

Figure 3.4 Not all timeslices are adjusted vectors. Timeslice X = fA;Bg equals
neither V�(A) nor V�(B). This example disproves the conjecture that Theorem 2.7
might describe all timeslices.

The Description Let (M;M0) be a Type 2 parallel pair (consistent and independent) that is
also acyclic. Let Y be a non-trivial partial timeslice: a non-empty set of non-extremal nodes that
are mutually concurrent. Let X be a non-trivial timeslice fromM. A generating subset of X is a
Y � X satisfying the equation:

X =
G

A2Y

V�(A)

A minimal generating subset ofX is a generating subset of X , with the additional property that no
proper subset is a generating subset of X .

The remainder of this section establishes two key results:

1. Each timeslice X has a unique minimal generating subset.

2. A set Y is a minimal generating subset of a timeslice iff Y is a non-trivial partial timeslice
in a higher-level model.

The Blocking Model Establishing these results hinges on drawing edges from a node A to
nodeB when, in the transitive global order, the local predecessor ofA precedesB. We can express
this enhancement itself as a model, BLOCKED. The BLOCKED model operates on a graph by copying
it, and for each cross-process edge from nodeA to nodeB, adding another edge the local successor
of A to B. The name of the BLOCKED model derives from its function (which we will demonstrate
shortly). If A�!B in BLOCKED �M, then the presence of B in anM timeslice X blocks nodeA
from being part of the minimal generating subset for X .
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Results When an acyclic parallel pair (M;M0) is Type 2 (that is, consistent and indepen-
dent), then (BLOCKED �M; BLOCKED �M0) is a parallel pair that is still independent, transitively-
bounded, and acyclic. However, this new parallel pair may not necessarily be view-complete.
Consider a graph from the PARTIAL ORDER TIME model. Suppose at process p, only a single state
node A separates a send node S from a subsequent message node B. The BLOCKED model will
slide the S �!R message edge up to A�!R, and the edge from A to B may not necessarily
have an externally equivalent node.

Precedence in BLOCKED expresses when the presence of one node in a timeslice forces the
presence of another.

Theorem 3.2 Suppose (M;M0) is an acyclic Type 2 (consistent and independent)
parallel pair. If non-extremal distinct A and B satisfy A = !B inM, then

A�!B in BLOCKED �M () A 2 V�(B)

Proof Let A0 be the node immediately preceding A.

Suppose A�!B in BLOCKED �M. Since A =�!B inM, the precedence path from A to B
must have been created by BLOCKED moving ahead the in-node of a message edge. This could only
have made a difference when A0 �!B inM. Thus A0 2 V(B), hence A 2 V�(B).

Conversely, suppose A 2 V�(B). Then inM, A0 �!B but A =�!B. Thus A0 must be the
send event of a message that is received, so BLOCKED will copy and shift this message edge, giving
A�!B in BLOCKED �M.

To obtain our main results, we first establish a condition on generating subsets.

Theorem 3.3 Suppose (M;M0) is an acyclic Type 2 (consistent and independent)
parallel pair. Let X be a non-trivial timeslice fromM. Any generating subset Y of X
satisfies the statement:

8A 2 X 9B 2 Y A �! B in BLOCKED �M

Proof Suppose the condition fails for A 2 X . Then A 62 Y , and (from Theorem 3.2), for no
C 2 Y isA 2 V�(C). Thus A is not in the join of the adjusted timestamp vectors of Y , so Y is not
a generating subset.

We then construct a generating subset for a given timeslice.

Theorem 3.4 Suppose (M;M0) is an acyclic Type 2 (consistent and independent)
parallel pair. LetX be a non-trivial timeslice fromM. LetY be the set of BLOCKED �M
sinks in X .

Y � fA 2 X : 8B 2 X; A =�!B in BLOCKED �Mg
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Then Y is a generating subset of X .

Proof Let Z be the join of theM adjusted timestamp vectors of nodes in Y . For each process p,
let Ap and Bp be the p entries of X and Z , respectively. We establish that Ap = Bp by considering
the two cases:

1. Suppose Ap 2 Y . Let C be another node in Y , let Cp be the p entry in its M adjusted
timestamp vector. If Ap = Cp then (by Theorem 3.2), Ap �!C in BLOCKED �M, violating
the construction of Y . If Ap �! Cp inM but Ap 6= Cp, then Ap �!C inM, violating the
fact that X is a timeslice. Thus Ap properly follows from each Cp, so Ap = Bp.

2. Suppose AP 62 Y . By construction of Y , there exists a C 2 Y such that Ap �! C in
BLOCKED �M. Since Ap and C are both members of timeslice X , Theorem 3.2 gives that
Ap 2 V�(C). If D 6= C in Y has V�(D) dominating V�(C) at p, then Ap precedes or equals
the p entry of V(D). Thus Ap �!D inM, violating the fact that X is a timeslice. Thus
Ap = Bp.

We use the condition from Theorem 3.3 to show that the generating subset from Theorem 3.4
is unique and minimal.

Theorem 3.5 Suppose (M;M0) is an acyclic Type 2 (consistent and independent)
parallel pair. Any non-trivial timeslice from M has a unique minimal generating
subset.

Proof LetX be a non-trivial timeslice fromM. Let Y be the generating subset from Theorem 3.4.
Theorem 3.3 provides two facts:

1. Any generating subset Y 0 of X has Y � Y 0.

2. Any proper subset of Y cannot be a generating subset of X .

Hence Y is the unique minimal generating subset.

Finally, we show that being a unique minimal generating subset is equivalent to being a partial
timeslices under BLOCKED.

Theorem 3.6 Suppose (M;M0) is an acyclic Type 2 (consistent and independent)
parallel pair. Let Y be a set of non-extremal nodes. Y is the unique minimal generating
subset of a timeslice inM iff Y is a partial timeslice in BLOCKED �M.
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Proof Apply Theorem 3.5. The unique minimal generating subset of a timeslice X is partial
timeslice in BLOCKED �M. Any not-trivial partial timeslice Y from BLOCKED �M is the unique
minimal generating set of

X =
G

A2Y

V�(A)

Implications Suppose (M;M0) is an acyclic Type 2 (consistent and independent) parallel pair.
A timeslice containing k nodes in BLOCKED �M is a shorthand representation of 2k timeslices
in M. If the clock primitives extend to handle queries about BLOCKED �M, then process p can
capture a large class of snapshots inM by asking for a single one in BLOCKED �M. Naturally, we
can establish dual results for adjusted rollback vectors.

3.4. Further Issues

To find out the state of the system, a process takes a snapshot. The fact that the snapshot does not
necessarily describe a real state creates some complications. Section 3.4.1 considers the problem
of resolving the parallax between inconsistent states, and Section 3.4.2 considers some areas for
future work.

3.4.1. Resolving Parallax

The fact that standard snapshot protocols only guarantee consistent global states allows some
potentially difficult parallax situations: two snapshots taken in the same computation may not
mesh. Process p may take snapshot X ; process q may take snapshot Y . The global states X and Y
will each be genuine global states in some physical computation underlying the unfolding partial
order—but they might not both appear in the same physical computation. For example, perhaps
there exists a pair of nodes such that at instant X , one lies in the future and one in the past, but at
instant Y the positions are reversed. Figure 3.5 sketches a simple example.

Distributed time theory gives us a way to understand parallax; distributed time primitives form
the basis for a simple protocol to resolve parallax.

Why Does Parallax Occur? Timeslices in a computation graph form a sublattice of a divided
hypercube in k dimensions, where k is the number of messages. We obtain this hypercube by
drawing nodes at each point with coordinates from the set f0; 1; 2g, and drawing an edge from
node N1 to node N2 when they differ in exactly one coordinate, and the N2 value there is one
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A A'

B B'
X Y

Figure 3.5 Parallax occurs when snapshots appear to be inconsistent. Consider
the positions of nodes A and B with respect to timeslices X = V�(A0) and
Y = V�(B0). Both timeslices represent logically simultaneous instants. However,
at instant X, A has occurred but B has not, while at instant Y , B has occurred but
A has not.

greater than the N1 value. Each dimension represents a message M , and the coordinate values
represent that message’s status: unsent, en route, or received.

Under the simplifying assumption that no two message events occur simultaneously, each
source-sink traversal of this graph corresponds to a real time trace of a computation generating this
graph.

Timeslice precedence captures computation paths. Any timeslice follows or equals the minimal
timeslice and precedes or equals the final; timeslices X and Y satisfy X � Y when a computation
path exists from X to Y . In general, the timeslice lattice is not a straightline graph; timeslice
precedence is a not a total order. Parallax follows from the existence of timeslices that are “con-
current,” in the sense that they are incomparable under the � order. (This structure on timeslices
is reminiscent of the time model structure on nodes.)

Resolving the Inconsistency Once again, lattices come to the rescue. Suppose X and Y
are timeslices in a view-complete, transitively bounded graph. We already know that X and Y are
consistent cuts. We can directly establish that the set of all timeslices Z such that Z � X [ Y
forms a finite lattice: this set is closed under u and t .

To simplify presentation, we assume without loss of generality that X properly dominates Y
at each process. (In the general case, we would take the join and meet of the two timeslices, and
restrict our attention the processes where the values differ.)

Clock primitives provide a basis for constructing a simple graph that expresses the sublattice
of timeslices contained in the set X [ Y . Construct the graph G by creating one node for each
process, and drawing an edge from process p to process q 6= p when �pX �! �q Y . If there are n
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processes, this construction takes O(n2) operations; access to vector operations and vector clocks
can bring this down to linear.

The graph G concisely expresses the sublattice. To obtain a timeslice Z , a process follows
these steps:

1. Choose a node p in G.

2. Select either �pX or �p Y for Z .

(a) If �pX , then for each node q that (transitively) follows p, select �qX .

(b) If �p Y , then for each node q that (transitively) precedes p, select �q Y .

Delete the nodes for which we just selected values.

3. Repeat until all entries of Z are chosen.

3.4.2. Future Work

Fully generalizing the protocols and primitives requires confronting unresolved obstacles—and
also suggests interesting new structures. These issues provide topics for further research.

Convergence and Knowability The snapshot protocols of Section 3.2 implicitly assume that
a given process has sufficient information to decide clock queries. As Section 2.4.3 discusses, this
implicit assumption may fail. We present three such scenarios:

� cyclic models;

� clock implementation where faults or malice or efficiency prevent complete knowledge; and

� snapshot queries about recent nodes.

These scenarios require more active consideration of convergence: when information about the
past of a node catches up with the future of a node. These scenarios also require a more detailed
exploration of the knowability issues of Section 2.4.3.

Observation Effects Consider again a snapshot protocol that assumes all processes have heard
of node A. If a precedence path does not exist from node A to process q, should the arrival of the
snapshot query establish one? That is, how should the act of examining the computation interact
with the computation itself?
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Suppose a process p uses a snapshot protocol determines if a global state satisfying a particular
property exists. Process p obtains its result at node A. What should happen to process p if this
query fails—but later another process rolls back and changes history? If a suitable timeslice now
exists, the answer process p received is incorrect, so node A now depends on incorrect data. The
need to express this dependence suggests that, for time models expressing perception, every node
examined in a snapshot search should precede the response node. Is this synchronization desirable?
Should we use the abstraction hierarchy techniques of distributed time to capture this influence in a
higher-level model? What should happen in snapshot protocols where the existence of a snapshot
does not change, but the actual snapshot returned does?

Global States and Guaranteed Pasts The abstract computation graph describing a com-
putation induces a lattice of timeslices. The actual physical computation that occurs determines
which path through this lattice the system actually takes. The limitations of distributed asynchrony
prevent the system from ever finding out which path this is; as a consequence, taking a snapshot to
determine some property of the computational path is difficult in the general case.

Recent work in global state detection (e.g., [CoMa91, MaNe91, MaSa91, ToGa93, GaWa94])
has explored this area, both by explictly searching the timeslice lattice and by defining classes of
predicates (in particular, by relaxing the stability requirement) that may be examined by snapshot
techniques. Integrating this work into our framework would be an interesting area for future
research.

Another research direction comes from the observation that although a process p cannot find a
recent global state guaranteed to have occurred, it may have some use for a concise set fX1; :::;Xkg
of recent global states, such that one of them definitely occurred. In the general case, these sets
will be minimal graph-cuts of the timeslice lattice. With some simplifying assumptions, these sets
have a more familiar form: a “maximal set of Xi such that no Xi � Xj”—that is, a timeslice of
timeslices. Can we directly generalize distributed time to build higher-level time models whose
nodes represent timeslices in lower-level time models?
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Chapter 4

Optimistic Rollback Recovery

4.1. Overview

4.1.1. The Basic Problem

The problem of rollback arises when a process p in a distributed computation rolls back1 to a
previous state. This problem typically appears when providing fault tolerance for distributed
computation: physical failure of process p might force p to roll back, since the most recent state of
p that can be recreated may not necessarily be the state p held when it failed. Some applications
might also permit rollback in non-failure scenarios; for example, process p might roll back its
computation if p discovers that critical input data was corrupted. For clarity of presentation, this
chapter assumes that rollback occurs because of process failure; however, our techniques also apply
to the more general case.

Failure and Recovery Suppose process p fails and recovers by restarting itself from an earlier,
saved state. All activity by process p since it first passed through this restored state has been lost.
(Figure 4.1 illustrates this scenario.) If the original execution of this lost activity affected no process
other than p, then the loss of this activity can affect no process other than p. For example, suppose
the lost activity had been entirely internal to p, or had included only the receipt of messages (if
messages are not acknowledged and could also be lost for other reasons). In this case, the rest of
the system may proceed without ever knowing about process p’s failure and recovery.

Dependence However, suppose the lost activity at process p included the send event of a
message that was received by process q. Then the state of process q depends on activity at process
p that led up to the sending of that message, but some of this activity—including the send event
itself—has been rolled back due to the failure. Process q has received a message that, in process
p’s view after recovery, was never sent. The computation at process q after this receive event must

1“Rollback” is the noun; “roll back” is the verb phrase.



also be rolled back in order to restore the system to a consistent state. (Figure 4.2 illustrates this
scenario.)

Transitive Dependence Distribution and asynchrony may make the situation even more com-
plicated. For example, suppose process q receives a message from process p, but p then rolls back
its send event. However, before learning of process p’s rollback, process q sends a message to
another process r. Then process r depends on computation that has been rolled back—even though
process r may not have directly received a message from p. (Figure 4.3 illustrates this scenario.)

Orphans In rollback recovery, an orphan is an event or state2 that causally depends on (or equals)
computation that has been rolled back. This terminology and the use of PARTIAL ORDER TIME to
express potential causality simplifies the above discussion. In Figure 4.1, nodes A2 throughA5 are
orphans, since they depend on prior computation that has been rolled back. Figures 4.2 and 4.3
show orphans at other processes: the rollback in Figure 4.2 causes nodes B3 and B4 to become
orphans; the rollback in Figure 4.3 causes nodes C3 and C4 to become orphans, along with nodes
B3 through B6.

4.1.2. Further Issues

Delayed Messages Rollback can also give rise to some pathological scenarios. For example,
the lost activity at process p may include the send event of a message to process q that, due to
network delays, does not arrive at q until after p has rolled back and the system appears to have
recovered. Accepting this message may cause process q to become an orphan, as Figure 4.4 shows.
However, addressing this problem by blindly discarding all messages sent before rollback may
lead to discarding valid messages, as Figure 4.5 shows.

A1 A2 A3 A4 A5

p:

A6

failure

I'm rolling back

Figure 4.1 The problem of rollback arises when a process fails and restarts from
an earlier state. Here, process p fails; it recovers at state A6 by restarting from the
state from A1. A large “X” marks each node that has been rolled back.

2The literature sometimes extends the notion of orphan to include processes (whose current state is an orphan) and
messages (whose send events are orphans).
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A6

I'm rolling back

A1 A2 A3 A4 A5

B2 B3 B4B1

p:

q:

failure

Figure 4.2 The problem of rollback becomes complicated when another process
depends on events and states that the failed process has rolled back. Here,
process p has failed and restored state A1. However, process q at B3 has received
a message whose send event has been rolled back. Hence, B3 and B4 depend on
computation that has no longer happened. Consequently, B3 and B4 should also
be rolled back.

A6

I'm rolling back

A1 A2 A3

C2 C3 C4C1

A4 A5

p:

r:

failure

B2 B3 B4B1

q:

B5 B6

Figure 4.3 Transitive dependence further complicates rollback. Process p has
failed and rolled back. Process r depends on computation at process q that in turn
depends computation that process p has rolled back. Thus, the failure at process
p makes it necessary for process r to roll back, even though process r has never
received any message directly from process p.
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Rollback with Modified Replay After a process p rolls back and restores some earlier state
A, it has a number of options. Process p could re-execute the same computation beginning at state
A that it originally executed. Alternatively, process p could intentionally execute a computation
beginning at state A that differs at some point from its original execution; this approach is termed
rollback with modified replay. For example, perhaps process p alters its activity in order to avoid
the conditions that led to the failure, or perhaps process p rolled back explicitly to take another
course of action (rather than to recover from failure).

Concurrent Rollbacks The possibility that rollback may occur asynchronously raises some
questions:

� Multiple processes could initiate rollback concurrently—perhaps to recover from the same
failure, or perhaps to recover from different failures. Can the recoveries be merged? If not,
which recovery is performed first? Do the others still need to be performed?

� A process might fail and initiate rollback before recovery from some earlier rollback at
another process is complete. Can these two recoveries proceed concurrently?

4.1.3. Rollback Recovery Protocols

Beyond recovering the system when one or more processes fail, rollback recovery protocols have
several implicit goals:

� minimizing the computation lost due to failure (e.g., the interval from the original execution
of the restored state to the failure);

A6A1 A2 A3 A4 A5

B2 B3 B4B1

p:

q:

failure

B5

apparent
recovery

Figure 4.4 Successful recovery protocols need to consider delayed messages.
Believing the system is recovered and blindly accepting this message will cause
process q to become an orphan.
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A6A1 A2 A3 A4 A5

B2 B3 B4B1

p:

q:

failure

B5

apparent
recovery

Figure 4.5 Fixing the problem of Figure 4.4 by discarding all messages sent
before rollback can lead to discarding valid messages. Here, process q should
accept the delayed message—even though the message was sent by process p

before recovery.

� minimizing the computation wasted due to rollback (e.g., the number of surviving processes
that must be rolled back, the number of times they must roll back, the delay before which
they begin their rollbacks, and the amount of rolled-back computation that did not depend
on computation lost due to the failure); and

� minimizing the overhead of the recovery protocol during failure-free execution.

Checkpointing One approach to recovery is based on checkpointing: processes periodically
checkpoint their local state to stable storage. Rollback recovery protocols based on checkpointing
(e.g., [BhLi88, BCS84, Ci89, EJZ92, KoTo87, LeBh88, LNP90]) organize local checkpoints into
system-wide global checkpoints, and recover from failure by rolling back all processes to one
of these recovery lines. Protocols use varying degrees of synchronization in establishing global
checkpoints. Using too little synchronization permits pathological scenarios where a single failure
could lead to the domino effect [Ra75, Ru80] in which all processes are forced to roll back to
their initial states regardless of the amount of progress made before the failure. Careful use of
synchronization avoids the domino effect. Nevertheless, checkpointing-based recovery wastes
computation by rolling back beyond the theoretical minimum. Processes that have dependence on
the failure must (in general) roll back computation that occurred before dependence was established;
processes that have no dependence may also need to discard their progress and roll back.

Message Logging and Replay Another approach to recovery is based on message logging
and replay. Processes log their received messages and occasionally checkpoint their local state.
Consequently, processes may recreate any past state—not just the ones saved as checkpoints—by
restoring an earlier checkpoint and replaying the received messages from the log. This approach
offers two significant advantages:
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� Logging a message is cheaper than recording a checkpoint.

� Message logging reduces wasted computation, since surviving processes only roll back
computation that depends on the computation lost to failure.

Pessimistic rollback protocols (e.g., [BBG83, BBGH89, ElZw92, JoZw87, PoPr83]) syn-
chronize message logging with the underlying computation. For example, a process may not
proceed beyond the receipt of a message until that message is successfully logged to stable storage.
Pessimistic protocols simplify recovery, since a surviving process never depends on computation
lost due to process failure. However, the logging synchronization needed by pessimistic protocols
leads to decreased performance [Jo89].

Optimistic rollback protocols (e.g., [Jo89, JoZw90, Jo93, PeKe93, SiWe89, StYe85, Zw88])
buffer received messages in volatile storage, and asynchronously log them to stable storage. A
process may proceed beyond the receipt of a message before the message is successfully logged.
These protocols optimistically bet that a process will not fail before the logging of its received
messages is complete. However, a failure at a process that has not finished logging may create
orphans at other processes. Consequently, optimism complicates recovery, since protocols must
be able to detect and eliminate orphans throughout the system. However, optimistic protocols are
cheaper during failure-free operation.

4.1.4. Asynchronous Optimistic Rollback Recovery

This chapter uses the framework of distributed time to consider optimistic rollback recovery.
Optimistic protocols already have low failure-free overhead. Our tools for time abstraction allow
us to improve on previous work by simplifying the task of recovery.

Most optimistic rollback rollback protocols require synchronization in recovery. However, the
more decentralized a distributed protocol is, the better its potential for exploiting the advantages of
distribution (e.g., concurrency) and being robust against the disadvantages (e.g., asynchrony and
unreliable networks). Strom and Yemini [StYe85] initiated the area of optimistic rollback recovery
and presented the most asynchronous protocol prior to ours.

Strom and Yemini In the Strom and Yemini protocol, processes use timestamp vectors to track
dependency. When a process rolls back, it begins a new incarnation and sends announcements to
the other processes. (These announcement messages are not part of the failure-free computation,
and thus do not carry dependency.) When a process receives a rollback announcement, it uses
its timestamp vector to determine if it is currently an orphan; if so, this process rolls back to its
maximal non-orphan state by restoring an old checkpoint and replaying its received messages until
a message is reached whose send event is an orphan. A process receiving a rollback announcement
also saves the incarnation start information from the announcement for use in subsequent vector
sorting; delayed announcements may require non-faulty processes to block.
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Strom and Yemini do not require processes to synchronize during recovery. This asynchrony
offers several advantages:

� processes can recover without the delay of synchronization;

� recovery from concurrent failures can proceed concurrently; and

� once initiated, recovery can sometimes proceed despite network partitions.

However, the Strom and Yemini protocol has a significant disadvantage: a single failure at one
process may lead to �(2n) rollbacks (where n is the number of processes in the system). This
behavior occurs because an orphan state at a surviving process r may depend on the lost computa-
tion through multiple paths: directly from the failed process, and indirectly through intermediate
processes. Even with its assumption of FIFO message ordering, Strom and Yemini’s protocol may
generate failure announcements in such a way that process r rolls back in response to the rollbacks
of intermediate processes, and then in response to the rollback of the failed process. Figure 4.6
shows a simple scenario in which process r rolls back twice in response to a single failure at process
p; Section 4.3.6 presents an inductive construction showing an exponential number of rollbacks.

Distributed Time The framework of distributed time allows us to talk about time abstraction
on multiple levels:

� We can use one level of partial order time to describe potential causality in the failed com-
putation.

� We can use another level of partial order time to describe potential knowledge in the recovery
computation.

Using timestamp vectors for both levels allows us to build an orphan test exploiting all potential
information. This ability directly leads to an optimistic recovery protocol that provides completely
asynchronous recovery but requires surviving processes to roll back at most once in response to
the failure of any process. (Figure 4.7 provides a rough sketch.)

Our new recovery protocol improves on Strom and Yemini’s work by reducing the worst case
from exponential to constant, and improves on other optimistic recovery protocols by requiring no
synchronization during recovery. Our protocol also provides additional flexibility: messages need
not be FIFO, and no extra messages need to be transmitted. Further, developing our protocol in
the framework of distributed time allows transparent integration with other applications based on
partial order time, and transparent protection against clock-based security and privacy attacks. Like
other optimistic approaches, our protocol does not require any process to roll back computation that
does not depend on lost computation at the failed process. Table II presents a table comparing our
protocol to three principal optimistic rollback protocols, and to a sample checkpointing protocol.
(Section 4.3.6 provides a fuller discussion of these protocols.)
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This Chapter Section 4.2 discusses the relevance of distributed time to rollback recovery.
Section 4.3 presents our new protocol. Finally, Section 4.4 uses distributed time to derive a general
framework for rollback problems and recovery protocols. (Chapter 5 and Chapter 6 will explore
the security issues.)

We presented a preliminary version of our new protocol in an earlier publication [SJT94].

4.1.5. Assumptions

Recoverability Section 4.1.1 and the remainder of this chapter implicitly assume complete
recoverability: each state at every non-faulty process can be recovered.

"I've rolled
back B3"

"I've rolled
back A2"

A6A1 A2 A3

C2 C3 C4C1

A4 A5

p:

r:

failure

B2 B3 B4B1

q:

B5 B6

"I've rolled
back A2"

A7 A8 A9

B7 B8 B9 B10

C5 C6 C7 C8

P1

P2 P3

Figure 4.6 The Strom and Yemini protocol may cause surviving processes to roll
back multiple times in response to a single failure. This diagram shows how one
failure at process p causes process r to roll back twice. Process p fails and rolls
back A2 through A5. This failure makes process q an orphan (since q depends on
the lost computation via path P1) and also makes process r an orphan (directly
through path P2, and indirectly through paths P1 and P3). When process q receives
p’s announcement about A2, q rolls back to its most recent state that does not
depend on A2. Unfortunately, q’s announcement may arrive at process r before
p’s announcement does. When process r receives q’s announcement about B3, r
rolls back to its most recent state that does not depend on B3. Process r does not
know that its restored state is still an orphan until after the delayed p announcement
arrives (at C8).
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A6A1 A2 A3

C2 C3 C4C1

A4 A5

p:

r:

failure

B2 B3 B4B1

q:

B5 B6

A7 A8 A9

B7 B8 B9 B10

C5 C6 C7 C8

P2P1

Figure 4.7 Using two levels of partial order time allows asynchronous recovery
while avoiding the problem of multiple rollbacks. This diagram roughly sketches
the principles involved in our new protocol. Solid arrows indicate both poten-
tial causality in the failed computation and potential knowledge in the recovery
computation. Dashed arrows indicate only potential knowledge in the recovery
computation. As in Figure 4.6, process p fails and rolls back A2 through A5. Thus
A6 logically succeeds A1 rather than A5; hence the dashed edge from A5 to A6

and the solid edge from A1 to A6. Process p sends an announcement to process
q; since this announcement is not part of the underlying computation, we use a
dashed edge. Process q rolls back, and sends an announcement that process r

receives at C6. Via dependence path P1, C2 depends on lost A2 and is an orphan.
However, via knowledge path P2, process r at C6 is potentially aware that A2 has
been lost. Comparing timestamp vectors across partial orders allows process r at
C6 to determine that C2 is an orphan. Thus, unlike Figure 4.6, process r rolls back
far enough the first time.
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Strom and
Yemini

Koo and
Toeug

Johnson
and

Zwaenepoel

Peterson
and Kearns

Distributed
Time

Protocol

Assumptions FIFO FIFO None None None
Asynchronous

recovery?
Partially No No No Yes

Concurrent
recovery? Yes No No No Yes

Maximum
rollbacks at one

process from
one failure?

�(2n) 1 1 1 1

Entries in
timestamps

O(n) O(1) O(1) O(n) O(n)

Table II The distributed time protocol for rollback recovery compares favorably to
previous work in many aspects. Its principal drawback is timestamp size, since the
protocol requires vector clocks for two levels of partial order time.

As we have discussed, optimistic recovery protocols typically provide complete recoverability
of states at non-faulty processes by asynchronously taking local checkpoints at each process, and
by asynchronously logging the messages each process receives. To restore a state A, a process p
rolls back to its most recent checkpointed state preceding or equaling A, and then re-executes its
computation (replaying received messages from its log) until it reaches state A. This approach
requires that process execution be piecewise deterministic (that is, deterministic between message
receive events). When a process fails, it may lose recent logging information, since logging
proceeds asynchronously with the underlying computation. (This fact distinguishes optimistic
recovery from pessimistic recovery.)

This logging and replay approach can be extended to nondeterministic execution by having
processes treat nondeterministic influences as incoming messages [ElZw92, Jo93]. For example,
if a process state enables a transition to multiple states, the process might asynchronously log the
index of the choice that is made. Our automata model of Section 2.2.1 permits each state transition
at a process to be non-deterministic. The extended logging-and-replay approach would provide
complete recoverability for our model, and for the protocols presented in this chapter. With some
modifications, the simpler piecewise deterministic model (with its simpler logging scheme) also
suffices. Section 4.3.5 discusses these modifications.

Commitability The examples in Section 4.1.1 also implicitly assume that any state or event can
be rolled back. Achieving this assumption in practice is difficult. Rolling back arbitrary nodes
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may be impossible: for example, interaction with the outside world may lead to activity (e.g.,
launching a missile) that cannot easily be undone. Providing the ability to roll back arbitrary nodes
may be expensive, since processes can then never throw out any checkpoints or log data. Rollback
recovery for fault tolerance requires only keeping sufficient data to restore the maximal recoverable
system state; however, the question still arises of determining which data this is.

Due to these problems, realistic protocols also need to consider stability and commitability.
A state or event is stable when it has been successfully logged to stable storage; a state or event
is commitable when it will never be rolled back [JoZw90]. If rollback only occurs to recover
from process failure, then a node is commitable when every node in its timestamp vector is stable.
When a stable node A becomes commitable at a process, the process will never need to recreate an
earlier node, and thus may discard all earlier log data (except that which is necessary to recreate
A). Furthermore, activity with potentially permanent side-effects may proceed safely. For space
efficiency, recovery protocols should allow processes to discard unnecessary data. For example,
in the Strom and Yemini protocol, each process maintains a vector indicating the logging status of
the other processes, and uses this vector to determine when node is commitable (and thus when
previous log data may be discarded).

For clarity of presentation, our protocols do not address the issue of commitability. However,
a vector solution similar to Strom and Yemini’s easily incorporates into our framework.

Failure Detection and Reconfiguration We also do not consider mechanisms for processes
to detect failure, nor for selecting the physical site where a failed a process should restart. (However,
since our framework provides tools for hierarchies of abstraction, it may simplify many issues in
process/processor mapping.)

4.2. Rollback and Distributed Time

This section applies the framework of distributed time to the rollback problem. Section 4.2.1
discusses the relevance of distributed time. Section 4.2.2 introduces the idea that processes per-
forming rollback have two levels of consciousness—the system level of a process implements the
user level. Section 4.2.3 builds a time model for the computation performed by the system level
of processes; Section 4.2.4 builds a time model for the computation performed by the user level.
Section 4.2.5 introduces some notation for mapping between the system level and the user level.
Section 4.2.6 discusses the mechanics of retroactive change—how rollback protocols might alter
the computation in progress. Section 4.2.7 discusses how the failure-free virtual computation arises
from the user-level computation.
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4.2.1. The Relevance of Distributed Time

Optimistic rollback recovery changes the history that user processes perceive. Distributed time
provides abstraction tools that apply on several levels:

� Dependence on Failure Optimistic rollback recovery permits orphans to exist at
processes other than the process that failed. If we have accurate timestamps from real time
and no prior failures have occurred, then we might try using real time to test for orphans:
anything that occurred after the failure. This test will detect all orphans, but has some
substantial flaws. First, using real time is wasteful—many states that did not depend on the
failure will be rolled back unnecessarily. Further, as Section 2.5.1 observed, this approach
easily breaks down in realistic scenarios:

– Not all processes may receive word of the failure simultaneously. Real time does not
distinguish between states that depend on the failed state, and states that occur after
recovery from dependence on the failed state.

– Suppose a failure occurs at process q before recovery from a failure at process p is
complete. Real time is not sufficiently articulate to express the resulting nuances. For
example, paerhaps the current node at process r was an orphan due to both failures, but
process r rolled back in response to process p’s failure. Is the current node at r still an
orphan due to q’s failure?

– Some state restoration mechanisms require a process to re-execute events. Such a
re-executed event may have a later timestamp than events that it influenced.

The nuances of dependence are better captured by a partial order time model (possibly, as
the last example illustrates, a flow-virtual model that does not follow directly from the real
timelines at processes).

� The Failure-Free Virtual Computation Recovery from failure changes the underlying
computation. The failure-free virtual computation that appears to have happened after re-
covery is complete is also expressed by a partial order—but this partial order differs from the
one tracking dependency in the failed computation. For example, suppose we wanted to use
the results of Chapter 3 to take a snapshot from the logical past of the virtual computation,
or suppose we need to recover from a second failure. Applying protocols based on partial
order time to the failure-free virtual computation requires access to this second partial order.

� The Recovery Computation The recovery computation is itself a distributed com-
putation, different from both the original failed computation and the failure-free virtual
computation. The recovery computation is expressed by a third partial order—one that
would be constructed by an external observer who did not know that the system was per-
forming a recovery algorithm. Reasoning about the progress of recovery (e.g., “who knows
about what rollbacks?”) and integrating the recovery computation with other applications
(e.g., snapshots) requires using the recovery partial order.
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A Single Framework Distributed time provides the tools to represent computation at all the
levels of abstraction that arise when considering rollback recovery. The remainder of Section 4.2
will develop these levels of abstraction.

4.2.2. Bipartite Processes

The most straightforward representation of the state at a process is as a set of bits. However, our
distributed time theory introduces the abstraction that process clocks track temporal relations. A
firewall limits the interaction between a process and its clock to formal queries and responses.
Figure 4.8 illustrates this view.

Both the decision to roll back and the inability to directly control the state of the network
highlight the need for managing rollback at a process. This need introduces a second firewall inside
a process: in order for a simple process of the form of Figure 4.8 to exist in the virtual computation,
it must have with it another process that handles the management. Figure 4.9 illustrates this revised
view: an implementing process supports the implemented process.

The implemented process—the state and action of the process above the firewall of Figure 4.9—
is the user level of that process. The state and action of the entire process is the system level. The
management state is the portion of process state exclusively part of the system level.

Defining rollback requires the use of the Figure 4.8 view of a process. Implementing rollback
requires the use of the Figure 4.9 view. Multiple levels of abstraction at a process mesh nicely with
multiple levels of abstraction and time (as the following sections discuss).

4.2.3. The System Computation

An external observer who did not know that failure and recovery was occurring would be oblivious
to the process structure of Figure 4.9. This observer’s point of view would provide no distinction
between the implemented process and the implementing process.

Process Clock

Figure 4.8 Encapsulating time services into a clock module revises our view of
process: we now now can think of the internal state of the process as separate
from the state of the process clock.
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Implemented  Process Clock

Implementing Process Clock

Figure 4.9 Managing the virtual existence required by rollback introduces another
firewall: between the implemented process and the implementing process.

We define
SYSTEM PARTIAL ORDER

to be the time model obtained by applying PARTIAL ORDER TIME without distinguishing process
levels. (That is, we ignore the firewall between the implemented process and the implementing
process.) Similarly, we define

SYSTEM TIMELINES

to be the model obtained by applying TIMELINES without distinguishing process levels.

We use the notation Vsys(A) to indicate the timestamp vector of a node A a graph from
SYSTEM PARTIAL ORDER.

The pair of models (SYSTEM PARTIAL ORDER; SYSTEM TIMELINES) forms a Type 3 parallel
pair—consistent, independent, and strongly monotonic. The possibility that process failure may
disrupt information flow prevents the pair from being flow-supported, and thus from being Type 4.
Clocks for SYSTEM PARTIAL ORDER must be designed around this limitation. Section 4.3.4 con-
siders these issues.

4.2.4. The User Computation

In this section, we build a USER PARTIAL ORDER model to express the user-level computation
performed by the user levels of processes. This construction is a bit more complicated than the
construction in Section 4.2.3: we obtain the USER PARTIAL ORDER model as the composition of
an IMPLEMENT model with the SYSTEM PARTIAL ORDER model.

Implementation The system level of process computation implements the user level. Building
the user model requires defining this implementation.

In terms of our time models, a user process does four things:
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� It holds a state.

� It performs internal computation.

� It sends a message.

� It receives a message.

The system-level computation of a process implements these four things:

� A user state node consists of a maximal sequence of system-level state nodes and system-level
transition nodes that do not change the user state.

� A user internal computation transition occurs when the user state changes, due to an imple-
mented internal transition.

� A user send event consists of a change in user state along with the transfer of the message
to the management state (the virtual send); the system state subsequently sends the message
out as part of a system message. (The potential exists here for the system process to suppress
the message.)

� A user receive event occurs when the system process receives a user message and decides to
pass it on to the user-level process. In the virtual receive, the management state changes (to
reflect the dequeuing of the message) and the user state changes (to reflect the receive).

The system-level computation at a process can also perform rollback: a discontinuous change
in the user state.

Nodes The preceding discussion of how the system-level implements the user-level directly tells
what nodes the IMPLEMENT model should produce when it is applied to a SYSTEM PARTIAL ORDER

graph, and what these nodes should represent. This mapping is described in the remainder of this
section, and is illustrated in Figure 4.10 through Figure 4.14.

Timelines as Trees With one exception, the logical ordering of user nodes follows from the
semantics of implementation—thus the IMPLEMENT model draws directed edges between consecu-
tive user nodes, and draws a directed edge to each user receive event from the corresponding user
send event.

The exception is the rollback transition. Rollback requires a user process to restore an earlier
state and continue execution from there. Logically, the restored state node becomes a sibling3 of

3Section 4.3.5 considers the implications of restoring the original node itself.
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its original instance; unless rollback occurs again, subsequent user nodes form a linear sequence
extending from this restored state node.

This branching constitutes a departure from the linear timeline basis of parallel pairs. The live
history of a user node consists of its past in the transitive closure in its process timetree.

The User Model The IMPLEMENT model acts on SYSTEM PARTIAL ORDER graphs to abstract
away the implementation details of the user computation. Figure 4.10 sketches the production of
state nodes; Figure 4.11 sketches internal transitions; Figures 4.12 and 4.13 sketch the send and
receive events for user messages; and Figure 4.14 sketches the rollback transition. We define the
USER PARTIAL ORDER model as a composition:

USER PARTIAL ORDER � IMPLEMENT � SYSTEM PARTIAL ORDER

We define the TIMETREES model as USER PARTIAL ORDER, less the message edges.

The models (USER PARTIAL ORDER; TIMETREES) form a Type 4 (consistent, independent,
strongly monotonic and flow-supported) nonlinear pair: a parallel pair, less the requirement that
process graphs be linear.4 This will be the only nonlinear pair considered in this thesis.

Timestamp Pseudo-vectors Because nonlinear pairs do not place the nodes at a process in
a linear order, we cannot guarantee that any collection of nodes at a process has a minimal and
a maximal element. This uniqueness property is key to defining timestamp vectors and rollback
vectors for nodes—without it, the definitions collapse.

state
7U

state
7U,2M

state
7U,3M

internal

Figure 4.10 Under the IMPLEMENT map, each USER PARTIAL ORDER state node
(top) represents a maximal sequence of SYSTEM PARTIAL ORDER nodes that have
no user state changes (bottom). Subscripts on the state labels distinguish the user
part of process state from the management part.

4Section 2.2.8 discussed nonlinear pairs.
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state
7U,2M

state
7U,2M

internal state
8U,3M

state
8U,3M

state
7U

state
8U

internal

Figure 4.11 Under the IMPLEMENT map, each USER PARTIAL ORDER internal node
(top) represents a SYSTEM PARTIAL ORDER internal node that implements a user
state change (bottom).

state
4U

state
5U

send

state
4U,6M

state
5U,7M

state
5U,8M

user
send

send

Figure 4.12 To implement a USER PARTIAL ORDER send (top), the system process
lets the user process send the message virtually. The system process then takes
care of the details of actually sending the message (bottom).

state
12U,15M

state
12U,16M

state
13U,17M

user
receive

receive

state
12U

state
13U

receive

Figure 4.13 To implement a USER PARTIAL ORDER receive (top), the system
process receives the message and forwards it to the user process (bottom).
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state
7U,6M

state
2U,7M

rollback

state
7U

state
2U

state
2U

Figure 4.14 A system process performs a rollback transition by restoring an earlier
user state (bottom). The implemented user transition falls outside the normal rules
of transition of user state; thus the new user state is a logical sibling of its earlier
instance. We adopt convention that the restored user state node represents the
rollback transition. A large “X” marks each node that has been rolled back.

For a given node A in USER PARTIAL ORDER, we can still define a timestamp pseudo-vector
V0(A) as the TIMETREES-maxima of the live history of A. The timestamp pseudo-vector will not
necessarily be a true vector, since it may contain multiple nodes from the same process (but from
different branches of the timetree). If a timestamp pseudo-vector V0(A) is in fact a vector, we use
the notation Vusr(A).

(Section 4.2.7 will discuss further properties of timestamp pseudo-vectors, and will observe
why generalizing rollback vectors to rollback pseudo-vectors is difficult.)

4.2.5. Mapping Between the System and User Computation

We will need to map between the USER PARTIAL ORDER and the SYSTEM PARTIAL ORDER levels
of abstraction. This section introduces some tools for this mapping. We show that user precedence
implies system precedence (of corresponding nodes); we introduce some shortcuts for graphical
notation; and we provide some clock primitives for processes to perform this mapping explicitly.

Precedence User precedence implies system precedence.

Theorem 4.1 Let � be a SYSTEM PARTIAL ORDER graph, and let  be the corre-
sponding USER PARTIAL ORDER graph. Let AU ; BU be nodes in . Any choice of AS

from h IMPLEMENT; � i(A) and BS from h IMPLEMENT; � i(B) satisfy the statement:

AU �!BU in  =) AS �!BS in �

Proof This follows from the definition of IMPLEMENT.
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Graphical Shorthand Theorem 4.1 implies that, when we care about transitive precedence
and the node set is unambiguous, we may use the same drawing to represent relations from both
the SYSTEM PARTIAL ORDER model and the USER PARTIAL ORDER model. Figure 4.15 shows an
example. For these drawings, we adopt the convention of dashed arrows for system-only edges,
and solid arrows for edges that carry precedence in both the system and user models. System
precedence corresponds to any path; user precedence corresponds to paths composed of solid
edges only.

Usually, we can build these combined diagrams showing USER PARTIAL ORDER nodes. Potential
for ambiguity arises when we want to consider the system activity that a user node represents. We
are particularly interested in three areas:

� the send event for a system message (and the decision to send it);

� the receive event for a system message (and subsequent processing); and

� the receive event for a user message that a system process decides to discard (so the message
becomes a system-only message).

When relevant, we indicate the interesting sequence of SYSTEM PARTIAL ORDER nodes that a
USER PARTIAL ORDER node represents by a “peapod” drawing (such as Figure 4.16). As system-
only edges, SYSTEM PARTIAL ORDER messages are indicated by dashed arrows. This convention
fails to distinguish a system-only message from a rejected user message; where relevant, this
distinction will be made clear in discussion.

Primitives for Mapping Some of our protocols require processes themselves to map between
levels. We now specify some explicit primitives for this task. (Recall from Section 2.4 that
CUR GRAPH returns the current ground-level computation graph.)

Processes need to map nodes back and forth. We define two primitives:

state
7U

state
2U

state
2U

Figure 4.15 Since Theorem 4.1 shows that user precedence implies sys-
tem precedence, the same drawing can show both USER PARTIAL ORDER and
SYSTEM PARTIAL ORDER information. We use the convention that dashed edges
carry precedence in SYSTEM PARTIAL ORDER only. This sketch shows that, after
rollback, the restored state system-follows the aborted state.
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state
7U

state
2U

state
2U

Figure 4.16 When relevant, a “peapod” drawing reveals the implementation de-
tail of a user node. Suppose upon rollback, the system process here sends a
system-only message. We can indicate that in our combined drawing by expand-
ing the node for the restored state into a “peapod” indicating the subsequence
of interesting system nodes—rollback, state, send, and state—that this user node
represents. The dashed message arrow indicates the system-only message.

� USER(A) returns the user node representing system node A.

USER(A) � NODE(B;A 2 h IMPLEMENT; � i(B); IMPLEMENT(�))

(Here, � = SYSTEM PARTIAL ORDER(CUR GRAPH)).

� SYSTEM(A) returns the set of system nodes that user node A represents.

SYSTEM(A) � h IMPLEMENT; SYSTEM PARTIAL ORDER(CUR GRAPH) i(A)

Processes need to work with vectors on both levels. We define a primitive:

� USER VECTOR(V ) takes system vectorV and maps each entryA to its user version USER(A).

Finally, processes need to work with messages on both levels. We define three primitives:

� USER MESSAGE TEST(M) returns true iff system message M is also a user message.

� USER MESSAGE(M) extracts the user message from system message M .

� SEND EVENT(M;M) returns the send event inM associated with message M .

These primitives form part of our clock suite for processes. However, we also use USER,
SYSTEM, and USER VECTOR as informal shorthand for the operations they carry out.

4.2.6. Retroactive Change

Section 4.2.3 and Section 4.2.4 introduced two time models for optimistic rollback recovery.
Understanding how recovery leads to a failure-free virtual computation arising from these models
is critical to defining and solving the rollback problem. This section explores these issues.
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Failure-Free Computations The goal of rollback recovery is to establish a failure-free virtual
computation. To facilitate this work, we define a failure-free trace to be a trace of a system
consisting of processes with implemented state only, that never fail. We define

FAILURE FREE PARTIAL ORDER

to be the PARTIAL ORDER TIME model applied to failure-free traces.

Extracting Failure-Free Computations The SYSTEM PARTIAL ORDER model constructs the
standard partial order for the system-level computation, and the USER PARTIAL ORDER model
constructs the dependency partial order for the user nodes. In the terminology of distributed time,
we say that the SYSTEM PARTIAL ORDER model refines to the USER PARTIAL ORDER model.

SYSTEM PARTIAL ORDER > USER PARTIAL ORDER

The system-level computation determines the user-level computation.

However, if failure has actually occurred, then the USER PARTIAL ORDER graph will not be
a FAILURE FREE PARTIAL ORDER graph, because USER PARTIAL ORDER is constructed from the
TIMETREES process structures, showing all rolled-back computation. Furthermore, extracting a
FAILURE FREE PARTIAL ORDER graph from USER PARTIAL ORDER leads to tricky situations:

� If recovery proceeds correctly but more than one process must roll back, then the graph from
the USER PARTIAL ORDER model will generate a unique recovered failure-free computation,
but may generate multiple “older” computations.

� Consequently, designing correct recovery protocols (or even unambiguously specifying the
rollback problem) can be difficult. A particular challenge is getting a distributed collection of
processes to agree, based on knowledge of one failure and differing views on the unfolding
USER PARTIAL ORDER computation, on which failure-free computation to restore.

An Example Consider the SYSTEM PARTIAL ORDER computation described by Figure 4.17.
Process q decides to roll back the send event B3, and establishes a copy B 0

2 of earlier state node
B2. Process q sends a message to process p, who cooperates. Process q performs modified replay,
and executes B5 instead.

This example provides a clear distinction between the old virtual user computation and the
new virtual user computation. Figure 4.18 shows the FAILURE FREE PARTIAL ORDER computa-
tion before recovery; Figure 4.19 shows the FAILURE FREE PARTIAL ORDER computation after
recovery.

Identifying the recovery period in the USER PARTIAL ORDER computation of Figure 4.17 is
also straightforward. From a real-time perspective, recovery should begin at the real time ts that
process q first rolls back, and end at the real time tf that process p rolls back. Distributed time lets
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Figure 4.17 This combined drawing shows an example of rollback with modified
replay. After user state B4, process q decides to roll back node B3. Process q

restores a copy of state B2, and informs process p, who cooperates and then pro-
ceeds with its own modified replay. The pair of timeline edges marked Y delineates
the transition from the old computation to the new computation.

A1 A2 A3 A4

B1 B2 B3

p:

q:

M

B4

Figure 4.18 This graph shows the failure-free virtual computation
from Figure 4.17 before process q initiates recovery.

A1 A'2
p:

A5 A6

B1

q:

B'2 B6B5

Figure 4.19 This graph shows the failure-free virtual computation
from Figure 4.17 after rollback recovery is complete.
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us draw even tighter boundaries: the pair of timeline edges Y in Figure 4.17 marks the transition
from the old computation to the new computation.

In this example, both process p and process q perform rollback. The user computation at each is
a tree; Figure 4.20 shows the USER PARTIAL ORDER graph. Before process q initiates rollback re-
covery, the user computation consists ofA4; B4 and their pasts (the FAILURE FREE PARTIAL ORDER

graph of Figure 4.18). After recovery, the user computation consists of to A6; B6 and their pasts
(the FAILURE FREE PARTIAL ORDER graph of Figure 4.19). However, the USER PARTIAL ORDER

graph of Figure 4.20 also admits a third FAILURE FREE PARTIAL ORDER graph: that determined
by A6; B4 and their pasts. Figure 4.21 shows this computation, where message M is sent but never
received.

Scenarios exists where the computation of Figure 4.21 may be the correct virtual user computa-
tion arising from the USER PARTIAL ORDER graph of Figure 4.20. Suppose process q decides that
its initial decision to roll back node B2 was incorrect, and wants to restore its earlier computation.
What computation should the system establish? The most straightforward answer is to return from
the recovered computation of Figure 4.19 to the older computation of Figure 4.18. However, the
computation of Figure 4.21 might be a more reasonable result: fewer nodes need to be rolled back,
and no extra messages need to be transmitted.

Questions Considering this example raises a number of questions:

� How do FAILURE FREE PARTIAL ORDER computations arise from a USER PARTIAL ORDER

computation? When are FAILURE FREE PARTIAL ORDER computations incompatible? The

A1

A2 A3 A4

B1

B2 B3

A'2

p:

q:

M

B'2 B6

B4

B5

A5 A6

Figure 4.20 The SYSTEM PARTIAL ORDER computation of Figure 4.17 maps to this
USER PARTIAL ORDER graph. The recovery changed the current frontier from A4; B4

to A6;B6.
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B1 B2 B3

q:

M

B4

A1 A'2
p:

A5 A6

(lost)

Figure 4.21 The USER PARTIAL ORDER computation of Figure 4.20 admits a third
failure-free virtual computation: one where message M is sent but never received.

three virtual computations arising from Figure 4.20 each have subgraphs that are valid
FAILURE FREE PARTIAL ORDER graphs. Intuitively, we reduce these myriad graphs to three
distinct computations. Why these three? Why are they distinct?

� How should we specify rollback problems? When a process changes the computation in
progress by moving to another branch in its USER PARTIAL ORDER tree, what overall change
in the virtual user computation should result?

� How do we design recovery protocols? How should separate processes agree on the current
virtual user computation?

� How should we evaluate the performance of rollback protocols? Our discussion suggests
several somewhat independent parameters:

– how quickly recovery completes;

– how many processes are involved with recovery;

– how many nodes need to be rolled back;

– how many messages become “lost;” and

– how many system messages need to be sent as part of recovery.

What tradeoffs exist? Which parameters are most important?

In Section 4.2.7, we begin answering these questions.

4.2.7. Validity and Consistency

In this section, we define valid user nodes, and we show how valid nodes comprise consistent
virtual computations.
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Validity Identifying a system-wide virtual user computation begins by selecting user nodes at
individual processes. A user node is valid when (from its perspective) it is part of a failure-free
virtual computation. That is, user node A is valid when its live history forms a past-closed prefix
of a graph generated by FAILURE FREE PARTIAL ORDER.

Theorem 4.2 A user node A is valid iff its timestamp pseudo-vector V0(A) is a
vector.

Proof The pseudo-vector V0 is a vector exactly when the past-closure of the live history of A
touches at most one branch in the timetree at each process.

Consistency A set S of nodes in a USER PARTIAL ORDER graph is consistent iff the nodes
could all have been part of the same failure-free virtual computation. That is, the graph formed
by taking the nodes in S along with their live histories forms a past-closed prefix of a graph from
FAILURE FREE PARTIAL ORDER.

Timestamp pseudo-vectors provide a nice way to describe consistency.

Theorem 4.3 A set S of nodes in a USER PARTIAL ORDER graph is consistent iff
each node in S is valid, and the TIMETREES-maximum of the timestamp vectors V(A)
(for all A 2 S) is a vector.

Proof Let � be the USER PARTIAL ORDER graph, and �0 be the subgraph obtained by taking S
and their past-closure. If S is consistent, then �0 is a valid PARTIAL ORDER TIME graph, so each
node A 2 S must be valid, and for each p, the p entries of the timestamp vectors are orderable
within a single branch of the p timetree. If each A 2 S is valid and their timestamp vectors join
to a vector, then the past-closure of S touches exactly one branch in each timetree, and so S is
consistent.

(That is, the timestamp vectors of consistent nodes form a lattice.)

Consistency directly generalizes from validity: the singleton set fAg is consistent iff the node
A is valid. Consistency of sets also builds in a nice way: a set S of valid nodes is consistent iff
each pair of nodes in S is consistent.

Some straightforward approaches to describing consistency actually fail. For example:

� A set S is not necessarily consistent if the USER PARTIAL ORDER-maxima of its past
form a vector. (Figure 4.22 provides a counterexample.) Using TIMETREES rather than
USER PARTIAL ORDER ordering is important if one branch of a tree can develop a depen-
dence on another branch.
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� A set S is not necessarily inconsistent even if it is not TIMETREES-dominated by a set of
consistent leaves. (Figure 4.23 provides a counterexample.) Thinking about computations
as arising from a set of process incarnations—maximal root-leaf branches—leads to this
incorrect description.

� While consistency of a set follows from pairwise consistency, evaluating whether a node A
at process p is consistent with a node B at process q still requires system-wide data—nodes
A and B may be inconsistent because they depend on concurrent branches of the timetree at
a third process r. (The timestamp vectors provide the system-wide data.)

The timestamp pseudo-vector of a valid nodeAmarks the lower bound of the events concurrent
and consistent with A—the adjusted timestamp vector of a valid node is the minimal consistent
timeslice containing that event. The asymmetry of time in USER PARTIAL ORDER makes it difficult
to define a similar “rollback pseudo-vector” having a similar property.

Generation A failure-free virtual computation arises from a USER PARTIAL ORDER graph
through consistency. A set of consistent nodes in the USER PARTIAL ORDER graph determines

p:

q:

r:

S

Figure 4.22 Even if the USER PARTIAL ORDER-maxima of the past of a set forms
a vector, the set itself may not be consistent. This graph shows a counterexample:
the past of the mutually concurrent vector S is not a valid prefix of a failure-free
virtual computation.
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p:

q:

S S'

Figure 4.23 Not being dominated by a consistent leaf vector does not imply in-
consistency. This graph shows a counterexample: the vector S is consistent, even
though the only dominating leaf-vector S 0 is not consistent.

a past-closed prefix of a FAILURE FREE PARTIAL ORDER graph—the nodes, along with their live
histories. When two consistent sets are distinct but have a consistent union, then these sets repre-
sent different intermediate versions of the same computation. The three virtual computations we
extracted from Figure 4.17 arise from the three maximal distinct consistent sets.

The goal of optimistic rollback recovery to restore consistency to the system computation: to
ensure that the current user nodes at the processes form a consistent set.

4.3. Asynchronous Optimistic Rollback Recovery Using
Distributed Time

The distributed time framework developed in this thesis provides tools for reasoning about multiple
levels of time relations, for designing protocols in terms of these relations, and for considering
independently the inherent security and privacy risks. Section 4.3 uses this framework to build
a new optimistic rollback recovery protocol. The heart of the protocol is a simple procedure
for processes to determine exactly when a given state or event is an orphan. The design and
the correctness of this procedure follow directly from explicitly tracking both the partial order of
causal dependency and the partial order of rollback knowledge. This procedure is complete in that
it reports no false negatives. It thus allows completely asynchronous recovery while also ensuring
that each process rolls back at most once to recover from any failure—and that processes that do
not depend on the failure need not roll back at all.

This protocol thus substantially improves on previous optimistic rollback recovery protocols.
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Section 4.3.1 provides an overview of this work. Section 4.3.2 discusses the orphan detection
test. Section 4.3.3 presents the complete protocol. Section 4.3.6 compares our protocol to previous
work.

4.3.1. Overview

Rollback recovery requires determining which states and events have been potentially influenced
by lost activity. Many existing protocols use some form of partial order time (either implicitly or
explicitly) to track this potential dependence. However, by dispensing with formal coordination,
asynchronous rollback recovery also requires the ability to reason about and track potential knowl-
edge of failures and restarts. This activity itself is an asynchronous distributed computation, and
is thus also trackable using partial order time. However, this partial order differs from the partial
order of events visible within the user’s computation. For rollback recovery, potential knowledge
at the system level is not the same as causal dependency at the user level. For example, suppose
process q learns that its current state A depends on a lost state. Process q rolls back, and then enters
state B. Although a knowledge path exists from state A to state B, no causal dependency path
exists.

For effective implementation of asynchronous recovery, we need to move from viewing time
as a linear order to viewing it as a partial order, and we also need to move away from viewing time
as a single level of abstraction. The framework of distributed time provides these tools, and allows
us to build a new protocol that cleanly and elegantly solves the asynchronous recovery problem.
Distributed time enables us to define when a state can be known to depend on a lost state, and to
implement a test within the protocol that fully utilizes this potential knowledge.

Advantages Our new protocol is the first optimistic rollback protocol to implement completely
asynchronous recovery effectively. It also compares favorably in many other aspects. We discuss
some of the advantages:

� Complete Asynchrony A failed process can restart immediately. When a process
must roll back, it can roll back immediately and resume computation without additional
synchronization with other processes.

� Maximal Recovery Like other optimistic rollback protocols, ours guarantees that a state
or event is rolled back iff it causally depends on the computation lost at failed processes.

� Minimal Rollbacks Our protocol also guarantees that a failure at process p causes a
process q to roll back at most once. Processes that do not depend on the failure will not roll
back at all.

� Speedy Recovery Suppose process q must roll back because of a failure at process p.
Process q will roll back as soon as any knowledge path is established from p’s rollback.

90



� Concurrent Recovery Recovery from a process failure occurs as information about
the failure propagates. Basing recovery on information flow rather than coordinated rounds
directly allows recovery from concurrent failures to proceed concurrently: the recoveries
merge and the protocol restores the maximum recoverable system state [Jo89]. (In particular,
two processes that each need to roll back due to two failures do not need to react to the failures
in the same order.)

� Toleration of Network Partitions Another side-effect of our asynchronous approach is
that once initiated, recovery can proceed despite a partitioned network. The only processes
that need to worry about recovery are those that may causally depend on lost states. Since
each such process can recovery asynchronously, the processes on the same side of the network
as the failure can recover immediately. Processes on the other side that need to recover can
do so when the network is reunited. The remaining processes on either side may proceed
unhindered. (However, this work does not address the problem of detecting failure in a
partitioned network.)

� A Framework for Security and Privacy Tracking partial order time relations creates
security and privacy risks, since processes must share and trust private information. By
building our protocol in terms of distributed time, we can provide transparent protection
against these risks.

Drawbacks Our new protocol does require timestamp information to be maintained, since
processes must track relations in both the user and system partial orders. Vector clock implemen-
tations for these models require one entry per process. For SYSTEM PARTIAL ORDER, these entries
can be a pair of scalars. A straightforward implementation of USER PARTIAL ORDER clocks would
require that the size of the entry for process p be proportional to the number of rollbacks process
p has performed. However, optimizations may substantially reduce this size. For example, Strom
and Yemini obtain constant size entries by transmitting the extra data incrementally (at the cost of
not always having sufficient data to make a comparison). Using similar implementations will keep
timestamp size in our protocol within a factor of two of Strom and Yemini. Section 4.3.4 considers
these issues in more detail.

4.3.2. Orphan Detection

In terms of our time models, an orphan is a user state A such that some rolled-back user state
B exists with B �! A in the USER PARTIAL ORDER model. This section discusses the central
roll that orphans play in optimistic rollback recovery in general, and asynchronous approaches in
particular. This section then uses distributed time to define when a process can potentially know
that a state is an orphan, and then to build a simple test that achieves this potential.
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Preliminaries We assume that processes enforce the invariant that their user state is always
valid, according to the definition in Section 4.2.7. (Section 4.3.3 will show this assumption is
easily satisfied.) We also assume that processes only restore states from their current live history.

We discuss our protocol in terms of distributed time, which describes computations as graphs.
Consequently, we sometimes informally identify a node in a computation graph with the state or
event it represents.

Discussing two levels of time sometimes make the use of Roman letters for node names
ambiguous. For example, is the node “A” a system-level node or a user-level node? Where a
simple name may be misleading, we adopt the convention of using subscripted Roman letters; e.g.,
“AS” will be a system node, and “BU” will be a user node. We adopt a similar convention for
messages and vectors.

Why Orphan Testing is Crucial Suppose p is the process that actually failed. The system
process at p initiates recovery by restoring earlier user state and continuing user-level execution.
This action causes one or more live nodes at process p to become rolled-back. These rolled-back
nodes are orphans by definition. However, the rollback action at p may also cause nodes at other
processes to become orphans.

The key to optimistic rollback recovery is the ability for processes to know when nodes have
become orphans. This has two aspects:

� Orphan Elimination When process q learns that process p has failed, process q must
determine if its current user state has become an orphan. If so, process q must roll back—
preferably back to the most recent state that is now not an orphan. Processes thus need to
be able to test if their own user nodes are orphans. Figure 4.24 shows a detailed example of
this situation.

� Orphan Prevention The rollback at process p may have caused user node AU at some
process r to become an orphan. However, suppose AU was the send of a message to process
q. If the user process at q accepts the message, then q will become an orphan. Thus, to
prevent their current user nodes from becoming orphans, processes need to be able to test
if user events at other processes are orphans. Figure 4.25 shows a detailed example of this
situation.

Accurately testing for orphans is especially critical for asynchronous recovery, with multiple
failures and minimal coordination.

Knowledge of Orphans Suppose the system process at q is in node BS . When could q know
that a user node AU is an orphan? We use distributed time to answer this question.

In order to testAU , the system process at qmust be aware ofAU . We must have the precondition
that for some system node AS in SYSTEM(AU), AS

�! BS .
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Figure 4.24 Optimistic rollback recovery raises the challenge of orphan elimina-
tion: when processes learn of failure, they need to determine their most recent
node that is not an orphan. In this diagram, all named nodes are user nodes.
Process p fails and restarts, and informs process r, who restores a copy of the
state at C2 and informs process q. When it learns of process r’s rollback, process
q must decide if and how far it should roll back. Process q depends directly on
rolled back nodes at process r, so a naive analysis would suggest rolling back to
before B5. In actuality, process q should roll back to beforeB3, since that node has
a direct dependence on rolled-back node A4 at process p, whose failure triggered
the rollback at process r.
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Figure 4.25 Optimistic rollback recovery also raises the challenge of orphan pre-
vention: before formally receiving an arriving user message, a process should
determine if the send event is an orphan. Again, all named nodes are user nodes.
Process p fails and rolls back, and informs process r who rolls back and restores
a copy of the state at C2. Process r then receives user message M from process
q. The send event of M is an orphan, since it user-follows from a rolled-back node
A4 at process p. Accepting this message would cause the user process at r to
become an orphan.
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For AU to be an orphan, a rolled-back user node CU must exist with CU
�! AU . From

Theorem 4.1 and transitivity, CS
�! BS for any system node CS in SYSTEM(CU). A path of

potential information flow exists from the rolled-back CU to the system process at q.

However, for the system process at q to know that dependence on the rolled-back CU makes
AU an orphan, p must know that that CU has been rolled back. IfDS is the system node that rolled
back CU , then we must have DS

�! BS as well.

We summarize this formally with the predicate ORPHAN(AU ; BS), which is defined only when
AS
�! BS for some AS 2 SYSTEM(AU).

ORPHAN(AU ; BS)�true ()

9 CU ;DS such that

8><
>:

1. CU
�! AU in the USER PARTIAL ORDER model

2. DS
�! BS in the SYSTEM PARTIAL ORDER model

3. DS rolls back CU

The ORPHAN predicate does not capture all the orphans in the computation—just all the orphans
that a given system process may potentially know are orphans. If process p sends process q a user
message but promptly rolls back without telling anyone, then process q can not know that the send
is an orphan. In the SYSTEM PARTIAL ORDER model, the timestamp vector on a node BS marks
the information horizon of that node. At nodeBS , the system process cannot know about anything
beyond this horizon.

An Optimal Orphan Test We can use distributed time to build a test that captures the ORPHAN
predicate exactly. First, we build a test that lets a system process determine if (to its current
potential information) a node has been rolled back. Then, we generalize this test to let a system
process determine if a given node depends on a node that has been rolled back.

LetBS be a system node at process q. LetES be thep entry of Vsys(BS), and letEU = USER(ES).
At BS , process q has no information that EU is not live.5 Any FS rolling back EU would system-
follow ES; if q could know about such an FS , then ES would not have been the p entry in
Vsys(BS).

Further, process q atBS can know of a user nodeCU at process p iff for someCS 2 SYSTEM(CU ),
CS precedes BS . Process q at BS can sort these user nodes at p into two groups:

� those that user-precede EU (the user version of the p entry of Vsys(BS)), and

� those that do not.

5By definition, node EU is live iff its process p has not rolled it back. A live node may be an orphan; knowing that
a node is live is not the same as knowing that it is not an orphan. For example, process s may have rolled back an
ancestor GU of EU . Process q may perceive that p has not rolled back EU but s has rolled back GU , and consequently
the currently live node at p is an orphan.

95



Process q atBS knows that each node in the second group has been rolled back. Process q treats
each node in the first group as if it were live, since q has no information otherwise. For example,
suppose CU is a user node that q knows about at BS . Consider the two cases:

� If CU
�! EU , then either CU has not been rolled back, or information about this rollback

(which would also roll back EU ) has not reached process q at state BS .

� If CU =�!EU , then by ES , the system process at p has rolled back CU . This rollback event
must precede or equal ES and thus BS , so process q knows about it.

Figure 4.26 sketches this scenario.

This reasoning shows how the system process at q can determine if a specified node has been
rolled back (according to the information potentially available to q). Since an orphan is a node
that depends on a rolled-back node, this reasoning extends to allow q to test for orphans. Let AU

be a user state at process r that process q knows about at BS . Let p be an arbitrary process. Let
ES be the p entry of Vsys(BS), and let EU = USER(ES). Let CU be the user-maximal user state at
process p with CU

�! AU .

Vsys(FS)

FS

Vsys(ES)

ES

p:

q:

AU BU

CS DS

Figure 4.26 The SYSTEM PARTIAL ORDER timestamp vector of a system process
determines what states it can know to have been rolled back. Here, system process
q at ES knows about user nodes AU and BU at process p, since they lie within the
system-horizon of ES. (That is, paths exists from all nodes in SYSTEM(AU) and
SYSTEM(BU ) to ES .) At ES, process q also knows that BU has been rolled back,
since the rollback event CS also lies within the system-horizon of ES. However, at
ES process q believesAU is still live, since the rollback event DS that undoes it lies
beyond Vsys(ES)—and thus outside the knowledge of ES. Process q does not learn
that AS has been rolled back until FS.
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If CU
�! EU , then process q at BS perceives no rollback at p that makes A an orphan. If this

relation holds for all processes p, than process q cannot perceive thatAU is an orphan; according to
q’s potential information at BS , nothing that AU depends on has been rolled back. If this relation
fails for any process, then process q knows that AU is an orphan.

Vector clocks permit an elegant statement of this test. For a vector WS of system nodes,
USER VECTOR(WS) is the vector of user nodes obtained by applying USER to each entry. Let
�usr denote the vector precedence relation under USER PARTIAL ORDER; vectorsUU and VU satisfy
UU �usr VU when for each p, the p entry of UU precedes or equals the p entry of VU in TIMETREES.

Define DT ORPHAN TEST by the following comparison:

DT ORPHAN TEST(AU ; BS) = true () Vusr(AU) 6�usr USER VECTOR(Vsys(BS))

That is, take the system timestamp ofBS , map each entry to its user equivalent, and do a TIMETREES

vector comparison with the user timestamp of AU .

This test captures all potential knowledge of orphans.

Theorem 4.4 If system node BS and valid user node AU satisfy AS
�! BS for

some AS 2 SYSTEM(AU), then they satisfy the statement:

ORPHAN(AU ; BS) () DT ORPHAN TEST(AU ;BS)

Proof Let AU occur at process p and BS at process q.

Suppose ORPHAN(AU ;BS) holds. Then at some process r, there exists a user node CU and
system node DS satisfying the following statements:

1. CU
�! AU ,

2. DS rolls back CU , and

3. DS
�! BS .

Let EU be the r entry of Vusr(AU) (which exists, since AU is valid). Let FS be the r entry of
Vsys(BS), and let FU = USER(FS). By (1) and the definition of timestamp vector, CU

�! EU .
Hence, EU

�! FU would imply CU
�! FU . By (2),CU cannot precede or equal the user version

of any system node GS at r with DS
�! GS (since rolled-back nodes stay rolled back). By (3)

and the definition of timestamp vector, DS
�! FS . Thus CU cannot precede or equal FU , so EU

cannot precede or equal FU . Thus DT ORPHAN TEST(AU ; BS) holds.

Conversely, suppose DT ORPHAN TEST(AU ; BS) holds. Then there exists a process r such
that CU fails to precede or equal FU , where CU is the r entry of Vusr(AU), FS is the r entry
of Vsys(BS), and FU = USER(FS). Let CS be the minimal element of SYSTEM(CU). Since the
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definition of timestamp vector provides CU
�! AU , Theorem 4.1 provides CS

�! AS for any
AS 2 SYSTEM(AU). Hypothesis then provides CS

�! BS . The definition of timestamp vector
then provides that CS

�! FS . Since CU neither precedes nor equals FU , there must exist a DS

at r in the range CS �!DS
�! FS such that DS rolls back CU . By the definition of timestamp

vector, DS
�! BS . Hence ORPHAN(AU ; BS) holds.

Figure 4.27 shows how DT ORPHAN TEST resolves the orphan elimination problem from
Figure 4.24. Figure 4.28 shows how the test resolves the orphan prevention problem from
Figure 4.25.

4.3.3. The Protocol

We build our protocol for optimistic rollback recovery by having the system processes maintain
vector clocks for the user and system partial orders, and then using these clocks to test for orphans.

A1 A2 A3

B2 B3 B4 B5

C6 C7

B1

A4 A5

p:

q:

r:

A6 A7

B6

failure

BS

C2 C3 C4C1 C5

"I've rolled
back"

"I've rolled
back"

B3 is an
orphan!

Vsys(BS)Vusr(B3)

Figure 4.27 DT ORPHAN TEST allows accurate orphan elimination. Here, node
BS is the only named system node. At BS , the system process at q can know that
user node B3 is an orphan, because in the process p timetree, node A4 (the p entry
of Vusr(B3)) does not precede node A6 (the USER image of the p entry of Vsys(BS)).
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Figure 4.28 DT ORPHAN TEST allows accurate orphan prevention. Here, node
CS is the only named system node. At CS, the system process at r can know that
the send B5 of user message M is an orphan, because in the process p timetree,
node A4 (the p entry of Vusr(B5)) does not precede node A6 (the USER image of the
p entry of Vsys(CS)).
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/* the orphan test */
function DT ORPHAN TEST(TESTED STATE; TESTING STATE)

V Vusr(TESTED STATE)
W USER VECTOR(Vsys(TESTING STATE))
return :COMPARE(V;W; (USER PARTIAL ORDER; TIMETREES))

/* process p receives system message M */
procedure RECEIVE(MS)

/* set pointers to current nodes */
AS�CUR NODE(p; SYSTEM PARTIAL ORDER)
AU�CUR NODE(p;USER PARTIAL ORDER)

/* update SYSTEM PARTIAL ORDER vector*/
SS SEND EVENT(MS ; SYSTEM PARTIAL ORDER)
Vsys(AS) MAX(Vsys(AS);Vsys(SS); (SYSTEM PARTIAL ORDER; SYSTEM TIMELINES))

/* is p now an orphan? */
if DT ORPHAN TEST(AU ; AS)

then roll back to maximal non-orphan state

/* was sender’s current user node an orphan? */
if DT ORPHAN TEST(USER(SS); BS)

then optionally inform the sender

/* did MS include a user message? */
if USER MESSAGE TEST(MS) then

SU SEND EVENT(USER MESSAGE(MS);USER PARTIAL ORDER)
/* accept it if the user send is not an orphan */
if DT ORPHAN TEST(SU ; BS)

then optionally inform the sender
else accept USER MESSAGE(MS)

Figure 4.29 In the distributed time protocol, a system process rolls itself back if
its user state has become an orphan, and then accepts a user message only if its
send is not an orphan. (We use � to indicate assignment by reference, and  to
indicate assignment by value.)
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Sending a User Message Suppose the user process at p decides to send a message MU to
the user process at q. The user process p packages MU along with Vusr(AU) (where AU is the user
send event) and routes it to the system process at p, who sends the package as a system message.

Sending a System Message When the system process at p sends a system message MS to
the system process at q, it sends along the timestamp Vsys(BS) (where BS the system send event).
The system process at p may optionally include the user timestamp vector of USER(BS).

Receiving Messages Figure 4.29 shows the procedure used for receiving messages. Suppose
the system process at p receives a system message MS sent by the system process at q. The system
process at p updates its current Vsys vector. If DT ORPHAN TEST indicates that p’s current user
node is an orphan, the system process at p performs rollback. If DT ORPHAN TEST indicates
that the user node corresponding to the send of MS is an orphan, the the system process at p may
optionally inform q. If MS contains a user message MU , then the system process at p applies
DT ORPHAN TEST to the send of MU . If this event is an orphan, p may optionally inform q; if
not, the system process at p lets the user process at p receive the message.

(Suppose the send of a user message MU user-followed from node AU at process r, but process
p’s current user node depends on BU at r, with AU and BU concurrent in the timetree. At least one
ofAU ,BU must have been rolled back, and the system timestamp onMU will carry that information
if the system process at p does not already know it. Thus, this protocol automatically enforces the
invariant that user states are always valid.)

Rollback A process rolls back in two situations: when it fails, and when it discovers it is an
orphan.

To roll back because of its own failure, a process restores the maximal recoverable state in its
live history.

To roll back because it discovers it is an orphan, a process must find a state in its live history that
is not an orphan—that is, a state whose Vusr timestamp still user-precedes the current Vsys vector.
Clearly the initial state is not an orphan, and clearly once a user state is an orphan, subsequent
user-states are orphans. Thus, for a given value of Vsys, there exists a unique user-maximal state in
the live history that is not an orphan.

How quickly the system recovers from rollback depends on how quickly the processes that are
(or may become) orphans learn of the rollback. Our protocol allows a range of alternatives, from
broadcasting system-only messages, to letting the news percolate via the system timestamp data
on user messages.
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4.3.4. Implementation Details

Implementing this protocol requires solving a number of problems:

� Building vector clocks for SYSTEM PARTIAL ORDER requires the ability to sort system states
in terms of system timelines.

� Building vector clocks for USER PARTIAL ORDER requires the ability to sort user states in
terms of user timetrees.

� Performing DT ORPHAN TEST requires the ability to map system states to user states (that
is, to perform USER).

This section provides one possible solution. We build a SYS NAME data structure for each system
node, a USR NAME data structure for each user node, and show how to perform the above functions
in terms of these data structures.

The System Timeline System states at a process occur in consecutive order, so a simple scalar
counter will suffice. The only complication arises because failed processes will not know how high
their system state counter was before failure.

Consequently, we have each process maintain two counters: INCARNATION COUNT tracks
the current incarnation of the process [StYe85], and SYS COUNT tracks the current node within
that incarnation. Startup initializes each counter to zero. The SYS COUNT counter is incremented
with each subsequent system node, unless the subsequent node is a rollback node, in which case
SYS COUNT resets to zero, and INCARNATION COUNT is incremented.

The SYS NAME for a node consists of three items: the INCARNATION COUNT value, the
SYS COUNT value, and the USR NAME of the node’s current user state. To sort two system nodes
at the same process, we perform lexicographic comparison of the

(INCARNATION COUNT; SYS COUNT)

pairs. To implement USER, we return the USR NAME entry.

The User Timetree Comparing nodes in user timetrees is more challenging than comparing
nodes in system timelines, because trees do not guarantee that two nodes can even be ordered. The
restriction that we must generate USR NAME values on-line further complicates matters.

We can begin by having each process maintain a USR COUNT variable, initially zero, indicating
the count of the current user node in the currently live history. The process increments USR COUNT
with each subsequent user node—except one obtained through rollback.
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The USR COUNT values suffice to sort two user nodes within the same live history. However,
we need to be able to determine if two nodes are in the same history—that is, if one is a descendent
of the other in the user timetree.

Conceptually, processes could track this information by maintaining the path from the root to
the current node in the user timetree. Label the nodes in the user timetree with their USR COUNT
value, and the edge into each nodeA with the INCARNATION COUNT value active when that node
was executed. The INCARNATION COUNT value is fixed until rollback occurs—then we create a
node for the new instance of restored state, and add it as a sibling of its earlier instance. The edge
from its parent to the new node is labeled with the new INCARNATION COUNT value.

The path for node A is just the sequence of pairs of node and edge labels

(N0;E0); :::; (Nk�1; Ek�1)

necessary to reachA from the root. Figure 4.30 shows the labelling on a timetree for a computation
that rolls back twice.

We make a couple of observations:

� Paths are sufficient to sort nodes. If A and B are two nodes in the user timetree, A precedes
B iff the path for A is a prefix of the path for B.

� Paths can be greatly condensed. The ith node label in a path is the integer i � 1. The ith
edge label in a path is the same as the label on edge i � 1, unless edge i leads to a node
restored by rollback. Unless the computation has rolled back to initial conditions, all paths
start with (0; 0).

Let A have USR COUNT = k. Then the path from the root to A has the form

(0; E0); :::; (k � 1; Ek�1)

We condense this path by deleting (i; Ei) if Ei = Ei�1, and deleting the leading pair if it is (0; 0).
The USR NAME of A consists of the USR COUNT value, and this condensed path. (Figure 4.30
shows this construction.)

To compare two user nodes in the timetree at a process, we check whether one node’s path is
a prefix of the other. Suppose k; P and k0; P 0 are the USR NAME values for nodes A and A0, and
k < k0. We determine if A�!A0 by removing from P 0 any pairs (m;Em) with m � k, and then
checking if the resulting list is identical to P .

The length of the condensed path in the USR NAME for node A is proportional to the number
of rollbacks in the path from the root to A. If failures occur, this will not be constant; thus, for the
implementation we sketched above, USER PARTIAL ORDER timestamp vectors will not be linear.
The size instead will be proportional to the number of rollbacks in the SYSTEM PARTIAL ORDER

past of the nodes in the vector.
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Figure 4.30 Path information allows sorting in user timetrees. In this sample
tree, we have labeled nodes with their USR COUNT value and edges with their
INCARNATION COUNT value. The USR NAME for A is 4; 6; for B is 3; f(1; 1)g, and
for C is 8; f(1;1); (5; 2)g. We can determine that A does not precede C, since the
condensed path for A does not equal f(1;1)g (the condensed path for C trimmed
for A). We can determine thatB precedesC, since the condensed path for B does
equal the condensed path for C, trimmed for B.

We can reduce the amortized length of USR NAME values by having processes try to avoid
transmitting redundant data. Suppose process p wants to send the USR NAME of A to process q.
Instead of sending the path from the root to A, process p can send the path from an intermediate
node B to A. If process q already knows the path from the root to B, then process q quickly
reconstructs the full path. If not, process q recognizes that it is missing data and blocks until it can
obtain it.

One example of this amortization technique is using a heuristic similar to Strom and Yemini’s
approach. Each time a process rolls back, it broadcasts the path to that rollback node along with its
new incarnation count. Subsequent USR NAME values consist solely of INCARNATION COUNT
and USR COUNT. (This heuristic introduces blocking into our protocol, but still maintains the
at-most-once lower bound on rollbacks at a process.) However, a wide range of other heuristics
exists for this technique. At one extreme, process p transmits only the end of the path; at the other
extreme, process p maintains the most recent system timestamp vector received from q, and uses
the q entry as the intermediate node for a name sent to q.

Commitment and garbage collection may integrate nicely with these amortization techniques,
since processes may maintain a log vector of the maximal known logged nodes at other processes.
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4.3.5. Piecewise Determinism and State Intervals

The presentation of our protocol allowed transitions between states to be nondeterministic. As
Section 4.1.5 observed, providing complete recoverability under this model requires logging every
transition. However, realistic distributed systems often guarantee that process execution is deter-
ministic between message receives; models for these systems focus on state intervals instead of
states. With a few modifications, our protocols adapt to this environment.

The framework of Section 2.2.1 can express piecewise determinism by restricting processes to
blocking receives—that is, if a process attempts to receive a message, it pauses until a message
is available. (This approach contrasts with more flexible polling or interrupting approaches.) We
require all other process transitions to be deterministic. A state interval is the period of deterministic
execution between successive receive events. We can build a simple time model to collect the
sequence of nodes between successive receives into a state interval node.

The coarser granularity of state intervals makes logging and replay easier. However, this
granularity also changes how rollback should affect the mapping between the system and user time
models. In the state model, when a process restores state AU , it establishes a sibling of AU in the
user timetree. However, this approach does not work for state intervals, since the state at other
processes may depend directly on AU , rather than indirectly through a subsequent state transition
node. Restoring a sibling of AU incorrectly makes the state at these processes orphans.

The solution to this problem is for rollback to restore state intervalAU itself, not a sibling. The
interval following the re-execution ofAU begins the new timetree branch. Consequently, the set of
system interval nodes that a user interval node represents is not necessarily a connected sequence.
This fact has some implications for Section 4.2.5. Our graphical shorthand no longer applies, since
Theorem 4.1 no longer holds; however, we can still establish a weaker version of Theorem 4.1.

Theorem 4.5 Suppose AU and BU are user state intervals. Let BS be any system
state interval corresponding to BU , but let AS be the minimal system state interval
corresponding to AU . If AU

�! BU then AS
�! BS .

Proof This result follows from induction on precedence paths. If AU and BU occur at the same
process, then the result easily follows. If AU sends a message that begins BU , then some system
state interval following or equaling AS must also precede BS .

For more general paths, choose an intermediate node CU with AU �! CU �!BU , and let CS

be the minimal system state node corresponding to CU . Establish the result for AU and CU , and
then for CU and BU .

Theorem 4.4 holds for state intervals, since we may substitute Theorem 4.5 for Theorem 4.1 in
its proof.
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4.3.6. Comparison to Related Work

Checkpointing As we note in Section 4.1.3, recovery protocols based on checkpointing restore
the system to a recovery line composed of local checkpoints. Organizing recovery lines into an
increasing sequence (e.g., [BCS84, Ci89]) may allow asynchronous recovery and may tolerate
concurrent failures (since one recovery line will clearly be earliest). More complex structures
of recovery lines require more synchronization upon recovery, but may allow some surviving
processes to proceed without rolling back. However, unless every adjusted rollback vector is a
recovery line, checkpointing-based recovery will force surviving processes to roll back computation
that does not depend on the computation lost due to failure

The distinction between checkpointing-based protocols and the message logging family some-
times blurs. (Johnson [Jo93] presents a protocol that is explicitly hybrid.) A checkpointing scheme
in which processes checkpoint every local state to stable storage before proceeding would be similar
to pessimistic rollback; a checkpointing scheme in which processes checkpoint every local state
to volatile storage (and eventually to stable storage) would be similar to optimistic rollback. Our
protocol adapts to this latter environment.

Ciuffoletti [Ci84] proposed a checkpointing protocol for synchronous communication: with
each message, processes use a heavy-weight scheme to exchange history and checkpoint infor-
mation between sender and receiver. Although some aspects of this scheme foreshadow the user
and system levels in our work, Ciuffoletti’s protocol is inherently synchronous, and the model of
synchronous communication does not apply to realistic distributed systems.

Optimistic Rollback Recovery Strom and Yemini [StYe85] initiated the area of optimistic
rollback recovery. They presented optimistic techniques for surviving processes to ensure complete
recoverability, and a rollback protocol6 that allows processes to recover mostly asynchronously,
although delayed transmission of incarnation start information may cause blocking. This protocol
implicitly uses partial order time to track dependency on failed computation (and, to our knowledge,
is the the earliest publication of the timestamp vector mechanism).

However, Strom and Yemini did not consider the flow of knowledge of rollback. They conse-
quently built an orphan test that is strictly weaker than ours. Their protocol never falsely concludes
that a non-orphan state is an orphan. However, their protocol will falsely conclude that some
orphan states are not orphans—even when the testing process could potentially know otherwise.
These false negatives make it possible for a single failure at one process to cause another process to
roll back an exponential number of times, since the unfortunate process never rolls back far enough
(until the last time). Sistla and Welch [SiWe89] claim an O(2n) upper bound for the worst case in
the Strom and Yemini protocol. We prove an 
(2n) lower bound by construction in Figures 4.31
through 4.33.

6In some sense, Merlin and Randell [MeRa78] foreshadowed Strom and Yemini’s work by presenting a protocol based
on a representation similar to Petri Nets; this protocol could be transformed and optimized into one similar to Strom
and Yemini’s.
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Johnson and Zwaenepoel [Jo89, JoZw90] developed a general model for optimistic rollback
recovery. They used state lattices from partial order time to show that a maximal recoverable
system state exists, and presented synchronized protocols to recover this state—even without
reliable message delivery. Sistla and Welch [Se89] presented two protocols for optimistic recovery
that avoid the exponential worst case by using synchronization during recovery; like Strom and
Yemini, Sistla and Welch require reliable FIFO message channels. Peterson and Kearns [PeKe93]
recently presented a recovery protocol using vector clocks that synchronizes during recovery by
passing tokens.

Summary Optimistic rollback protocols improve on other recovery methods by requiring lit-
tle synchronization during failure-free operation and by requiring only the theoretical minimum
amount of computation to be rolled back (only the computation that depends on the computation
lost due to failure). Our protocol improves on previous optimistic rollback protocols by providing
both completely asynchronous recovery and a worst-case upper bound of at most one rollback at
each process. The key to asynchronous optimistic rollback recovery is the realization that two
levels of partial order time abstraction are relevant: causal dependency on rolled-back events and
potential knowledge of rollbacks. Our distributed time framework allows us to explicitly track
these two levels of time. We improve even on the explicit “vector time” work of Peterson and
Kearns by truly using the full power of temporal abstraction.

p0

p1

M1 RnR1

pn

Cn

Mn

Figure 4.31 The failure of one process may lead to 
(2n) rollbacks using Strom
and Yemini’s protocol. This diagram shows how to construct computations exhibit-
ing this behavior. We build this computation inductively. This diagram shows the
hypothesis: the existence of a computation C

n
on n processes that accepts n user

messages M1; :::;Mn, then n system messages R1; :::;Rn announcing the rollback
of the send events of the user messages. We assume that the single failure at
process p0 triggers 2n�1 failures in computation Cn, and that 2n�1 of these failures
occur at process pn. Figure 4.32 shows how to build computation Cn+1 from two
copies of computation Cn. Figure 4.33 shows the base for n = 1.
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p1

p2

pn+1

Cn

Cn+1

M2...Mn+1 R2...Rn+1

M'1...M'n
R'1...R'n

M1 R1

Cn

Figure 4.32 This diagram shows how to build Cn+1 from two copies of Cn.
Computation Cn+1 receives n+ 1 user messages M1; :::;Mn+1, then receives n+ 1
system messages R1; :::;Rn+1 announcing the rollback of the user send events.
Process p1 receives M1, establishing a dependency, then sends n messages
M 0

1; :::;M
0

n
to the first copy of C

n
. This establishes dependency on p1, and transitive

dependency on the send event of M1. Process p1 then receives rollback announce-
ment R1, rolls back, and sends the announcements out to the first copy of Cn. The
n remaining user messagesM2; :::;Mn+1 are then fed directly to the second copy of
Cn, followed by the remaining rollback announcements. (We cannot repeat the p1

trick since p1 now knows about the initial failure. However, processes p2 through pn
only know about the failure at p1.) The assumption that Cn rolls back 2n � 1 times
puts the number of rollbacks in Cn+1 at 2(2n � 1) + 1 = 2n+1

� 1. The assumption
that the last process in Cn rolls back 2n�1 times gives 2(2n�1) = 2n rollbacks at pn+1

in Cn+1. Hence this construction establishes the induction.
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p0

p1

C1

Figure 4.33 This diagram shows the construction of C1, the
base for the inductive construction of Figure 4.32.

4.4. A General Framework

From a high level, a rollback protocol consists of the initiating process requesting that the system
roll back to some point, and each of the other processes receiving this request and cooperating.
This sketch raises some questions:

� How does the initiating process specify the state to be restored?

� How should the other processes react?

The protocol in Section 4.3 (as well as most of those in the literature) uses the current past-
current past (CP-CP) paradigm: the initiator chooses a state that it currently regards as being in
its past (that is, a state USER PARTIAL ORDER-preceding the decision to roll back), and the other
processes each choose a state from their current pasts.

The CP-CP paradigm has the advantage of being well-defined. Suppose the system is currently
consistent, and that the initiating process restores state A. Then the adjusted rollback vector R�(A)
(from USER PARTIAL ORDER) will be consistent and concurrent with restored A (and subsequent
computation). When recovery is complete, the virtual FAILURE FREE PARTIAL ORDER computa-
tion will consist of the portion of the initial failed computation preceding R�(A), with the revised
computation appended from there.

Phrasing rollback in terms of the CP-CP paradigm immediately suggests alternative paradigms:
letting the initiator and/or the other processes choose from their general pasts. Allowing the
initiating process to restore any state from its timetree permits the flexibility of rolling back rollback.
(The implementation sketch of Section 4.3.4 allows sorting of events in user-trees even if the trees
grow through general-past rollback.) We can construct scenarios where this might be useful. For
example, suppose process p has been performing some valuable computation in silence. The
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system assumes p has failed and restarts a new version—but when the old version speaks up, the
system decides it would prefer to discard the rollback and re-incorporate the old p.

As we have seen in Section 4.2.6, allowing both the initiator and the others to choose states
from their general pasts permits ambiguity. Implementing this approach in a distributed fashion
is difficult: processes must disjointly choose consistent paths. (Figure 4.34 shows an example.)
Constraining the other processes to choose from their current pasts (but consistently with the
general past state chosen by the initiator) also creates problems. For example, the other processes
may not be able to choose states that permit the initiator’s choice to exist. Figure 4.35 shows one
such situation.

One interesting avenue for future work lies in having the initiator choose not a state but a
predicate describing a system state it would like restored. (Of course, such an approach requires
that the predicate is satisfiable.)

Another interesting avenue is to implement general-past rollback by formally rolling back roll-
back. We might build a third level of partial order time to express the meta-recovery computation,
and use our earlier protocols to roll back the recovery computation that performed the original
rollback.
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p:

q:

r:

B

A

A'

C

C'

S

Figure 4.34 During rollback recovery, allowing processes other than the initiator
to choose from their general pasts creates difficulty. For example, suppose process
q decides to roll back B. The naively defined rollback pseudo-vector of B is the
set S. Since S touches multiple branches at processes p and r, allowing these
processes to restore states from their general pasts creates ambiguity: e.g., if
process p chooses its A branch and process r chooses its C 0 branch, then the
resulting system state will not be consistent. For system consistency, processes
p and r must both choose their primed branches or both choose their unprimed
branches.
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q:

A1

A2 A3

A'2 A'3

B1

B2 B3

B'2

A3

B4

Figure 4.35 During rollback recovery, allowing the initiator to choose from its
general past while constraining other processes to their current past creates diffi-
culty. For example, suppose the current virtual computation has frontier A0

3;B
0

2,
but process p wishes to restore the state A3. No state at process q in the
USER PARTIAL ORDER past of B0

2 is both consistent and concurrent with process
p’s new state.
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Chapter 5

Security and Privacy for Distributed
Time

5.1. Overview

Systems of time more general than the linear order of real time are central to solving application
problems in asynchronous distributed systems. Since protocols for these applications require
examining the underlying distributed time models, explicitly providing a distributed time service
simplifies and clarifies the task of protocol design.

However, while real time can be determined from an independent physical device, relations
such as partial order time cannot be determined in isolation. Tracking relations such as the
PARTIAL ORDER TIME model requires collecting and sharing information; tracking relations in
time models that dispense with transitivity or permit cycles involves even more local information.
Thus dealing with distributed time exposes protocols to security risks. Is the information a process
receives correct? Can shared information be used for dishonest purposes?

Encapsulating a system’s dealings with partial order time into a single time service provides an
arena to examine and resolve security and temporal issues for protocol design.

The proposal document [Sm91] for this thesis recognized the central role of partial order clocks,
cataloged some of the security and privacy risks, and gave the original presentation of the Signed
Vector Timestamp protocol, which protects against some of these risks. While this protocol prevents
dishonest processes from forging causal dependence on nodes at honest processes, it suffers from
some drawbacks:

� The Signed Vector Timestamp protocol cannot guarantee detection of causal paths touching
dishonest processes. Consequently, Signed Vectors cannot be used to build secure protocols
for problems such as distributed snapshots requiring accurate detection of non-precedence.

� The Signed Vector Timestamp protocol leaks private information, since vector entries are
publicly readable.

� The Signed Vector Timestamp protocol requires each process to check n signatures.



� The Signed Vector Timestamp protocol requires that the temporal relation being tracked
express all paths of information flow; thus the protocol does not extend to more general
relations (such as USER PARTIAL ORDER from Chapter 4).

This Chapter In this chapter, we use new developments in inexpensive tamper-proof hard-
ware to build the Sealed Vector Timestamp protocol, which provides stronger security and privacy
protection than any previous protocol. Sealed Vectors solve previously open problems by pre-
venting dishonest processes from forging dependence on any events, and by preventing dishonest
processes from denying dependence (if malicious processes cannot communicate covertly). (Even
with covert communication, Sealed Vectors provide some protection against denying dependence.)
Sealed Vectors also move beyond previous work by addressing privacy risks, and by providing
secure clocks for partial orders where information flow does not imply precedence.

The proposal document opened up this area of research. This chapter presents the most se-
cure protocols to date, and solves problems other researchers left open [ReGo93]. Section 5.2
discusses the inherent security and privacy risks for partial order time. Section 5.3 surveys
the defenses and presents our new protocol. Section 5.4 discusses our new protocol, and
Section 5.5 considers some directions for future research. For clarity of presentation, most of
this chapter considers the problems of tracking temporal relations in a Type 4 parallel pair such
as (PARTIAL ORDER TIME; TIMELINES). Chapter 6 will consider the implications of this work for
more general time models.

(Preliminaryversions of some this material appeared in earlier publications [SmTy91, SmTy94].)

5.2. Security and Privacy Attacks

Partial order time draws on data distributed throughout the system. Consequently, building partial
order clocks requires that processes share private information, and trust the private information
shared with them. This opens opportunities for Byzantine (malicious) processes to manipulate
the clock protocols, and consequently to manipulate application protocols built on these clock
protocols.

We sketch four such attacks on vector clocks.

Nonsense Attacks Malicious processes can send arbitrary vector entries. Since honest
processes will dutifully copy and pass on these values, a single act by a single malicious process
can destroy the validity of many vectors throughout the system. (Lamport total order clocks [La78]
are particularly vulnerable to these attacks.) Simple sanity checks fail to combat this problem.
Suppose vector entries are integers. If honest processes refuse to accept vector entries that have
increased more than N , a dishonest process can repeatedly increase an entry by N � 1. The next
honest process the victim talks to may then mistakenly identify the honest victim as corrupt.
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Malicious Backdating Malicious processes can selectively reduce vector entries, and thus
fool honest processes into thinking events happened earlier than they actually did. Consider the
application of trading commodities options on a public network. Figure 5.1 shows how Malicious
Backdating permits the crime of options frontrunning, which can occur when brokers may trade both
for themselves and for their clients. (One place where options frontrunning occurs is the Chicago
commodities exchange.) If a broker happens to buy a small quantity of shares for himself before
his client requests a large number of shares, then the broker will make a tidy sum. Consequently,
on receiving a client request, a dishonest broker has incentive to issue a request of his own that
appears not to have followed the client request. In an electronic exchange using vector clocks, a
malicious broker can do this by re-using an old vector on his purchase request.1

Malicious Postdating Malicious processes can selectively inflate vector entries, and thus fool
honest processes into thinking events happened later than they actually did. Figure 5.2 shows
how such Malicious Postdating permits insider trading. A malicious process can send a cohort
an advance copy of an announcement along with an advanced vector. The cohort can act on this

"The price
went up"

I'll use my
saved vector

B

"Buy 10
shares for

me"

"Buy 1000
shares for

Cathy"

I'll save
my vector

I want to buy a lot of orange
futures---I'll tell my broker

Commodities
Exchange

Bad Bob

Client Cathy
C

I'll sell my
shares now

C does not
precede B

Figure 5.1 Malicious processes can selectively backdate nodes. Here, Bob com-
mits the crime of options frontrunning by making his own purchase appear not to
follow his client’s request.

1In the physical Chicago exchange, the only defense the FBI has against options frontrunning is placing undercover
agents in the pit to look for unusually lucky brokers.
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data, but use the advanced vector to hide her headstart. (The cohort could even be unwitting; the
malicious process might frame her now, in order to spread the blame should the ruse be discovered
later.)

Compromised Privacy Malicious processes can correctly perform the vector clock protocol,
but use the vector entries to gain illicit knowledge. Figure 5.3 shows how this technique reveals
anonymous whistleblowers. Changes in subsequent timestamp vectors sent from Alice to Bob show
the identities of processes communicating with Alice.

5.3. Defenses

An ideal clock should report “A�!B” exactly when A precedes B, even if processes perform
malicious actions. An ideal clock should also confine private information. We can evaluate clock
protocols by this standard: against decreasing amounts of honesty, how well do clocks perform?

Many application protocols use forms of partial order time and vector clocks. A clock protocol
meeting this ideal transparently protects higher-level applications against the security and privacy
risks of Section 5.2.

I'll use a
future vector

Stock
Exchange

Bad Bob

Cathy

Advance
announce-

ment

B

C

I''d better
buy!

Must be OK,
since B

precedes C

Public
announce-

ment

Figure 5.2 Malicious processes can selectively postdate nodes. Here, Bob leaks
an advance copy of his public announcement to Cathy in such a way that allows
her to act on the data first, without appearing to have had a headstart.
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"I caught you!"

"You're
fired!"

The Cathy entry
in Alice's vector
has changed!

Manager Alice

Bad Bob

Honest Cathy

boss of

boss of Secret tip
about Bob

Figure 5.3 Malicious processes can exploit vector data for illicit purposes. Here,
Bob uses the timestamp vectors from Alice to learn the identity of whistleblower
Cathy.

5.3.1. Previous Work

If all processes are honest, then the process p entries in all vector timestamps originate at process p.
Our Signed Vector Timestamp protocol [SmTy91, ReGo93] builds on this observation by requiring
each process to digitally sign2 its entries in outgoing timestamp vectors. That is, the process p
entry in a timestamp vector now consists of the name of a node at process p, and a signature from p

on that name. This scheme prevents malicious processes from advancing vector entries belonging
to honest processes. If an event A occurs at an honest process and our time model expresses all
information flow paths, then possession of a signed entry forA is proof of dependence on A. With
Signed Vectors, A�!B when an honest clock reports “A�!B” (and A occurs at an honest
process). If all processes along a precedence path fromA toB are honest, the converse is also true:
an honest clock reports “A�!B” when A�!B.

However, Signed Vectors may fail if precedence paths go through malicious processes. For
example, a malicious process can use old values in the vector entries for honest processes, as
long as the malicious process has retained the matching signatures. Signed Vectors still permit
the Malicious Backdating and Malicious Postdating attacks. Signed Vectors do not even attempt
to address the Compromised Privacy attack. These problems migrate to higher-level applications.
Inability to detect non-precedence reliably can result in inefficiency (in optimistic rollback recovery,
processes may mistakenly conclude they depend on failed states) or complete incorrectness (in
global state protocols, processes may make incorrect decisions regarding “concurrent” events).

2Section 5.3.3 will discuss digital signatures in more detail.
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The security of the Signed Vector protocol depends on the fact that precedence paths and
information flow paths coincide. If precedence and information flow do not coincide, then Signed
Vectors do not provide secure clocks. For example, consider the partial order describing the virtual
computation arising after rollback with modified replay.

Three additional protocols exist for the special case of a process sorting the send events of two
messages it has received [ReGo93]. The Piggybacking protocol generalizes the vector timestamp
protocol by timestamping each event E with a signed record of all messages whose send events
precede E. Piggybacking (like Signed Vectors) ensures that if a clock reports “A�!B” and
A occurs at an honest process, then A�!B; Piggybacking further limits the possible actions
of a dishonest A process conspiring to make a clock falsely report “A�!B.” However, the
Piggybacking protocol (also like Signed Vectors) cannot reliably detect precedence paths touching
malicious processes, and does not address the issue of privacy. The other two protocols from
[ReGo93] alter the order in which messages are received. These protocols address the problem of
detecting the partial order by changing the partial order; further, they do not accurately report non-
precedence. The Conservative protocol requires that before sending a new message, a process wait
for acknowledgements of any previous messages it sent. The Causality Server protocol assumes
secure FIFO channels, and relies on a trusted central intermediary to impose a total order on all
message traffic.

5.3.2. The Sealed Vector Timestamp Protocol

The Sealed Vector Timestamp protocol has security properties that solve previously open problems:

� Our protocol accurately reports “A�!B” or “A =�!B,” in the presence of arbitrary mali-
cious processes (including the A process).

� Our protocol does not leak private information.

The Sealed Vector Timestamp protocol satisfies the ideal (assuming no covert channels), and
protects privacy of vector entries as well. Further, this protocol extends to time models where
information flow does not imply precedence. Table III compares our new protocol to previous
work.

Overview Our new protocol rests on the the technology of secure coprocessors [TyYe93, Yee94]:
inexpensive physically secure devices with a CPU, ROM, and non-volatile RAM. A host processor
interacts with its secure coprocessor through formal I/O channels. Any other method of determining
the internal state of the coprocessor—including physically penetrating the hardware—results in the
erasing of RAM and CPU registers. Secure coprocessors are being deployed rapidly; commercial
secure coprocessor products are available from IBM (�ABYSS [Wein87], Citadel [WWAP91]),
and have been announced by other vendors including National Semiconductor [Va94], Semaphore,
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path from A to
B is honest

A is honest
no one (but you)

is honest

“A�!B”
=) A�!B

Signed, PB,
Sealed

Signed, PB,
Sealed

Sealed

“A�!B”
(= A�!B

Signed, PB,
Sealed

Sealed Sealed

“A�!B”
() A�!B

Signed, PB,
Sealed

Sealed Sealed

privacy
of data Sealed Sealed Sealed

Table III This table compares how, against decreasing amounts of honesty, par-
tial order clock protocols meet the clock ideal: reporting “A�!B” () A�!B
while protecting the privacy of vector entries. Signed denotes the Signed Vector
Timestamp protocol; Sealed denotes the Sealed Vector Timestamp protocol; PB
denotes the Piggybacking protocol.

Telequip, and Wave Systems. Various protection technologies exist. For example, IBM wraps
circuit boards in nichrome wire and then seals them with an epoxy mixture chemically stronger than
the wire. A detection circuit monitors the resistance of this wire wrapping; penetration attempts
will disrupt the wire wrapping and alter the resistance (e.g., by shorting the wire or by cutting it).

Secure coprocessors only possess limited amounts of power. We cannot secure an entire
workstation—even if we could, we could not secure the user. Bootstrapping from this small
amount of physical security into full protocol security raises subtle issues. For example, malicious
processes might attempt to bypass coprocessors, or to attack communication lines. (Recent work
[TyYe93, Yee94] shows how to protect against these attacks.)

In the Sealed Vector Timestamp protocol, each process runs on a host processor with a secure
coprocessor. The secure coprocessor creates timestamp vectors and seals them so that processes
cannot read them. Although processes can store and exchange timestamps, they need to query a
secure coprocessor in order to compare them.

The security of Sealed Vectors follows from a number of properties:

� No party (except a secure coprocessor) can obtain information about the contents of any
vector entry from a sealed timestamp, even if the party knows the other entries.

� All processes must route incoming and outgoing messages through secure coprocessors.

� A secure coprocessor must be able to verify that a timestamp was properly sealed by another
secure coprocessor.
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� Given a sealed timestamp and an event, a secure coprocessor must be able to verify that they
match.

5.3.3. Cryptographic Tools

We build a timestamp scheme meeting this description using two common cryptographic tools:
digital signatures and bit-secure public key cryptography [DiHe76, RSA78]. A digital signature is
a function S from a value space to a signature space meeting the following conditions:

� Given a value v and a signature s, any party can determine whether s is a valid signature of
v: whether S(v) = s.

� However, it is intractable for any party (except the privileged signing party) to take a set of
value-signature pairs and produce a pair not in this set.

Public key cryptography consists of a function E (from the plaintext space to the cipherspace)
and a function D (from the cipherspace to the plaintext space) meeting the following conditions:

� For any plaintext value v, any party can calculate E(v).

� For any plaintext value v, D(E(v)) = v.

� It is intractable for any party (except for the privileged decrypting party) to take a set of
plaintext-ciphertext pairs and produce a pair not in this set.

Standard public key cryptography requires only that inverting E is difficult (without the priv-
ilege of knowing D). Bit-secure public key cryptography requires an additional level of security.
Roughly speaking, from a given ciphertext, a malicious process should gain no information about
the plaintext that it did not know a priori. ([Gold89] presents formal definitions.) Some popular
cryptosystems (like [Ra79] and [RSA78]) are known to leak number-theoretic properties of the
plaintexts and thus fail to meet this condition [ACGS88, Li81]. For the Sealed Vector protocol
to attain its full security potential, it should be implemented using strong cryptosystems such as
[BlGo84] or [GoMi82].

Operation We use cryptography and signatures both on messages (Emsg;Dmsg and Smsg) and
on timestamps (Etst;Dtst and Stst).3 Each process p has a name, which we denote as p. Each
process p runs on a host processor with a secure coprocessor, which we denote as pSC. Each secure
coprocessor knows that name of its process.

3This presentation assumes global schemes for all processes. In practice, giving each process its own key scheme adds
flexibility and another level of security; Section 5.4.2 discusses these issues.
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Let P be the set of process names, let E be the set of event names, let V be the set of possible
timestamp vectors, and let M be the set of possible message texts. Let Gmsg and Gtst be the
signatures spaces for messages and timestamps, respectively; let Cmsg and Ctst be the cipherspaces
for messages and timestamps. Our signature and encryption functions act according to these rules:

Stst : E � V 7! Gtst

Etst : E � V � Gtst 7! Ctst

Smsg : P � P �M�Ctst 7! Gmsg

Emsg : P � P �M� Ctst � Gmsg 7! Cmsg

The functions Emsg and Etst are public. Each secure coprocessor pSC has the ability to calculate
Dmsg,Dtst, Smsg, and Stst; the coprocessor pSC also maintains the current process p timestamp vector,
which we denote as Vp.

Obtaining Timestamps Suppose process p wants to obtain a timestamp for its current event
A. Process p submits the request to pSC, which obtains V(A) by incrementing the p entry of Vp.
The coprocessor pSC then returns the sealed timestamp:

T (A) = Etst
�
A;V(A); Stst(A;V(A))

�

Figure 5.4 illustrates this structure.

The signature plays two roles here. First, it proves that this vector belongs to this event.
Secondly, its presence inside the plaintext protects against a malicious process guessing the value
of the vector, and verifying this guess using Etst.

name of event vector

Stst

Etst

signature of timestamp

Figure 5.4 A sealed timestamp consists of the encryption of three items: the
name of an event, its timestamp vector, and a signature on this pair. The signature
certifies that this vector belongs to this event, and also protects against guessing
the plaintext: verifying a guessed vector requires guessing the correct signature.
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Comparing Timestamps When process p wants to compare events A and B, it sends T (A)
and T (B) to pSC. The coprocessor applies Dtst to extract the event names, vectors and signatures.
If the signatures are valid, the coprocessor then compares V(A) and V(B), and reports the result:
either “A�!B,” “B �!A” or “A = !B.”

Sending Messages Suppose process p wants to execute a send event S, sending a message
with text M to process q. Process p submits M and q to the secure coprocessor pSC, which
calculates the timestamp4 T (S), and returns the ciphertext

M 0 = Emsg
�
p; q;M; T (S); Smsg(p; q;M; T (S))

�

Figure 5.5 illustrates this structure. Process p then transmits the message.

A malicious process might still be able to suppress this messageM . (For example, in Figure 5.1,
Bad Bob could have his purchase order sealed, but only introduce it into the network if he receives
an order from his client.) The secure coprocessor pSC can protect against loss by requiring a
signed acknowledgement from qSC. If the acknowledgement does not arrive, pSC can retransmit
the message—perhaps incrementally, as part of other sealed packets. A malicious process can
successfully suppress a message only by permanently partitioning itself from the network.

Receiving Messages Suppose a process p receives a ciphertext message M 0. To read M 0,
process p needs to send it to the secure coprocessor pSC. The coprocessor applies Dmsg to obtain
the source and destination process, the plaintext M , the timestamp T (S) of the send event, and
the Smsg signature of this data. The coprocessor verifies that the Smsg signature is valid and that
p is the intended destination process. The coprocessor then applies Dtst to the timestamp, checks
its signature, and obtains the vector V(S). The coprocessor then performs the vector timestamp

source message textdestination timestamp
of send event

signature
of message

Emsg

Smsg

Figure 5.5 The message ciphertext encrypts the message information (source
and destination processes, message text), along with the sealed timestamp of the
send and a signature of these values.

4Since messages are tagged with a signature before encrypting, using the unsealed timestamp V(S) would suffice here.
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protocol: replacing its current vector Vp with the entry-wise maximum of Vp and V(S). Finally,
pSC returns to p the name of the source process, the plaintext M , and (optionally) the timestamp
T (S).

5.4. Discussion

5.4.1. Results

We make some preliminary observations:

� The coprocessors carry out the vector timestamp protocol. This follows directly
from the description.

� Only secure coprocessors can unseal messages and timestamps. A process
may be able to guess some or all of the entries of a given timestamp vector. If timestamps
were merely vectors encrypted with a public key, then a process could guess a possible
vector, encrypt the guess, and compare the result to the ciphertext. However, in our scheme,
timestamps are the encryption of a vector along with a signature of that vector. Without
knowing the signature function, a process cannot verify that V is the vector in the timestamp
Etst(A;V; Stst(A;V )). Timestamps are truly sealed.

Similarly, with high probability a process cannot decrypt an encrypted message by making
some lucky guesses, since that would require breaking the message signature Smsg.

� Only the secure coprocessor at the source process may seal messages.
Messages arriving at an honest process will be routed to the secure coprocessor, which will
ignore messages that do not include both a valid timestamp and a valid signature on the
message and the timestamp together.

� Only the secure coprocessor at the intended destination process may unseal
a message. Sealed messages must be decrypted to be intelligible. The receiving process
must consult its secure coprocessor, since the encrypted message includes the name of the
intended destination process. (However, a malicious process can receive and discard an
encrypted message without consulting its coprocessor. Section 5.4.2 considers this avenue.)

Together, these assertions imply the following result:

Theorem 5.1 Suppose the following are true statements:

� All messages to or from honest processes are routed through through secure
coprocessors.

� The encryption and signature functions are not breakable.

123



� The integrity of the secure coprocessors is not compromised.

Then Sealed Vectors guarantee the following properties:

� If a clock reports “A�!B” then A�!B.

� If node A precedes node B along a path where each message edge touches an
honest process, then clocks will report “A�!B.”

Proof Let � be the PARTIAL ORDER TIME graph of this computation. To construct a graph  that
reflects the computation perceived by the secure coprocessors, we perform these steps:

1. Copy the entire timeline belonging to each honest process.

2. For each message edge incident to an honest process, copy the edge, and the node at the other
end (if it is not already in ).

3. Add each node that a dishonest process registers with its coprocessor.

4. At each dishonest process, connect the  nodes in their � sequence.

A coprocessor reports “A�!B” in � iff A�!B in .

Corollary 5.2 Suppose that, in addition to the hypothesis of Theorem 5.1, mali-
cious processes cannot communicate without using the sealed message protocol. Then
Sealed Vectors guarantee that clocks report “A�!B” iff A�!B.

Proof Construct  as in the proof of Theorem 5.1, only add all message edges and their incident
nodes (if they are not already in ).

This protocol improves on prior work by offering security advantages:

� Complete Results If a clock reports “A�!B,” then A�!B. If a clock reports
“A = !B” (and malicious processes cannot communicate using covert channels) then
A = !B.

� No Spoofing Even with covert channels, a malicious process cannot deny having received
a message from an honest process.

� Privacy The private information shared in timestamps is confined to the secure coproces-
sors.

� Wider Application The Sealed Vector Timestamp protocol does not require that the
partial order directly arise from information flow.
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In particular, Sealed Vectors protect against all the attacks catalogued in Section 5.2, and provide
secure clocks for scenarios such as the partial order arising after rollback with modified replay.

Sealed Vectors also improve on Signed Vectors in terms of scalability: the number of decryp-
tions required on incoming messages decreases from linear to constant.

5.4.2. Implicit Assumptions

This chapter has made several implicit assumptions open to challenge. We discuss these challenges.

No Covert Channels Precedence corresponds to paths through the PARTIAL ORDER TIME

graph. The Sealed Vector protocol prevents a single malicious process from masking its presence
in such paths. However, if malicious processes can communicate without using official (that is,
coprocessor-sealed) messages, then they can cooperatively hide their presence in paths—since
communication outside of the coprocessors is invisible to the clocks.

One approach to this problem is to make such communication very difficult: for example,
by having the secure coprocessors handle net traffic (and perhaps snoop on Ethernet packets),
malicious processes would be forced to communicate outside the network.

Covert communication is also possible using in-band signaling, since it may be possible to
extract information from sealed messages without consulting secure coprocessors. For example,
a malicious process might draw conclusions from the existence of the message, the length of the
message (real encryption usually breaks long text into blocks and encrypts each block separately)
or the frequency of multiple messages.

Security of Coprocessors The protocol depends on the physical security of the coprocessors.
In practice, secure coprocessors are extremely difficult to penetrate. However, as with any security
mechanism (physical or computational), it may be possible to compromise the system if the attacker
is willing to pay tremendous amounts of money. (For a detailed analysis of the cost, see [Wein91].)
What do we do if the exception case occurs—if a coprocessor is compromised? One way to limit
the damage is to use separate Smsg, Stst andEmsg functions for each process. This technique prevents
a compromised coprocessor from impersonating someone else or performing message decryption
for someone else. Using separateEtst functions prevents the compromised coprocessor from doing
comparisons for someone else, but requires re-encrypting forwarded timestamps. (Section 5.5
considers some further defenses.)

Validity of Keys Giving each coprocessor its own keys raises the issue of key management: a
new coprocessor must somehow announce its public keys. A straightforward technique to prevent
dishonest processes from impersonating a “new coprocessor” is to have new coprocessors obtain
certificates, signed by a universally trusted agent, listing their identity and public keys.
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5.5. Future Work

Limiting Penetration Damage What can we do if the integrity of a coprocessor is compro-
mised? Penetration exposes any data that a coprocessor has saved. However, an uncompromised
coprocessor can securely forget data. This observation suggests an alternative Give-and-Forget
timestamping scheme. Suppose process p at event S sends a message to process q, who receives
it at event R. Process p generates a key pair K1;S , K2;S . Process p signs a certificate asserting
that K2;S is its public key for event S, and sends this certificate along with the private key K1;S

to process q with the message. Process q uses the private key K1;S to encrypt an identifier for R
and then erases the key. Process q then has a universally verifiable certificate that it knew about
S when R occurred. However, examining this certificate allows no one—not even process q—to
forge a new certificate of knowledge of S without the cooperation of process p.

This technique allows a secure coprocessor to generate proof-of-timestamp certificates showing
the last message received from each uncompromised process. Should the coprocessor later be
compromised, it cannot produce new certificates for these messages. To prevent a compromised
coprocessor from rolling back timestamp entries, we can require all coprocessors to use these
proof-of-timestamp certificates to prove the validity of each entry in their timestamp vectors.

Other approaches for pre-compromised coprocessors to limit the forging power of their com-
promised versions include the Distributed Trust and Digital Timestamping techniques of [BHS92,
HaSt91], as well using data on acknowledgement packets.

Improving Performance A performance problem with vector clocks results from size: time-
stamps have n entries; comparing timestamps requires n comparisons. Charron-Bost’s result
[CB91] that partial order timestamps must be linear suggests two approaches to improving per-
formance: implementing vector clocks more carefully (to reduce the actual data transmitted), and
trading timestamp size for comparison time.

Singhal and Kshemkalyani [SiKs90] present a vector clock implementation where processes
refrain from transmitting redundant data in vectors. Integrating this technique with Sealed Vectors
would yield increased efficiency.

A more generalized approach would be to give processes more latitude in choosing which
entries to transmit and which to withhold. Some entries in timestamp vectors might be marked
with flags indicating that that value is merely a lower bound. This lower bound may suffice for many
comparisons; if it does not, a secure coprocessor would need to consult other secure coprocessors
to obtain the missing data. It would be interesting to develop good heuristics for deciding which
entries to withhold and for determining when the expense of a “miss” outweighs the benefits of
withholding.

Another interesting approach would be to implement vector clock protocol in a more centralized
fashion. For the extreme case, suppose we had a single trusted logging site. When a process receives
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a message, its secure coprocessor sends a note to the logging site indicating the sending process,
the receiving process, and the local indices of the send and receive events. The logging site then
has sufficient information to maintain the timestamp vectors for each process. We obtain constant
size timestamp data on messages—at the price of doubling the number of messages, and having
processes need to consult a remote site to perform comparisons. This approach still requires
coprocessor sealing in order to force a process not only to acknowledge receiving a message, but
also to file a logging note. (This approach differs from the Causality Server protocol [ReGo93] in
that messages are not routed through an an intermediary, but logged after the fact, that no FIFO
nor secure channel assumptions are needed, and that the logging site protocol preserves the actual
partial order, not just a consistent total order.)

Yet another technique (e.g., [ACGS91]) is to use vector clocks to track a coarser partial
order—trading timestamp size for false positives in precedence detection. However, adapting
these techniques (or the linear timestamping techniques of [BHS92, HaSt91]) creates the problem
of proving the absence of a precedence path. Developing a hierarchical approach—to indicate the
most “likely” precedence path, and then verify its correctness—is one path of future research.

General Confinement Models Another area for exploration is the use of more general con-
finement models. Coprocessor sealing provides control over the information a timestamp provides
to a process. This control may provide more benefits than just suppressing vector entries—in
particular, it may allow for anonymous or hidden causality [Gr75].
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Chapter 6

Secure Distributed Time for Secure
Distributed Protocols

6.1. Overview

Chapters 2 through 4 showed how framing application problems in terms of distributed time pro-
vides a deeper understanding of the problems, and allows the development of flexible and general
protocols that access the distributed time structure by querying clock primitives. Separating the
clocks from the higher-level protocols in this fashion allows us to change the clock implementations
transparently to the higher-level protocols. However, the popular timestamp vector implementation
of partial order clocks suffers from security and privacy risks, as Chapter 5 discussed.

These security and privacy risks for timestamp vectors create problems for higher-level proto-
cols that use these clock implementations. For example, malicious clients can exploit the security
and privacy risks of timestamp vectors in order to subvert the immediate ordered service protocol
of Section 2.5.2. Standard attacks on timestamp vectors translate to higher-level protocol attacks:

� Backdating A malicious process p could ensure that its requests receive undue priority
by backdating the timestamp vectors on them.

� Postdating Alternatively, a malicious process p could ensure that its requests always
precede those from an honest process q by sending postdated vectors on its messages to q.

� Privacy A malicious process could use the timestamp vectors sent as part of the protocol
to spy on the activity of other processes.

Chapter 5 considered two approaches to provide secure clocks for the PARTIAL ORDER TIME

model: the Signed Vector Timestamp protocol and the Sealed Vector Timestamp protocol. Using
the security of these clocks to provide security for higher-level application protocols (such as those
presented in Chapters 2 through 4) raises two critical issues:

� Do the security properties of the clocks protect the application protocols against clock-based
attacks?



� Do the security properties of the clocks hold for the higher-level time models considered by
some application protocols?

For example, the Signed Vector Timestamp protocol protects immediate ordered service only
against some of the postdating risks—with Signed Vectors, a malicious process must confine its
postdating to entries belonging to processes whose keys it knows. The Signed Vector Timestamp
protocol provides even less protection if (due to failure and recovery) the partial order model is
flow-virtual. On the other hand, the Sealed Vector Timestamp protocol eliminates all three risks.

Chapter 6 examines these issues of security and privacy for higher-level protocols and time
models. Section 6.2 explores the protection that our secure vector protocols provide for the time
models considered in this thesis. Section 6.3 and Section 6.4 consider the security implications for
the application problems of distributed snapshots and optimistic rollback recovery, respectively.

6.2. Security, Timestamps, and Time Models

Section 6.2.1 discusses the general paradigm behind the clock schemes proposed in this thesis.
Section 6.2.2 discusses some attacks permitted by this family. Section 6.2.3 discusses how the
defenses proposed in Chapter 5 fare against these attacks, for various types of time models.

6.2.1. Timestamp Clocks

The clock protocols discussed in this thesis are based on timestamps: processes generate a time-
stamp associated with an event or state A, and this timestamp serves to sort A relative to other
events or states.

Such timestamp clocks are easily implemented for Type 4 parallel pairs—pairs that are con-
sistent, independent, strongly monotonic and flow-supported. The ease of implementation follows
from these properties:

� Strong monotonicity implies the relation between two nodes is established forever once they
come into existence.

� Flow-support implies that a process has the potential to know all information necessary to
create a timestamp for a node when the node comes into existence.

For example, consider generating the timestamp vector for a node A in the PARTIAL ORDER TIME

model. The timestamp vector V(A) is well-defined when A occurs, due to strong monotonicity:
when A occurs, all the nodes that precede A have occurred, and their precedence is established.
The timestamp vector V(A) can be created when A occurs, due to flow-support: information paths
exist from every node in V(A) to A.
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Timestamp clocks can also be implemented for some Type 2 parallel pairs—pairs that are only
guaranteed to be consistent and independent. These pairs lack the convenient properties of Type 4,
but we may compensate:

� Weak monotonicity implies that when a precedence relation is established between two nodes,
the relation holds forever. Consequently, weak monotonicity coupled with a way to determine
when all such relations have been established for a node still permits a timestamping scheme.

� Strictly speaking, only the agents that create timestamps require information flow. These
agents do not need to be processes—for example, the Sealed Vector Timestamp protocol
splits clocks from processes.

Before we can discuss example implementations for time models other than Type 4 parallel
pairs, we need machinery to separate clock agents (and their experience) from process agents. The
tools of distributed time provide an easy way to express this notion: we can build a Type 4 parallel
pair

(CLOCK PARTIAL ORDER; CLOCK TIMELINES)

to express the computational activity and information flow of the clock agents. We consider various
pairs:

� For the PARTIAL ORDER TIME model with the processes themselves implementing clocks,
the clock pair above is the same as (PARTIAL ORDER TIME; TIMELINES).

� For the SYSTEM PARTIAL ORDER and USER PARTIAL ORDER models, if processes them-
selves implement clocks, then the clock pair is the same as

(SYSTEM PARTIAL ORDER; SYSTEM TIMELINES)

If processes use separate clock processors, then the clock pair is the partial order parallel pair
obtained by treating clocks as separate processes.

Using (CLOCK PARTIAL ORDER; CLOCK TIMELINES) clarifies the discussion of when we can
build timestamp clocks for a weakly monotonic modelM. Basically, we use the clock computation
to simulate strong monotonicity and flow-support. We restate the earlier conditions in these terms:

� Simulated Strong Monotonicity Clocks in CLOCK PARTIAL ORDER generate time-
stamps for nodes A and B inM only when the relation between A and B is fixed.

� Simulated Flow-Support If a precedence path exists from node A to node B in
M(CUR GRAPH), then a precedence path exists from A to the clock node that generates a
timestamp for B.
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For example, consider generating timestamp vectors for the STRONG PARTIAL ORDER model. A
send event S depends on the corresponding receive eventR, only no information path exists fromR
to S. As a result, when a node A occurs, the information necessary to create V(A) is not available,
and in fact V(A) may not even be well-defined. However, a clock coprocessor could keep track of
the set X of receive events it depends on but does not know about, and generate for A an interim
timestamp consisting of a vector V and this set X . This interim timestamp satisfies the invariant:

V(A) =

 G
R2X

V(R)

!
t V

Independently, the clock coprocessors share interim timestamp information for receive events that
have occurred, and transform interim timestamps to reflect this new information. If the set in an
interim timestamp for node A becomes empty at clock node BC at process p, then all nodes that
will ever precede A have occurred, and information paths exist to BC from each of these nodes.
The clock at process p may then generate the full timestamp vector V(A).

Precedence Horizons The timestamp vector protocols use timestamps that specify precedence
horizons: the timestamp vector for nodeA consists of the names of the process-maximal nodes that
precede or equalA. Such precedence horizons function as clocks for parallel pairs where processes
can sort events in the other process’s local time structures. As Chapter 4 described, this approach
also extends to restricted subgraphs of nonlinear pairs (e.g., when a well-defined valid computation
emerges from USER PARTIAL ORDER).

6.2.2. Attacks

Clocks based on precedence horizons have three distinct tasks:

� Generating Local Tokens A clock at a process must generate a local token for each of
its nodes. This token may an integer or a more complex identifier, and may include items
such as signatures.

� Assembling Timestamps A clock at a process must assemble sets of these local tokens
into a global timestamp.

� Disassembling Timestamps A clock at a process must disassemble a global timestamp
into local tokens, some of which may be re-used when assembling subsequent timestamps.

These tasks generate the following security concerns:

� Is a given local token correct? Suppose the clock at process q has a token for node A at
process p. Did node A actually occur? Is this the correct token for A? Should the clock at q
even possess this data?

132



� Is the assembly correct? Clocks are supposed to follow some set of specified rules when
assembling timestamps. Were these rules followed?

� Is the information released by disassembling a timestamp confined to appropriate agents?

These concerns create opportunities for malicious agents to attack clock protocols. Chapter 5
discussed three such attacks. Compromised privacy may occur when agents release data from
disassembled timestamps. Violating the assembly rules (and creating fraudulent tokens) leads to
backdating and postdating attacks; these violations can also lead to concurrent-dating attacks in
which some vector entries are advanced and others reduced.

The PARTIAL ORDER TIME model alone provides a single partial order with straightline graphs
at processes. Departing from this comfortable world permits two additional attacks:

� Level-Mixing When we deal with multiple levels of time without adequately distinguishing
the levels, a malicious agent may assemble timestamps for one level using tokens for another.

� Branch-Mixing In nonlinear pairs such as USER PARTIAL ORDER, a malicious agent
may assemble timestamps using at least one token from an incorrect process branch. Such
“sidedating” places an event in a computation different from the one actually occurring.

6.2.3. Defenses

Signed Vectors The Signed Vector Timestamp protocol requires processes to implement their
own clocks, and addresses the security concerns of Section 6.2.2 by using cryptography to verify
the identity of the process creating the local tokens. Each process has its own private key; multiple
levels of processes presumably have distinct private keys.

This approach raises two significant problems:

� The protocol restricts only identity, not time.

� The security of the protocol rests on an implicit assumption that the time model is not
flow-virtual: that information flow implies precedence.

We now consider these problems in more detail. The Signed Vector Timestamp protocol leaves
processes completely free to create arbitrary local tokens. This flaw permits the postdating attacks:
a malicious process p can advance its own local counter, sign it, and pass this along to a process
q as the “real” value. Processes are also free to create arbitrary global timestamps from the local
tokens available. This flaw permits the backdating attacks on PARTIAL ORDER TIME: a malicious
process p can assemble an arbitrary timestamp from the signed entries it possesses.

The Signed Vector Timestamp protocol also implicitly assumes that, barring signature compro-
mise, possession of a signed entry for a node implies precedence from that node. Suppose that node
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A occurs at an honest process p, that a process q at clock nodeBC generates a timestamp for nodeB,
and that this timestamp includes a signed entry from node A. For Signed Vectors, this is sufficient
evidence to conclude that A�!B in the higher-level model M. However, all we are justified
in concluding is that AC �!BC in the CLOCK PARTIAL ORDER, where AC was the timestamp
generation event for A. In flow-virtual time models (such as USER PARTIAL ORDER), precedence
in CLOCK PARTIAL ORDER will not imply precedence in the higher-levelM. In these cases, Signed
Vectors permit branch-mixing attacks. (Figure 6.1 shows a simple example.) Branch-mixing may
even masquerade as the postdating of the entries belonging to honest processes.

Sealed Vectors Using secure coprocessors to implement clocks allows reliable location of
tokens in both space and time. Using secure coprocessors also ensures that no rules are broken in
the assembly and disassembly of global timestamps, since we can trust the secure coprocessor at
any process to track a local counter and (barring communication subversion) assemble the correct
pieces into timestamps. Secure coprocessors could also be used to track relations in a modelM
more general than the underlying SYSTEM PARTIAL ORDER model, if the model is well-defined in
terms of the SYSTEM PARTIAL ORDER. Thus the security properties of Sealed Vectors extend to
models such as the USER PARTIAL ORDER and the STRONG PARTIAL ORDER.

p:

q:

r:

B1 B2 B3 B4

A1 A2 A4 A5A3 A6

C1

Figure 6.1 The Signed Vector Timestamp protocol fails for flow-virtual time mod-
els, since processes may retain signed entries from previous lifetimes. Suppose
process p has rolled back for reasons other than local failure: either voluntarily,
or in response to failure at another process. Process p at node A6 can forge
USER PARTIAL ORDER dependence on nodes B1 through B3 at process q and on
node C1 at process r, because an information path exists from A4 to A6. Even
giving each process incarnation its own private key does not remove this problem.
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By also functioning as reliable oracles at processes, secure coprocessors make new techniques
possible. For example, the secure coprocessor at process p will truthfully list a complete set of
nodes at p satisfying some particular property (provided that the nodes have been registered with
the coprocessor, and that the property is something that the coprocessor has sufficient information
to evaluate).

6.3. Distributed Snapshots

Chapter 3 discussed the problem of taking distributed snapshots in terms of the distributed time
framework. This discussion took two paths: using clocks for partial order time to build Round
Robin protocols assembling global states, and using such snapshot protocols with more general
time models in order to capture global states with more specific properties. Their use of distributed
time clocks makes these protocols susceptible to the security and privacy risks—and defenses—of
Chapter 5.

This section considers these issues. Section 6.3.1 considers active attacks, and Section 6.3.2
considers passive ones. Section 6.3.3 discusses the security and privacy implications for the
distributed time snapshot protocols using more abstract time models.

6.3.1. Active Attacks

Distributed snapshot protocols based on timestamp vectors inherit their security risks. Since taking
a snapshot requires more than just sorting timestamps, these protocols are liable to some additional
risks as well. That is, taking a distributed snapshot involves two somewhat orthogonal tasks:

� assembling a timeslice, and

� obtaining a description of the activity on this timeslice.

A malicious process may actively attack both tasks.

Attacking Timeslice Assembly The basic Round Robin snapshot protocol of Section 3.2.1
assembles a maximal set of nodes mutually concurrent in the transitive global time model. This
basic protocol organizes processes into a directed cycle. Suppose process Pk receives a set Sk�1

of mutually concurrent nodes from P1 through Pk�1. Process Pk is supposed to add one of its own
nodes to form mutually concurrent set Sk; however, process Pk may act instead with malice:

� Backdating Process Pk could forge a backdated timestamp for some node A, and conse-
quently include A in Sk even if A follows some B 2 Sk�1.
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� Postdating Likewise, process Pk could forge a postdated timestamp for some node A,
and consequently include A in Sk even if A precedes some B 2 Sk�1.

This protocol gives each process freedom in selecting concurrent nodes. This freedom makes
concurrency detection less robust against attack. The Signed Vector Timestamp protocol does not
help: a malicious process Pk can select arbitrary signed entries from the timestamps on the nodes
in set Sk�1.

The Reduced Round Robin snapshot protocols of Section 3.2.2 achieve better performance
than this basic protocol; this improvement exploits shortcuts: using concurrency information that
timestamp and rollback vectors already contain. These shortcuts sometimes make concurrency
detection more resilient. For example, suppose a malicious process p fraudulently wishes to insert
a node A into a snapshot obtained from the adjusted timestamp vector V�(B) of node B at process
q. Since process q already “knows” the identity of A (from the timestamp vector for B), process
p must manipulate vectors not only before q asks for the snapshot, but also before B even occurs.
Process pmust forge the right sequence of outgoing messages—and must hope that other processes
do not send messages that dispel the illusion that the node preceding A at p is the p-maximal node
preceding B. On the other hand, taking a snapshot using an adjusted rollback vector R�(B) does
not provide as much resilience, since the potential delay between B and R�(B) gives malicious
processes more flexibility.

Attacking Descriptions Taking a snapshot usually entails more than just collecting a set of
mutually concurrent timestamps; we also want a description of the activity associated with each
of these timestamps. This requirement creates another avenue of attack: a malicious process may
attack a snapshot protocol by using legitimate timestamps but lying about the nodes and activity that
belong to the timestamps. For example, in the Reduced Round Robin snapshot protocol, an honest
process q might ask a malicious process p for the node following the one names by the p entry in
V(B), for a node B at process q. Protocols such as Signed Vectors keep the timestamp separate
from the node name—so process p can reply to q with the proper timestamp for the requested node,
but may forge the name and description of the node itself.

Defenses Protecting against these attacks using the Sealed Vector Timestamp protocol is
straightforward. Sealed Vectors protect against forging timestamps and subverting concurrency
detection; the presence of a trusted agent (the secure coprocessor) to link timestamps to node names
protects against description attacks.

Effectively protecting against these attacks without using secure coprocessors remains a re-
search area. Expanding Signed Vectors to include more details of message paths might make them
harder to forge. However, we still have the problem that (in terms of Section 6.2.1) the ability to
assemble legitimate timestamps easily transforms into the ability fraudulent timestamps. Rather
than using the correct set of local tokens, a malicious process may use a carefully chosen incorrect
set.
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The techniques of Haber and Stornetta [HaSt91, BHS93] provide some grounds for future work.
Cryptographic linking techniques might prevent node-name attacks (honest processes can prove
their allegation that a given node follows node A), but using these techniques requires forcing
processes to exchange correct logging information. This exchange may be difficult to ensure
without the trusted local agent of a secure coprocessor. Pseudorandom logging techniques may
be more effective in these situations—but at the expense of increased communication and delayed
verification, and also with the increased risk of espionage and sabotage that come with remote
logging.

6.3.2. Passive Attacks

Snapshot protocols based on distributed time also permit passive attacks—both the standard time-
stamp vector attacks, and new ones raised by the snapshot problem.

Privacy Distributed snapshot protocols based on timestamp vectors inherit their privacy risks:
vectors leak information. Problems also arise from observation effects:1 the interaction between
the act of observing and the computation being observed. Do the messages exchanged as part of
taking a snapshot of a given computation belong to the computation? If not, then the data being
exchanged creates serious potential for abuse. Participating in such a snapshot protocol provides
processes with valid local tokens for nodes on which they have no precedence; a malicious process
might use these tokens to forge timestamps. For example, using the Signed Vector Timestamp
protocol here would distribute signed vector entries to processes that have no dependence on the
nodes named by those entries.

Spying on the Initiator The preceding attacks come from spying on the data exchanged as
part of a snapshot protocol. A malicious process may also gain unauthorized information from the
fact that a snapshot protocol is being executed. For example, suppose auditor Alice is asking for a
snapshot to verify that the electronic currency in circulation sums correctly. If counterfeiter Bad
Bob knows this fact, then he may manipulate this probe to hide his crime (and subvert the purpose
of Alice taking this snapshot).

Spying on Other Processes A distributed snapshot protocol may also be misused by its
initiator to gain unauthorized information about other processes in the system. Of course, an
authorization policy must exist for an action to be classified as misuse. If anyone is permitted to
take any kind of snapshot at any time, then subversion is not necessary. However, more substantive
authorization rules create the potential for both direct and indirect attacks. A malicious process
p might forge its own authorization proving the legitimacy of its snapshot request; alternatively,

1Section 3.4.2 discussed this issue.
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a malicious process p might spy on process q by simulating participation in a legitimate snapshot
protocol initiated by a different process.

Defenses One way to add resiliency to a snapshot protocol is to require each participant to
identify the initiator. However, strengthening a protocol by including extra information suggests
a fundamental tradeoff between privacy and security: information included is information leaked.
As with the active attacks, using secure coprocessors appears to be the best defense. We can seal
the entire snapshot protocol, and also use secure coprocessors to ensure the initial requests for
snapshots agree with whatever policy we select for snapshot authorization.

6.3.3. Alternative Models

Chapter 3 introduces another approach to obtaining global states satisfying some particular prop-
erty: taking a standard snapshot from a nonstandard time model. Chapter 4 shows how at least
three distinct virtual partial orders arise from rollback with modified replay; a process may also
wish to take a snapshot from one these alternative models.

This approach to snapshots follows directly from the orthogonality between clocks and higher-
level time protocols. However, the performance orthogonality between clocks and protocols does
not extend to a security orthogonality between clocks and models. As Section 6.2 discussed, how
a temporal relation in an abstract time model arises from the real-time partial order (e.g., is it
flow-virtual?) influences how its clocks may be attacked.

Blocked Partial Order Time Theorem 3.5 from Section 3.3.2 repeats a result from [Sm93]:
each timeslice from a Type 2 (consistent and independent) parallel pair has a unique subset of
nodes that determine the timeslice. Since these subsets are partial timeslices from the composition
of the BLOCKED model with the partial order, taking snapshots in this higher-level model yields an
exponential number of snapshots in the original partial order. This technique creates the potential
for security and privacy problems, because of the BLOCKED model itself, and because we have two
levels of time.

One problem arises because of the lack of view-completeness. Applying BLOCKED to a Type 2
parallel pair (M;M0) does not preserve all properties of (M;M0); in particular, we lose view-
completeness (as Section 3.3.2 observes). This adds a wrinkle to the Round Robin protocol: a
process may not have any node to add to the partial timeslice. This wrinkle leads again to a
security-privacy tradeoff: if we do not require such a process to provide proof of its necessary
abstention, then we allow malicious processes to opt out of reporting sensitive data. The role
of secure coprocessors as trusted oracles keeps this from being a problem for the Sealed Vector
Timestamp protocol.
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Flow-support is another property that the BLOCKED model does not preserve. Consider a
message edge S �!R in a graph from the PARTIAL ORDER TIME model. Composing BLOCKED

with this model draws an edge to R from the local successor of S, but an information flow path
does not exist. This is not a serious problem: the sending process can inform the receiving process
of the identification of the next local node. For the higher-level model, the foundation of the
Signed Vector Timestamp protocol still holds: possession of a signature for an honest node proves
dependence on that node. We may thus use either Signed Vectors or Sealed Vectors to track
BLOCKED � PARTIAL ORDER TIME relations.

The fact that two distinct levels of time are being tracked also permits level-mixing at-
tacks. Consider again the example of PARTIAL ORDER TIME. The PARTIAL ORDER TIME and
BLOCKED � PARTIAL ORDER TIME models describe sufficiently similar structures that privacy is
not a problem. However, security risks might still exist: for example, with Signed Vectors,
timestamps for one level could be used to construct timestamps for the other. As Section 6.2.3
observed, the use of Signed Vectors with multiple levels requires either distinct signature func-
tions or distinct name spaces. (Otherwise, our trick for having possession imply precedence in
BLOCKED � PARTIAL ORDER TIME causes this property to fail for PARTIAL ORDER TIME.)

Strong Partial Order Time We developed the STRONG model to allow processes to take
snapshots in which no messages are in transit. The STRONG model composes with a partial order
by making message edges bidirectional; the resulting temporal relation has the property that its
timeslices are exactly the timeslices from the original partial order in which no messages were in
transit.

The STRONG model also alters the properties of the model to which it is applied. For example,
STRONG � PARTIAL ORDER TIME differs from standard partial order time in some substantial ways:
edges may flow backwards in time, and precedence no longer implies information flow. The most
substantial difference is that the relation possesses cycles. Making message edges bidirectional
ties together send events and receive events; sets of messages may interact in unexpected ways to
form larger cycles.

The cycles in the STRONG � PARTIAL ORDER TIME model create opportunities for malicious
processes to attack clock and snapshot protocols. As Section 6.2.1 discussed, clocks must keep
track of the incoming edges with unknown originating nodes; clocks that know the identity of these
nodes must see that this information eventually reaches the clocks that need it. Without secure
coprocessors to keep them honest, malicious processes can lie on both ends of this task, and spy
on the information itself.

Malicious processes can also subvert the model without attacking the clocks by making sure
that at least one message is always in transit. Figure 6.2 sketches this scenario.
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Bad Bob

Crooked
Cathy

S1 S2 S3

S'1 S'2

R1 R2

R'1 R'2

Figure 6.2 Malicious processes may subvert the STRONG PARTIAL ORDER model
by ensuring that at least one message is always in transit. This PARTIAL ORDER TIME

graph illustrates the initial phases of such a conspiracy between Bad Bob and
Crooked Cathy. For each i, Si �!Ri and S 0

i
�!R0

i
in the timelines. However, the

STRONG model makes message edges bidirectional, so applying that would make
Ri �! S0

i
and R0

i
�! Si. Hence, in STRONG PARTIAL ORDER, each Bad Bob node

from Si to Ri (inclusive) is cyclic, and cannot be part of a timeslice. Bad Bob and
Crooked Cathy collaborate to ensure that any Bad Bob node from S1 on can never
be part of a STRONG PARTIAL ORDER timeslice.

6.4. Optimistic Rollback Recovery

The optimistic rollback recovery protocol of Chapter 4 uses distributed time clocks, and thus is
liable to security and privacy attacks on the clock mechanisms. Section 6.4.1 considers standard
attacks on clocks, and Section 6.4.2 considers some attacks more specific to optimistic rollback
recovery. Many of these issues are also relevant to previous rollback protocols; however, by its
explicit foundation in two levels of partial order time, our protocol is a particularly appropriate
scenario to discuss these issues.

6.4.1. Standard Attacks

Chapter 5 discussed three risks of partial order clocks: backdating, postdating, and privacy leaks.
Section 6.2.2 discussed the additional problems of level-mixing (that arises when an application
tracks multiple levels of time) and branch-mixing (that arises when an application deals with a
nonlinear pair). These risks all apply to our optimistic rollback recovery protocol, which uses two
levels of time: a nonlinear pair to track dependence on failed nodes, and a parallel pair to track
knowledge of rollback.

The SYSTEM PARTIAL ORDER model tracking knowledge of rollbacks is a standard partial order
model, producing the partial order that an external observer (unaware that recovery is taking place)
would perceive. The standard backdating, postdating, and privacy risks apply.
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In this context, backdating hides knowledge of rollbacks; the malicious process falsely deludes
an honest process into thinking a node is not an orphan. This hoax may have direct consequences,
such as the honest process failing to roll itself back or to discard an incoming orphan message, or
may have more subtle consequences, such undeceived honest processes rejecting messages from
the deceived honest process. Figure 6.3 shows an example of the first scenario; Figure 6.4 shows
an example of the second.

Postdating a node in the SYSTEM PARTIAL ORDER order involves forging the future. Placing a
user node artificially far in the SYSTEM PARTIAL ORDER future allows a malicious process to fool
an honest one into accepting orphan messages. Figure 6.5 shows an example. The Signed Vector
Timestamp protocol does not solve these problems, but the Sealed Vector Timestamp protocol does.

In the USER PARTIAL ORDER model tracking dependence on failed nodes, backdating and
postdating have the more standard behavior of hiding or forging dependence on failed nodes. This
model behaves like the standard partial order until rollback actually occurs.

Branch-Mixing Once user timelines turn into timetrees, the USER PARTIAL ORDER graph may
generate a valid FAILURE FREE PARTIAL ORDER graph. However, the fact that failure-free graph
is flow-virtual complicates the task of reliably tracking it. As Section 6.2.3 observed and Figure 6.1

"Should I
perform this
expensive

act?"

"Go right
ahead!"

"Are you
done?"

Oh no---I'm
an orphan!

OK, here
goes

Now I'll use
my real vector

I'll backdate my
SYS_TIME vector, so

Cathy  won't know!

Alice has rolled
back, so Cathy
is an orphan!

Alice:

Bad Bob:

Cathy:

Figure 6.3 Backdating SYSTEM PARTIAL ORDER relations can cause honest
processes to waste computation. In this example, Alice’s rollback makes Cathy
an orphan. By backdating the SYSTEM PARTIAL ORDER vector on his first message
to Cathy, Bad Bob prevents Cathy from learning that she is an orphan until after she
has performed expensive computation that now must be discarded.
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I'm rejecting
this message,
since Cathy
is an orphan!

I'll backdate my
SYS_TIME vector, so

Cathy  won't know
that she is now

an orphan.

Cathy:

Alice:

Bad Bob:

Doug:

Figure 6.4 If knowledge of rollback is propagated solely on system messages
carrying user messages, then backdating SYSTEM PARTIAL ORDER can cause an
honest process to remain an orphan indefinitely. In this example, Alice’s rollback
makes Cathy an orphan. By backdating his SYSTEM PARTIAL ORDER vector, Bad Bob
prevents Cathy from learning this fact. All of her subsequent user messages will be
rejected—Cathy loses all credibility with Doug.
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I see that Cathy
is not an orphan, so

I'll accept this
message

Alice:

Bad Bob:

Doug:

Cathy:

Alice has rolled
back, so Cathy
is an orphan!

I'll postdate my
old SYS_TIME vector
so it USR-follows A
but SYS-follows B

BA

Figure 6.5 Postdating SYSTEM PARTIAL ORDER relations fools honest processes
into accepting orphan messages. In this example, Alice’s rollback makes Cathy an
orphan. By advancing his Alice entry in the system model but not in the user model,
Bad Bob not only hides the rollback from Doug, he ensures that Doug will not listen
to anyone else’s announcement of the rollback.
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illustrated, the Signed Vector Timestamp protocol breaks down when the a graph is generated
virtually—possession of a signed entry for a node no longer implies dependence on that node.

The Sealed Vector Timestamp protocol still provides protection in this scenario.

Level-Mixing One way to subvert a protocol that requires accurate tracking of computation on
two levels is to disrupt the correspondence between the levels. For example, the rollback protocol
from Chapter 4 requires that processes be able to map two system nodes at another process to their
corresponding user nodes, and be able to sort them in terms of the USER PARTIAL ORDER model.
How can this mapping be made reliable? If it is each process’s responsibility to report a node as a
pair of identifiers, then malicious processes can avoid the problem of forging timestamps merely
by mismatching valid timestamps.

Again, the Sealed Vector Timestamp protocol still provides protection in this scenario.

Privacy Risks Surviving processes may need to roll back in response to a failure. If a surviving
process is malicious, it may retain and exploit old state. For example, one process in a poker game
may mistakenly reveal a card, and call for rollback. How do we ensure the other processes actually
“forget” the revealed card?

Banking systems provide another example. Suppose Alice deposits a large check for Bad Bob
with banker Cathy. Alice then discovers that all her activity that day was incorrect, and rolls herself
back. The current state at Cathy indicates that a large sum of money is in Bad Bob’s account—but
Alice’s failure makes this state an orphan. If Bad Bob learns that Cathy is an orphan before Cathy
does, then Bad Bob can exploit the incorrect balance by withdrawing the extra money.

To solve this problem, we need to introduce a complete discontinuity in the state of surviving
processes that roll back. Perhaps we could force a site migration, and keep the location of the new
site secret from the old site. We may need to extend this discontinuity to any process learning
of rollback: the banking example did not specify whether Bad Bob’s own state was an orphan.
This problem raises similar issues as commitment, since transfer of knowledge is an action that is
difficult to undo.

6.4.2. Other Avenues of Attack

Our framework of secure distributed time provides protection against clock-based security and
privacy risks. However, optimistic rollback recovery protocols face other security risks. In this
section consider, we discuss some of these areas for future research.

Checkpointing Rollback protocols assume some mechanism for processes to restore state.
Usually this mechanism uses stable storage to preserve sufficient information for state restoration.
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This information may consist of checkpointed images of local state, logs of incoming messages
(for replay), logs of outgoing messages (for replay), or various combinations of these techniques.

The existence and use of this logged information creates security and privacy risks:

� Forging Identity A malicious process can forge someone else’s checkpoint.

� Forging Data A malicious process can lie about the data it stores as its own checkpoint.

� Forging Timestamps In protocols that preserve more than just the most recent checkpoint
at each process, a malicious process can attack the methods used to identify which checkpoint
belongs to what point in (distributed) time.

� Forging Storage Location If stable storage servers are distributed throughout the
system, a method must exist that, upon recovery of process q, specifies where the checkpoint
for q is saved. A malicious process can disrupt recovery by leaving q’s checkpoints untouched
and attacking this mapping instead.

� Espionage A malicious process p might gain unauthorized knowledge about the affairs
of process q by examining checkpoints belonging to q.

� Interactions The checkpointing policy at a physical process site cannot be completely
orthogonal to the levels of processes at that site. For example, in a system using Signed
Vectors, checkpointing a physical process would leak keys belonging to the system-level
processes (since the checkpoint would include these keys).

� Authority The authority to read a checkpoint belonging to a process q must be more than
just the identity of q or its physical site, since both these may vanish in a failure.

Restart As the last item above suggests, the mechanics of restart—especially in the face of
failure of physical machines—creates risks:

� Proving Legitimacy of Request How does a system establish the legitimacy of a
restart request? For example, consider the standard mechanism of a process p calling for
a restart of process q if process q has been silent for a while. (After all, indefinite silence
is indistinguishable from failure.) A process r that has heard from q recently can veto this
request. Once more, we face a tradeoff between security and privacy: preventing malicious
vetoes requires that process r present evidence (e.g., a timestamp) showing it has heard from
q—which allows process p to probe the behavior of processes r and q by “innocently” calling
for restart.

� Malicious Restart A malicious process might be able to abuse the restart mechanism by
convincing a sufficient quorum of processes that an honest, non-faulty process q is dead.
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� Malicious Termination Even with no malice, two versions of the same process may be
alive simultaneously because silence and failure are indistinguishable. Rollback implemen-
tations thus must include a way to terminate honest processes. A malicious process might be
able to abuse this machinery and terminate inconvenient honest processes.

� Directing Migration to a Corrupted Site When an honest process q is restarted (either
naturally, or through malice), a corrupt process p might be able to direct the restarted version
to a physical site that p has compromised—thus gaining access to data and authority of
process q.

� Mutual Restart Even if a majority of processes must agree to restart a silent process, a
coterie of malicious processes could partition the honest processes and convince each half to
restart the other.

� Migration of Authority Security and privacy techniques (such as the Signed Vector
Timestamp protocol and the Sealed Vector Timestamp protocol) may assume that each honest
process possesses secret keys. Realistic rollback protocols allow for a process to migrate to
a new physical site when the original physical site fails. How does the new version of the
process obtain the proper keys? If backup copies of the keys exist—even in a shared fashion
[Sh79]—what protects them? If new keys are created, what prevents a malicious process
from inventing and inserting new keys?

� Revoking Authority If a site is compromised, how do the surviving honest processes
revoke its authority? Can the revocation mechanism be used to attack honest processes?

� Migration of Identity When a process migrates to a new site, how does it convince other
processes of its new identity? Can this mechanism be abused to steal the identity of an honest
process?

Rollback Even if we take care of these attacks on a rollback recovery protocol, the protocol
can still be subverted simply by misusing it. For example, a malicious process can prevent the
entire system from ever getting any work done simply by repeatedly sending messages to honest
processes (establishing dependence) and then rolling itself back.
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Chapter 7

Conclusion

7.1. Summary

Distributed time provides a general framework for building distributed protocols and for transpar-
ently adding security and privacy protection to these protocols. This thesis demonstrated these
claims in three steps:

� We developed formal machinery to express the general temporal relations that arise in dis-
tributed application problems. We then built a suite of clock primitives for these relations.

� We analyzed application problems in terms of these general temporal relations. We then
built protocol solutions using the clock primitives. The orthogonality between clocks and
protocols allows transparently modifying the protocols by changing clocks and time models.

� We identified the security and privacy risks inherent to tracking general temporal relations,
and built clock primitives that protect against these risks. We then provided security to our
higher-level protocols by transparently substituting these secure clocks.

By providing insight into the underlying temporal relations and orthogonality between clocks
and protocols, the distributed time framework permits us to build protocols that are more general,
more flexible, and more secure than previous solutions. Furthermore, the security and privacy
problems we identify—and the solutions we provide—also apply to less general frameworks.

Computational environments are becoming increasingly distributed, and applications are per-
meating social and financial arenas that are particularly sensitive to security and privacy attacks.
The problems that this framework addresses are likewise becoming increasingly important.

7.1.1. Distributed Time

Distributed time improves on previous work in partial order time by providing a fully general
temporal framework supporting protocol design and construction.



We defined a computation graph format to describe computation, and showed how to translate
system traces into ground-level computation graphs. We then defined time models as representa-
tional transformations of computation graphs, and constructed a suite of clock primitives probing
relations in these models.

Computation graphs allow us to consider temporal relations more general than partial orders—
for example, non-transitive relations and cyclic relations. Time models provide a formal means to
abstract away irrelevant temporal, physical, and computational detail. The ability to compose time
models permits us to build hierarchies of temporal abstraction. The separation between time models
and computation graphs allows us to consider computations that arise virtually, via composition of
models.

7.1.2. Distributed Protocols

Distributed time supports protocol construction by providing an understanding of the general
temporal relations underlying application problems, and by allowing processes to examine these
relations via clock primitives. This thesis illustrates this support by applying the framework of
distributed time to three application problems: detecting potential causality, and the more advanced
examples of distributed snapshots and optimistic rollback recovery.

Distributed time permits accurate detection of potential causality in asynchronous distributed
systems. Determining whether one event potentially influenced another reduces to querying a clock
primitive. The orthogonality in our framework permits transparent extension of protocols using
these clock queries. For example, changing the time model used in the clock primitives permits
departing from real-time partial orders, allowing the detection of potential causality in a distributed
computation that (perhaps via rollback and modified replay) never physically occurred.

By expressing temporal and computational abstraction, distributed time provides a framework
for taking distributed snapshots. A timeslice in a well-constructed time model represents an
instantaneous global state of the system in some underlying computation; clock primitives directly
support assembly of timeslices. This framework permits increased flexibility. For example, we
can take snapshots of the past, and (by using higher-level time models) we can take snapshots with
specific properties.

By expressing multiple levels of temporal and computational abstraction, distributed time pro-
vides a framework for optimistic rollback recovery. This problem involves two distinct distributed
computations: the user application level and the system recovery level. The ability to model both
levels permits us to build an optimistic rollback recovery protocol that allows processes to fully
exploit all potential information. Our new optimistic rollback recovery protocol is the first to
provide both fully asynchronous recovery and optimality in the number of individual rollbacks at
processes. In particular, we reduce the previous worst case for asynchronous optimistic rollback
recovery from exponential to at most one rollback per process after any failure.
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7.1.3. Security and Privacy

Tracking temporal relations more general than real time creates security and privacy risks. This
thesis identified these risks and constructed clock primitives that protect against them. Because
our framework provides orthogonality between clocks and protocols, using secure clocks can
transparently provide security for higher-level protocols.

Unlike the passage of real time, the general temporal relations of distributed time cannot be
verified independently. Processes must share private information, and must trust the information
that is shared with them. This necessity of trust creates the potential for security and privacy risks
for clocks for these relations: malicious processes may sabotage the clocks at honest processes by
providing false information, and may spy on honest processes by misusing the information that
honest processes provide. These risks for clocks translate to risks for protocols based on these
clocks—such as the application protocols presented in this thesis, or other protocols based on
querying temporal relations such as partial order time.

The proposal document for this thesis opened these questions and presented the Signed Vector
Timestamp protocol, the first to provide security for partial order time clocks. This thesis used
cryptographic and secure coprocessor techniques to develop the Sealed Vector Timestamp protocol
that provides full security and privacy for time models more general than the standard real-time
partial order. The generality and security of these techniques provides security and privacy pro-
tection for higher-level protocols built on these clocks. For example, we can provide immediate
ordered service, take distributed snapshots, and recover from failure—while also protecting against
espionage and Byzantine attacks.

7.1.4. A Single Arena for Time and Security

Previous work has used partial order time to analyze distributed computation and to construct
distributed protocols. However, many distributed applications center on temporal relations more
general than a single level of a partial order. Furthermore, separate applications may center on
temporal relations that are separate but related.

The time hierarchies and secure clocks developed in this thesis provide a single framework to
consider these separate issues. This framework allows us to integrate applications and solutions
developed independently. For example, rollback with modified replay changes the underlying
computation. By formally specifying how the rollback protocol changes the virtual partial order
computation, and by writing snapshot protocols in terms of queries to clocks for a specific partial
order time model, the distributed time framework lets us take snapshots without worrying about
rollback. Furthermore, rollback creates several layers of partial order time; we can use distributed-
time based snapshot protocols to take snapshots of each layer. This framework also allows us
to consider the security and privacy issues for these various levels of time, independently of the
particular applications and protocols.
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7.2. Future Work

Future research in secure distributed time includes developing and testing new techniques for secure
clocks, and using this framework to solve the time and security problems in new application areas.
Section 7.2.1 considers some areas of work in clock techniques, and Section 7.2.2 discusses some
particular application problems. However, the shape and scope of computation is changing, and the
questions of security and privacy are becoming more urgent and harder to specify. Section 7.2.3
offers some speculation on the fundamental role that the secure distributed time framework may
play in this emerging world.

7.2.1. Future Work: Techniques

Discussions of new clock and security techniques and areas for future research have occurred
throughout this thesis. We summarize some of them here.

One of the principal drawbacks of any of the timestamp vector techniques is vector size: a
vector has one entry for each process in the system, and these entries may even have nonconstant
size. As Section 5.5 discussed, this property makes scalability a significant concern: how can these
techniques extend to large networks? Avenues to solve this problem include adapting cryptographic
linking and distributed trust techniques [HaSt91, BHS93], exploiting secure logging sites, and
developing good heuristics for when information can be omitted. The discussion of timestamp
clocks in Section 6.2.1 raises an additional question: do effective clock techniques exist that depart
from the timestamp approach in any substantial way?

Some areas for security research include limiting potential damage when secure coprocessors
are compromised (for example, fleshing out the Give-and-Forget approach of Section 5.5), de-
tecting covert communication between malicious processes, and exploring what privacy can be
attained without coprocessors. Another area for work is formulating effective privacy policies for
coprocessor-based clocks such as Sealed Vectors. On a basic level, we need to develop formal
(and enforceable) rules for precedence querying. How does process p limit the use of timestamps
it generates? How will this policy limit what a malicious process may learn via selective probing?
On a more advanced level, we need to develop policies for snapshots and rollback that grant the
initiator some degree of anonymity while also establishing the initiator’s authority.

These issues all hint at a fundamental tradeoff between security and privacy. Including sufficient
data in protocols to prevent malicious tampering creates privacy as well as efficiency concerns. Is
this tradeoff unavoidable?
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7.2.2. Future Work: Applications

The framework of secure distributed time is a powerful tool for solving application problem that
depend on temporal relations more general than real time. As Section 7.1 discussed, this thesis
applied this tool to the problems of potential causality, distributed snapshots, and optimistic rollback
recovery. However, the framework of secure distributed time may be appropriate for many other
application problems. We now consider some of these problems, and discuss the possible relevance
of our framework and possible topics for future research.

Rollback Our research into optimistic rollback recovery suggests many directions for future
work. One direction is exploring the area of commitability, especially in for situations where
rollback recovery may be initiated for reasons other than process failure. Another direction is
examining the list in Section 6.4.2 of possible security attacks on optimistic rollback recovery
protocols.

A third direction consists of exploring more general versions of the problem: real world
applications provide motivation for rolling back rollback. For example, users of word processors
and graphics packages frequently attempt to UNDO previous UNDO commands. As Section 4.4
discussed, rolling back rollback requires considering general-past versions of the problem. It
would be interesting to develop effective distributed techniques for these scenarios.

Distributed Nested Transactions Natural experience provides many examples of atomic
actions: consider Alice physically giving a ten dollar bill to Bob. This exchange is either success-
fully completed, or it never happened. No intermediate views of this action are possible.

Transactions (e.g., [GrRe93]) are a standard tool for providing this abstraction in distributed
systems. Without this framework, situations such as process failure, unreliable communication,
and interactions between concurrent transactions may cause pathological behavior. A particular
subcomputation may be distributed in time and space, and consequently may be susceptible to
many failures. However, a transactional system guarantees atomicity, consistency, independence,
and durability; a programmer may regard these subcomputations as durable, atomic actions that
appear to happen in some linear sequence.

Essentially, transactions perform temporal and computational abstraction. During a transaction,
certain processes may perceive individual steps occurring in a certain order; everyone else must
perceive these actions as an atomic unit. Nested transactions allow additional levels of abstraction
by permitting transactions to call lower-level transactions. Supporting nested transactions requires
managing the interactions between child and parent transactions. One aspect of this management is
orphan elimination (e.g., [HLMW87]); when a transaction is aborted, all subtransactions executing
on its behalf must also be aborted.

Distributed time provides tools to support such temporal and computational abstraction. Hierar-
chies of time models permit the multi-level view necessary to implement individual steps as part
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of a single unit, and to support nested transactions. Cyclic time models support atomicity in a
distributed environment. Partial order models support tracking dependency, for orphan elimination.
Consequently, distributed time might provide a nice framework to implement distributed nested
transactions. As an extra benefit, we can transparently provide security and privacy protection
to these implementations. Fitting existing implementation into our framework and showing they
already face these security risks would be an interesting research topic.

Electronic Currency Adapting the familiar paradigm of physical cash to a distributed elec-
tronic environment raises a number of challenges. Many properties of physical cash fail in the
more general case of electronic currency.

As the initial example for transactions showed, natural experience with cash implicitly uses
transactional behavior. For example, a dollar bill is a unique physical token; a faulty physical
transaction will never cause this token to be duplicated. However, electronic transmission of a data
packet (in general) leaves the sender with a copy of the packet. Further, electronic interactions
may be subject to network and process failures. For example, if the communication line breaks
while transferring cash, what happens to the cash? Consequently, robust electronic currency must
provide fully transactional behavior; as we have discussed, the abstraction tools of distributed time
have relevance to this area.

The temporal tools of distributed time also have relevance to electronic currency. For example,
bookkeeping and auditing practices in the real world are implicitly based on the notion of per-
ceivable real-time simultaneity. However, perceivable simultaneity is one of the first casualties of
asynchronous distribution. The framework of distributed time provides support for obtaining and
reasoning about possible simultaneous states, and consequently provides support for performing
auditing and bookkeeping along timeslices.

Additionally, the framework of secure distributed time provides protection from acts of sabotage
and espionage that money seems to motivate in humans. If communication failures may cause
cash to be created (or destroyed), then malicious agents will simulate communication failures. If
incorrect values in timestamp vectors prevent discovery of illegal cash activities (as Section 6.3
discussed), then malicious agents will use incorrect values in timestamp vectors.

The ability to model multiple levels of abstraction while providing some assurances of security
and reliability provides the distributed time framework with another class of potential applica-
tions: balancing privacy of transactions with government law. For example, the Internal Revenue
Service may have the right to examine and verify certain aspects of the flow of electronic currency.
Integrating time models expressing currency flow with time models expressing knowledge rights
might provide the necessary tools.

Electronic Exchanges Performing commodities trading on public networks raises a number
of challenges (e.g., [SEC94]). As the examples of Chapter 5 indicate, these applications are
susceptible to many explicitly clock-based security problems, since adversaries may reap rich
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rewards by subverting clock protocols. How do we accurately detect the order of actions? How
do we prevent unauthorized leaking of information? The framework of secure distributed time
provides a foundation for exploring these issues.

Considering real-world scenarios raises even more questions. For example, how do we enforce
real-time fairness? Even though Alice in Albuquerque and Bad Bob in New York do not receive
news of a stock offer at the same real time, they should have the same duration of time to consider
the offer. If Alice responds one second after she receives the news and Bad Bob responds two
seconds, Alice’s response should take precedence, even though it may have been sent after Bob’s
was sent. (The real-time order in which the responses arrive is yet another issue.) These questions
suggest another interesting research topic: incorporating real time into the framework of distributed
time.

Capabilities Management A capability is an explicit authorization granting its bearer certain
rights. As computation becomes more distributed and asynchronous, the problem of capabilities
management becomes more complex. If Alice performs a task on behalf of Bob, how does Alice
inherit the necessary capabilities? How does Bob later revoke the capabilities he has transferred to
Alice?

Capabilities management in distributed systems raises several issues related to partial order
time. We list some examples:

� Managing capability inheritance requires tracking a relation very similar to precedence paths.

� Revoking capabilities requires modifying these paths.

� Enforcing access rules requires using these paths to restrict the user-level computation.

The framework of distributed time provides tools for constructing and and tracking hierarchies
of partial order time relations. In capabilities management, these tools should apply both to
the time-like relations of capabilities, and to the interaction of these relations with time models
describing computation. In particular, our framework may have relevance to the earlier examples:

� Tracking which agents inherit which capabilities requires distributed construction of a di-
rected acyclic graph (e.g., [He91]). We could examine this problem in the distributed time
framework by building time models that express authority instead of temporal precedence.

� Inheritance complicates revocation. Revoking a capability given to Alice should also revoke
that capability from anyone who has inherited that capability (even indirectly) from Alice.
However, this revocation should not result in any other capabilities being revoked. If we
express capabilities using a time model, then revocation reduces to optimistic rollback re-
covery. Consequently, the framework of distributed time may have some bearing on this
problem.
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� In order for capabilities to have meaning, their possession (or lack thereof) should affect
the underlying computation. Having access both to a time model describing the unfolding
computation and also to a time model expressing authority might provide a way to express
the semantics of capabilities; having access to clocks for these models might provide a way
to implement these semantics.

Enforcing access rights via capabilities is meaningless if malicious agents can subvert the under-
lying management system. Using the framework of distributed time has the additional benefit of
providing transparent security and privacy.

The framework of distributed time also provides the potential for integrating capabilities with
other temporal issues. For example, Herlihy and Tygar [HeTy89] use an approximation of real
time as a basis for revoking capabilities. Distributed time might provide a way to generalize such
work based on linear time. For example, how would capabilities be temporarily restored during
rollback with modified replay?

Information Confinement A long-considered issue (e.g., [La73]) in computer security is the
confinement of information to appropriate agents. Indeed, some researchers regard information
confinement to be synonymous with security (e.g., [NCSC90]).

Tracking the flow of information in order to enforce information confinement is an area in
which secure distributed time has particular relevance. This relevance arises for many of the
same reasons as in the capabilities management problem. Information confinement requires using
causality-like relations both to describe and also to proscribe computation, and requires careful
consideration of temporal abstraction and security issues. The framework of distributed time may
provide appropriate tools:

� The ability to express partial order time allows the potential to track correctly who has seen
what.

� The ability to support flow-virtual time allows us to extend this potential for computations
whose history is altered.

� The ability to support multiple levels of time allows us to track independent flows.

� The ability to support relations more general than partial orders allows us to consider the se-
mantics of computation while tracking informationflow. For example, nontransitive relations
express process actions that destroy data.

Mobile Computing The advent of mobile computing raises a number of challenges related
both to abstraction and to security. The framework of distributed time might provide tools for these
issues.
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Besides distribution and asynchrony, mobile computing raises an additional level of abstraction:
networks with mobile agents must abstract from a dynamic physical topology to the more stable
logical topology. Providing a hierarchy of time models might express this abstraction; providing
clocks for these models might facilitate protocol construction. The dynamic physical topology
creates additional security risks: for example, if a mechanism exists for Alice to appear suddenly
in Cedar Springs, Michigan and have her communication routed to the server there, then Bad
Bob in New York may abuse this mechanism to intercept Alice’s communication. Expressing the
abstraction using distributed time may provide techniques that transparently protect against these
risks.

Disconnected operation also raises challenges with time and with confinement. For example,
if a partition temporarily distributes Alice’s computation among several physical sites, then she
must re-establish a consistent image upon repair of the partition. We might be able to address this
problem using the consistent global state tools of distributed time. Remote execution subverts the
standard client/server model, since a portion of the client’s computation may run on the server’s
machine, or vice-versa. Sharing a machine creates a mutual suspicion problem: one computation
might interfere with or spy on the other. (For example, Trojan Horses and viruses are examples of
such attacks.) The security and privacy tools of distributed time might address this problem.

Hidden Causality Real distributed systems frequently provide the potential for anonymous or
hidden causality [Gr75]. The semaphore mechanism is an example: the agent granted a lock by
a semaphore knows neither who released the lock nor who else is waiting for it. Extending our
framework to handle these issues would be an interesting research area. Suppose Alice releases a
lock which the semaphore grants to Bob. Does Bob now depend on Alice? Would vector clocks
leak the identity of Alice to Bob? If Alice fails and rolls back, what should Bob do?

Distributed Optimistic Execution Much research (including the recent work of Leon [LFS93]
and Cowan [CLB94]) has explored the uses of highly optimistic execution in distributed environ-
ments. For example, allowing long-running application programs to execute based on speculation
(and to roll back if the speculation proves false) may provide increased performance (if the specu-
lation is correct sufficiently often). The abstraction tools of distributed time framework may handle
this distribution and the multiple time levels that may arise in such implementations; the security
tools might provide transparent tolerance against Byzantine attacks on the machinery of optimism.

7.2.3. A Framework for the Future

The abstraction from linear time to partial orders and beyond has a precedent in the shift in physics
from the classical world-view to the relativistic world-view. The comfortable, familiar perspective
fails when simultaneity of information vanishes. The right perspective clarifies otherwise baffling
behavior and also provides a way to continue to apply the comfortable perspective, once formal
tools exist for changing frames of reference.
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Linear time does not adequately describe the behavior of distributed systems. When failure
recovery is allowed, a single level of partial order time also does not suffice—time must have depth
as well as width. Levels of temporal abstraction will only become more necessary as computational
environments become more complex, such as by admitting mobile agents, anonymous paths of
influence, and the potential for cross-channel communication. Multiple levels of abstraction will
multiply the problems of specifying and providing security and privacy in protocols running in
such environments.

However, understanding how virtual partial orders arise from a hierarchy of time levels allows us
to model the underlying behavior of the system, and to relativize the protocols and tools developed
for the comfortable world of partial order time. Understanding how partial order protocols relate
to the underlying time models also allows us to relativize the security challenges of timekeeping.

This thesis provides the fundamental contributions of a framework to understand the general
temporal relations and the concomitant security challenges that arise and will continue to arise in
distributed computation.
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Glossary

Terms

acyclic when a node does not precede itself in a graph;
when a time model produces graphs with no
cycles; when the global model in a parallel or
nonlinear pair is acyclic

15, 18

adjusted rollback vector the vector obtained from the rollback vector for
a node by moving the other entries to their
maximal preceding acyclic nodes

33

adjusted timestamp vector the vector obtained from the timestamp vector
for a node by moving the other entries to their
minimal following acyclic nodes

33

antichain in an order, a set of mutually incomparable
elements

26

atom a node or edge in a graph 11

bit-secure cryptographic functions that leak no information 120

commitable a state or event that will never be rolled back 73

complete recoverability the assumption that any state in the live history
at a non-faulty process is recoverable

70

computation graph a directed graph describing computation 11

concurrent when a time model leaves two nodes unordered 11

consistent cut a cut that is also a timeslice 31

consistent pair a parallel or nonlinear pair that is view-complete
and transitively-bounded

20

consistent set a set of user nodes whose live histories together
comprise a past-closed prefix of a graph from
FAILURE FREE PARTIAL ORDER

87

cut a set of nodes, exactly one at each process 31



digital signature a function that only a privileged agent can
perform, but anyone can check

120

externally equivalent when two atoms at a process afford the same
external view

20

factoring model in a nonlinear or parallel pair, the model induced
from the local model to the global model

18

flow-supported when transitive precedence in a model implies
information flow in any underlying computation;
when each model in a parallel or nonlinear pair
is flow-supported

17, 18

flow-virtual when information flow does not necessarily
imply time model precedence; when the
transitive closure of each model in a parallel or
nonlinear pair is flow-virtual

17, 18

global state in a ground-level graph, a minimal set of atoms
that represents an instant of time in an
underlying computation

27

ground-level computation
graphs

the “least abstract” computation graphs,
constructed directly from traces

12

independent when a parallel or nonlinear pair has the property
that each non-extremal node in the global model
represents a unique node in the local model

20

join in lattices, the least upper bound of two
elements; for vectors, the entry-wise maximum

33

lattice a nonempty ordered set closed under meet and
join

33

live history a user node along with its past from the
USER PARTIAL ORDER

78

maximal node a node with no successors 11

meet in lattices, the greatest lower bound of two
elements; for vectors, the entry-wise minimum

33

minimal generating set in a timeslice X , a minimal subset of nodes
whose adjusted timestamp vectors join to yield
timeslice X

55

minimal node a node with no predecessors 11

modified replay when the computation after rollback differs from
the original computation

66
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node-monotonic when a time model on ground-level graphs has
the property that once it produces a node, the
node never vanishes

17

nonlinear pair a pair of related models providing (respectively)
system-wide and process-only descriptions of
computation; the process descriptions need not
be linear

21

optimistic rollback approaches that bet failure will not happen, and
allow orphans to develop at non-faulty processes

68

order a relation that is transitive and antisymmetric 11

orphan a node that depends on or equals a rolled-back
node

64

parallax when two snapshots of the same computation
could not both have been real simultaneous states

58

parallel pair a pair of related models providing (respectively)
system-wide and process-only descriptions of
computation; the process descriptions must be
linear

18

partial timeslice a subset (not necessarily proper) of a timeslice 26

past-closed when nodes in a subgraph have the same history
as they do in the original graph

12

past-closure a subgraph minimally extended to make it
past-closed

12

pessimistic rollback approaches that bet failure will happen, and
prevent orphans from developing at non-faulty
processes

68

piecewise deterministic when a process’s computation between message
receive events is completely determined by the
state before the first receive and contents of the
message

72

prefix a subgraph that is connected and that contains
the minimal nodes

12

pseudo-vector an array of node sets, one for each process 80

public key cryptography an encryption function that anyone can perform,
but only a privileged agent can invert

120

refinement time modelM1 refines to time modelM2 when
M1(�) =M1(�0) always implies
M2(�) =M2(�0)

15
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representation map a function (induced by the application of a time
model to a graph) that takes atoms in the image
graph back to sets of atoms in the original graph

13

rollback vector the minimal nodes at each process that follow or
equal a given node

32

stable when a property remains true once it becomes
true; when a state or event has been successfully
logged to stable storage

44, 73

state interval a sequence of states and events representing a
period of deterministic execution at a process

105

strongly edge-monotonic when a time model on ground-level graphs has
the property that once it produces two nodes, the
relation between those nodes is fixed

17

strongly monotonic when a time model is node-monotonic and
strongly edge-monotonic; when the transitive
closure of each model in a parallel or nonlinear
pair is strongly monotonic

17, 18

time model a representative transformation of computation
graphs

13

timeslice a maximal set of mutually concurrent (hence
acyclic) nodes

26

timestamp pseudo-vector in a nonlinear pair, the maximal nodes in the
local model that precede or equal a given node in
the global model

80

timestamp vector the maximum node at each process that precedes
or equals a given node

32

timetree the tree-structure on a process’s events that
emerges instead of timelines in the
USER PARTIAL ORDER

78

trace an exhaustive real-time description of a
computation

10

transitively bounded when the transitive closure of a model produces
unique maximal and minimal nodes; when the
global model in a parallel or nonlinear pair is
transitively bounded

15, 18

Type 1 a parallel or nonlinear pair that is consistent 20

Type 2 a parallel or nonlinear pair that is consistent and
independent

20
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Type 3 a parallel or nonlinear pair that is consistent,
independent, and strongly monotonic

20

Type 4 a parallel or nonlinear pair that is consistent,
independent, strongly-monotonic, and
flow-supported

20

valid when the live history of a user node is a
past-closed prefix of a graph from the
FAILURE FREE PARTIAL ORDER

87

vector an array of nodes, one from each process 31

view-complete when a graph from the global model in a pair has
the property that for any edge at process, there
exists a node that is externally equivalent in the
transitive global graph; when a parallel or
nonlinear pair always produces view-complete
graphs

20

weakly edge-monotonic when a time model on ground-level graphs has
the property that once it produces an edge, the
edge never vanishes

17

weakly monotonic when a time model is node-monotonic and
weakly edge-monotonic; when the transitive
closure of each model in a parallel or nonlinear
pair is weakly monotonic

17, 18

Clock Primitives

ACYCLIC clock primitive testing if a node is acyclic 35

COMPARE clock primitive comparing two vectors 36

CONCURRENT clock primitive testing if two nodes are
concurrent

34

CUR GRAPH universal variable for current ground-level graph 34

CUR NODE clock primitive returning current node 36

LIST clock meta-primitive, listing nodes from a
specified graph with a specified property

36

LIST CONCURRENT clock primitive listing all nodes at a process
concurrent with a given node

37

161



MAX clock primitive returning the entry-wise
maximum of two vectors

36

NEXT clock primitive returning the node following a
given node at a process

37

NODE clock meta-primitive returning the unique node
from a specified graph with a specified property

36

PRECEDES clock primitive testing if one node precedes
another

34

PREVIOUS clock primitive returning the node preceding a
given node at a process

37

SEND EVENT clock primitive returning the send event of a
given message

82

SYSTEM clock primitive mapping a user node to the set of
system nodes it represents

81

USER clock primitive mapping a system node to its
user node

81

USER MESSAGE clock primitive extracting the user message from
a system message carrying one

82

USER MESSAGE TEST clock primitive testing if a system message
carries a user message

82

USER VECTOR clock primitive mapping a vector of system
nodes to a vector of user nodes

82

Time Models

BLOCKED time model expressing when the presence of one
node in a minimal generating set for a timeslice
blocks the presence of another

55

CLOCK PARTIAL ORDER partial order time model expressing the
experience of clock agents

131

CLOCK TIMELINES timelines time model expressing the experience
of clock agents

131

FAILURE FREE PARTIAL ORDER partial order time model defined only for traces
of executions of failure-free implemented
processes

83
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IMPLEMENT time model expressing how to construct the
USER PARTIAL ORDER from the
SYSTEM PARTIAL ORDER

77

NET ABSTRACT time model abstracting away network activity 21

PARTIAL ORDER TIME time model organizing process activity into a
partial order

25

STRONG PARTIAL ORDER a “partial order” time model with bidirectional
message edges

53

STRONG time model making cross-process edges
bidirectional

53

SYSTEM PARTIAL ORDER partial order time model for the recovery
computation

76

SYSTEM TIMELINES timelines time model for the recovery
computation

76

TIMELINES time model organizing process activity into
timelines

22

TIMETREES “timelines” time model expressing logical local
precedence for user computation—hence
process structure is a tree, not a line

78

TRANS time model performing transitive closure 18

USER PARTIAL ORDER partial order time model that examines only the
state of the implemented process, and expresses
logical precedence

78

Symbols

A�!B node A precedes node B 11

A �! B node A precedes or equals node B 11

A = !B nodes A and B are incomparable 11

M1 >M2 modelM1 refines to modelM2 15

hM; � i the representation map induced by applying
modelM to graph �

13

M the transitive closure of modelM 18
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[�i] a sequence of unfolding ground-level graphs
representing a computation in progress

17

SM;� the set of ground-level graph sequences that, at
some point, generate � throughM

17

(M;M0) a parallel or nonlinear pair;M is the global
system model andM0 is the local process model

18, 21

M=M0 the factoring model for pair (M;M0) 18

�pX the process p entry of X 31

R(A) the rollback vector of A 32

R�(A) the adjusted rollback vector of A 33

V(A) the timestamp vector of A 32

V�(A) the adjusted timestamp vector of A 33

V0(A) the timestamp pseudo-vector of A 80

X � Y timeslice X precedes timeslice Y 32

X u Y the meet of X and Y 33

X t Y the join of X and Y 33
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