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Abstract. The SEM approach to PKI (by Boneh et al [4]) offers many advan-
tages, such as instant revocation and compatibility with standard RSA tools.
However, it has some disadvantages with regard to trust and scalability: each
user depends on a mediator that may go down or become compromised.
In this paper, we present a design that addresses this problem. We usesecure
coprocessors linked with peer-to-peer networks, to create a network of trustwor-
thy mediators, to improve availability. We use threshold cryptography to builda
back-up and migration technique, to provide recovery from a mediator crashing
while also avoiding having all mediators share all secrets. We then use strong
forward secrecy with this migration, to mitigate the damage should a crashedme-
diator actually be compromised. We also discuss a prototype implementation of
this design.

1 Introduction

In this paper, we apply tools including peer-to-peer computing and secure coproces-
sors to distribute the SEM approach to PKI, and thus preserveits advantages while
overcoming its scalability, reliability, and trust problems. Sect. 2 reviews the SEM ap-
proach, and discusses its advantages and disadvantages. Sect. 3 discusses the tools we
apply to this problem. Sect. 4 discusses the design we build with these tools. Sect. 5
discusses our prototype. Sect. 6 discusses some related approaches. Sect. 7 discusses
some conclusions and future work.

2 SEM

Motivation In PKI, a certificateis a signed assertion binding a public key to certain
properties. The correctness of the trust decisions a relying party makes depends on the
assumption that the entity knowing the matching private keypossesses those properties.
When this binding ceases to hold, this certificate needs to berevoked, and this revoca-
tion information needs to propagate to relying parties, lest they make incorrect trust
judgments regarding that public key.
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by Internet2/AT&T, and by the Office for Domestic Preparedness, U.S. Dept of Homeland
Security (2000-DT-CX-K001). The views and conclusions do not necessarily represent those
of the sponsors.
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Consequently, fast and scalable certificate revocation hasbeen area of active re-
search in recent years (e.g.,[21, 23]). In theirSecurity Mediator1 (SEM)approach, Boneh
et al [4] proposed a system that revokes the ability of the keyholder to use a private key,
instead of (or in addition to) revoking the certificate attesting to the corresponding pub-
lic key.

Architecture The SEM approach is based onmediated RSA (mRSA), a variant of RSA
which splits the private key of a user into two parts. As in standard RSA, each user has
a public key(nu, eu) and a private keydu, wheren is the product of two large primes,
gcd(eu, φ(nu)) = 1, anddu ∗ eu = 1 (mod φ(nu)). The public key of a useru is the
same as in standard RSA, as is the public-key operation. The two parts of a user’s secret
key aredsem,u andduser,u, wheredu is the standard secret key anddu = dsem,u + duser,u

(mod φ(nu)). duser,u is the part held by the user anddsem,u is the part held by the SEM.
(We note thatdsem,u andduser,u are each statistically unique for each useru.)

This division of the secret key requires changes to the standard RSA key setup be-
cause a SEM must not knowduser,u and a user must not knowdsem,u. So, a trusted party
(e.g., a CA) performs key setup by generating a statistically unique{pu, qu, eu, du, dsem,u}
for a useru. The private keydu is generated in the standard manner, but is communi-
cated to neither the SEM nor the user. Instead,dsem,u is chosen as a random integer in
[0, nu − 1], andduser,u is then calculated asduser,u = du − dsem,u (mod φ(nu)).

Because the private keydu is split into two “halves,” private key operations require
the participation of both the user and the SEM: e.g., each party raises the message to
its half-exponent, modulon, and the results are then multiplied, also modulon. (See
Fig. 1.) Thus the full private key never needs to be reconstructed

User
duser,u dsem,u

SEM
server

Request partial decryption or partial sig

Send results of partial computationCombine SEM results
with user results

Fig. 1.The general SEM algorithm.

AdvantagesThe SEM approach provides several advantages. Since these essentially
are standard RSA operations, a SEM PKI is compatible with most legacy public-key
cryptography tools. Since a full private-key operation canoccur only if the SEM be-
lieves the user’s key pair is valid, then the system can revoke a key pair by having the
SEM refuse to carry out its half of the operation. This approach can reduce or even
eliminate (in the case of revocation due to administrative action, such as a user ceas-
ing employment) the need for certificate revocation lists—since a private-key operation
(such as signature or decryption) cannot occur after revocation.

1 Also referred to as “semi-trusted mediator.”

Appeared in Public Key Infrastructure: EuroPKI 2004. 2



Furthermore, the SEM itself gains no useful information in servicing users. When
decrypting, the SEM receives the ciphertext but is only ableto partially decrypt it, so
no useful information could be gained by a malicious SEM. Forsignature generation, a
user sends the SEM a hash of the message which the SEM uses to generate the signature.
This also contains no information about the cleartext of themessage itself, so a user’s
data is kept confidential.

Additionally, the compromise of a single SEM does not compromise the secret keys
of any users. Instead, the attacker is able to revoke the security capabilities for users
connected to the SEM. Although Boneh et al state that attackers could unrevoke revoked
certificates, this can be prevented by having honest SEMs permanently deletedsem,u

upon revocation.

DisadvantagesHowever, the initial SEM approach has scalability disadvantages. In
a large-scale distributed system, we must allow for problems such as mobile users,
network partitioning, crashing of machines, and occasional compromise of servers. To
accommodate a large population, we could add multiple SEMs.However, if a user’s
dsem,u lives on exactly one SEM, then we have many problems: temporary denial of
service if the network is partitioned; permanent denial of service if the SEM suffers a
serious failure; inability to revoke the key pair if an adversary compromises a SEM and
learns its secrets.

In their original paper, Boneh et al did propose one way to distribute the SEM archi-
tecture by using a stateless model in which a user can connectto any SEM. However,
this approach required that the entire SEM network have a single RSA key pair, so that
any node can access the encrypteddsem,u bundled with each request. This network-
wide key pair could either be stored on each island through replication or shared se-
curely among islands using threshold cryptography. In the first case, compromise of a
single island is potentially easier (due to replication) and causes damage to the entire
network. In the latter case, each user request requires distributed computation among
islands which hurts performance. In either case, the user isat risk if she connects to a
compromised SEM.

3 Tools

To address the problem of distributing SEM, we use several tools.
We need to be able to trust a SEM to use and delete each user’sdsem,u when appro-

priate, and not transmit it further. However, the more we distribute the SEMs through-
out a network, the less foundation we have for such trust. To address this problem, we
usesecure coprocessors, such as the IBM 4758 [26]. This gives us a general-purpose
computing environment and cryptographic protections, coupled with high-assurance
protection against physical attacks, and anoutbound authenticationscheme which lets
software applications running on the coprocessor authenticate themselves to remote
parties [25]. This platform thus gives us a safe and confidential environment in remote
environments. If a user trusts our software is not flawed, then the user can also trust
that software executed cannot be altered by adversaries andthe user may also remotely
authenticate instances of this software. (In Sect. 7, we consider using newer trusted
computing platforms as well.)
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We’d like to make it easy for users to find SEMs (and for SEMs to find each other),
and we’d like this functionality to persist despite failures and (potentially) malicious
attacks.Peer-to-peer networking (P2P)(embodied by technology such as Gnutella) is
an attractive choice here. With P2P, communication does notrely on a central entity to
forward requests or messages. Rather, each entity either tries to satisfy a request itself,
or forwards it to its neighbors, in the spirit of the older distributed concept ofdiffusing
computation[2].

This decentralization is a key benefit of the peer-to-peer network, as it removes
any central entity necessary for the system to function. Without a central controlling
server, the network’s survivability increases by causing denial of service attacks to be
much more difficult (as the RIAA has found to its dismay). Additionally, the damaging
effects of network partitions are potentially alleviated by standard P2P communication
algorithms, as a new path to a destination may be found.

We will also need to distribute critical secrets across multiple SEMs, for resilience
against attack. Here, we can use the standard technique ofthreshold cryptography[24].
Given a secrety and parameterst < k, we construct a degreet polynomial that goes
through the point(0, y), and choosek points on this polynomial assharesof y. Any t

shares suffices to reconstruct the polynomial and hencey, but fewer thant shares give
no information.

We need to accommodate the fact that machines may be compromised, and the
secrets they store may become exposed to the adversary. To mitigate the damage of
such potential exposure, we can use the technique ofstrong forward security[5]. We
divide time into a sequence of clock periods, and use a cryptographic system such that
even if the private key for a given period is exposed, use of the private key in previous
or future sessions is still secure. Burmester et al give two examples of strong forward
secure schemes, one for any public key cryptosystem and another for use in an El Gamal
key escrow system.

4 Design

Architecture In our basic architecture, we envision SEMs as trustworthyislandsdis-
tributed throughout the network. We use a secure coprocessor to house each SEM and
thus give it a foundation for this trustworthiness. As notedearlier, this technology also
lets each island have a key pair and certificate chain that establishes the entity who
knows the private key is an instantiation of our island software on an untampered de-
vice. Thus, users can authenticate islands, and islands canauthenticate each other.

Each island will house resources that enable it carry out services. When a user
requests such a service, we use P2P techniques to carry the request to the proper island,
and carry the response back to the user. (As we discuss below,individual islands will
also house resources other islands need; we can use P2P thereas well.)

Despite physical protections, an individual island may still become compromised
and reveal its data to the adversary. An individual island may also become unavailable,
due to crash or partition. To handle these scenarios, we build amigrationscheme based
on threshold cryptography and strong forward security.
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When we initially create a secretx and transmit it to an islandL, we also split
into k shares using threshold cryptography. We securely transmiteach share ofx to a
different island. (Additionally, the shares may be proactively updated using the tech-
niques described in [11, 12, 14, 15] so that an attacker may not slowly acquire enough
shares to reconstructx.) After those steps are complete, the secret is stored both on the
primary islandL and onk other islands, so an attacker must either compromiseL or
compromiset of thek islands in order to getx.

When islandL is unavailable to fulfill a request that requiresx, then the requester
will have to be redirected to another islandM , and the shareholders will need to par-
ticipate in reconstructingx there. However, since the original islandL may have been
compromised,x must be updated using strong forward security so that the oldversion
onL is rendered useless.

The general migration scheme is executed as follows:

1. The user tries to connect to the assigned islandL, but fails.
2. The user then connects to another islandM instead.M may be chosen either pseu-

dorandomly, using a load balancing algorithm or another scheme (e.g., based on
network proximity to the user).

3. The islands that hold shares ofx are contacted and, and thisx is updated using
strong forward security. As discussed below, this update may or may not involve
reconstruction ofx, depending on the method chosen. Generally, the strong forward
security scheme will vary depending on the how the secretx is generated.

4. Strong forward security results inM storing the updated secret.
5. Migration is complete andM can then fulfill the user’s request.

SEM OperationsTo use this architecture for SEM, each island acts as a SEM media-
tor, holdingdsem,u for a number of clients. We distribute load across the islands by, at
key generation, assigning users to different SEMs. (We could also distribute load via
migration.) As with the original SEM architecture, a user’sdsem,u is stored in full only
on one island.

In the original SEM scheme [4], a CA generates key pairs for users and splitsd
into two halves. In our variant, the CA must additionally sharedsem,u to k islands in the
network using threshold cryptography. (See Fig. 2 Also stored with those shares is the
user’s identity and the revocation status of the user’s key pair (initialized to “false,” not
revoked). For key generation, the CA must be able to prove itsidentity to the islands;
otherwise, the islands will ignore its request. If we desired an escrow service to allow
authorized decryption of data after revocation (or if we do not decide to use the CA
during migration, as discussed below), we also distribute shares of the full secret key
du.

If the island that holdsdsem,u and revocation information for a useru goes down,
then the other islands must be able to determine whether the user’s key pair has been
revoked. We accomplish this by, during revocation, having the shareholders as well as
original island update the revocation status for that key pair. In our initial vision, we
delete the shares ofdsem,u that are stored onk other islands.

Assume that a user’sdsem,u is stored on islandL. The network is notified that a
user’s key pair is to be revoked, and a P2P request is generated toL to revoke the user’s
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User
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duser,u dsem,u

k shares ofdsem,u

k random
islands

Distributed SEM Network

Fig. 2.Key set-up in our proposed system

key pair. If L is operational, thenL notifies all of the other islands that hold shares
of dsem,u to delete them and store the fact thatdsem,u has been revoked;L also deletes
dsem,u and adds the user’s serial number to its CRL. Else ifL is not operational, then the
k islands holding the shares ofdsem,u are notified and told to delete their shares. (Note
that in this case, migration—see below—has not yet occurred for this user or else an
island would have been contacted.)

SEM Migration If a useru issues a request but the islandL holdingdsem,u is not avail-
able, then we select another islandM and request migration. As with other selections,
M may be chosen in a number of ways (although a random or pseudorandom way, so
that an attacker cannot predict it, would help in some scenarios—we plan to add this in
future work). See Fig. 3.

After that initial step is performed, we have two different approaches, depending
on whether a CA exists that can know the full private keydu. Any communication
between the islands is authenticated using the outbound authentication of the secure
coprocessors and it is assumed that the online CA also has some mode of outbound
authentication to prove the source of its messages.

For added resilience, we can have shareholder islands not participate in migration if
they can still ping the original islandL.

User

IslandL down

IslandM

k random
islands
with

shares
of dsem,u

Distributed SEM Network

Fig. 3.Migration in our proposed system
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If we have an online CA, the new islandM contacts it and tells it that migration
is to occur. (If we constrain the choice of the nextM , then the CA must verify that
M is a satisfactory candidate.)M sends a request for any islands in the network that
have shares ofdsem,u to send those securely to the CA using standard RSA encryption.
The CA can then reconstructdsem,u. If the CA stores the full private key fordu, then
it can use that. Otherwise, the shareholders fordu must also send those, so the CA can
reconstruct it as well. The CA generates a random numberx in the interval[0, nu − 1]
such thatx 6= dsem,u, and calculatesy = du − x (mod φ(nu)). The CA securely
distributes shares ofx to thek shareholder islands using threshold cryptography; the
shareholder islands delete the old shares fordsem,u. The CA securely sendsy to the user
by encrypting it with the user’s public key and then partially decrypting with the old
dsem,u. The user deletes the oldduser,u and setsduser,u = y. The CA securely sends the
x to M , who deletes the olddsem,u and setsdsem,u = x.

Once the user receivesy, it reconnects to the network and performs the operation
again, using its new valueduser,u. At this point,M can complete the request and the
migration is complete.

If no CA exists, then we need to generate a newdsem,u, duser,u pair without recon-
structingdu or φ(nu), since we do not have a safe place to store them.

For now, we borrow the trick of [16] and haveM generate aδ in a range[−r, r], and
changingdsem,u to dsem,u − δ, wherer is big enough to keep the key halves changing
unpredictably, but small enough to be smaller thandsem,u andduser,u for a practically
indefinite number of rounds.M sendsδ to the user (encrypted withu’s public key and
then partially decrypted with the olddsem,u); the user replacesduser,u with duser,u + δ.
(We could also use the [16] trick of havingM andu together pickr, to reduce risk from
a compromisedM .)

This way, neitherM nor u need to knowφ(nu), but the newduser,u and dsem,u

remain positive and still sum todu. M splitsr into k shares and sends each to adsem,u

shareholder; each shareholder uses its piece to to update its share.
It is tempting to haveM pick a newdsem,u directly and distribute shares to the

shareholders ofdu, who then calculate the newduser,u in a nicely distributed fashion.
However, as of this writing, we can cannot see how to reducedu −dsem,u to du −dsem,u

(mod φ(nu)) without reconstructingφ(nu).
Once the user receives the newduser,u, it can compute its half of the normal computa-

tion using the newduser,u. At this point,M can also complete its half of the computation
because it has generated a newdsem,u and the migration is complete.

As an area of future work, we are also considering incorporating strong forward
secrecy into regeneration of the user’s private key during regeneration ofdsem,u. We
already have trusted hardware, one of the components of someSFS schemes in the
literature (e.g., [32, 9]). Furthermore, this would protect against compromise ofL by
the useru, in order to obtaindsem,u and reconstructingdu.

When an island goes down (or is compromised and subsequently shut down and
restarted from a clean state), it has a few options upon reboot:

The island could delete all of the key halves it has stored, and thereby force users
to migrate back to it. New users would also be assigned to it. It also deletes all of the
shares of that it stored and requests new shares of those to begenerated.
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Alternatively, the island could poll the other islands to determine whichdsem,u

halves have migrated away from it. It then deletes the information for the users that
migrated away and continues serving the other users. The island can continue using the
shares it has stored, but it must determine whether any of them are out of date. Since
thedsem,u shares must be updated during migration, thedsem,u shares could be invalid
and the network must be polled to determine whether this is the case. If so, then the
outdated shares must be updated.

Analysis First, we consider compromise of specific entities.
If the CA has been compromised, then we have a serious problem, since the CA

generates the users’ initial key pairs, and in the CA-migration case, learns the new key
pairs as well.

Alternatively, supposeL has been compromised. The islandL holdsdsem,u for some
number of users. Additionally,L stores shares for some other users in the distributed
SEM network. We must assume that the attacker has access to all of these values, so
now we analyze what privileges are granted by illicit accessto them.

– If the attacker acquiresdsem,u for another user, then migration effectively disables
this dsem,u because it causes a newduser,u to be issued to the user. (Also, note that
the newduser,u is not sent back toL.) Since the newduser,u does not mesh with the
old dsem,u due to the mRSA protocols, the olddsem,u is rendered useless.

– If the attacker acquiresdsem,u and colludes with that user, then the attacker will
be able to computedu from duser,u anddsem,u, so migration fails to achieve full
security in this case (unless, as discussed earlier, we try implementing SFS here as
well).

– If the attacker colludes with a user whose key-half is not on that island, then the
user and attacker might trick the SEM network to migrating that user’s data toL,
and thus reconstructdsem,u. The user will then be able to reconstructdu, the full
private key. This problem can be mitigated by using pings (asstated in section 4.3)
to ensure that the user’s main island is unavailable, and also using a non-predictable
way to generate the next island for migration (to reduce the chance thatM is a valid
candidate). However, such problems may be the inevitable cost of higher availabil-
ity in the distributed SEM network.

– If the attacker acquires shares of adsem,u, the attacker effectively acquires no valu-
able information, unless the attacker also gains access to enough other shares of
either in order to reconstruct them. However, this can be made extremely difficult
using proactive share updating, as described in [11, 12, 14,15].

Clearly, there is a period between the time of compromise time when that compro-
mise is discovered. However, the use of secure coprocessorscauses any physical attacks
to be detected immediately (with high assurance) and stopped by the zeroization of co-
processor data.

If M is compromised, then the attacker gets access to the newdsem,u, so the mi-
gration is unsuccessful. However, as long as another migration to an uncompromised
island can be performed, thedsem,u acquired by the attacker can be rendered useless as
described above. Additionally, in this case the attacker could send the user fake data for
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the newduser,u, but any resulting inconsistencies with decryption or signature genera-
tion would just flagM as compromised. As stated above, with secure coprocessors the
window of time before this compromise is discovered should be small.

Network Trust ModelThe primary parties that require use of the network are the islands
that comprise the network itself. Each island must have exclusive access to certain ser-
vices in order to provide fast revocation of security capabilities. However, the CA (and
users and islands) must also be able to gain access to the network services in a restricted
way. Clearly, the requests of each party will differ and there must be a clear delineation
of capabilities between them. For example, during migration, islands will have to search
the network to find other islands that hold the shares of a user’s dsem,u. Although this
operation can be executed by the CA as well (when CAs can perform migration), users
should not be able to (easily) determine the location of or acquire shares.

Islandsjoin the network normally and become full members of it. Since each island
in the network has a secure coprocessor with outbound authentication/attestation, each
member in the peer-to-peer network can prove that it is a trusted island with certain
privileges. This creates a trust network in which each island is known to be executing
unmolested as long as our software is not flawed (and the coprocessor’s physical se-
curity protection works). Once an island has authenticateditself to the system, it can
search the network, advertise services, and perform any other command allowed by the
peer-to-peer software.

Certificate Authoritiescan interact with the network in one of two ways: (1) they can
connect to an island server that provides an interface to therest of the network; or (2)
they can connect directly to the P2P network, but with limited capabilities (registration
and, if implemented using a CA, then migration). For example, the CA must be able
to somehow query the network during key generation to determine to which island to
assign the user.

Usersdo not connect directly to the P2P network, but instead communicate with
an island that provides indirect access to the services available on the network. For
example, during normal operation, users connect directly to their assigned island, but if
that fails, then the user must notify the P2P network that migration is necessary. Users
do so by connecting to another island (available in a public list) and requesting the
migration service. The user is then assigned to an island andfurther communication
occurs directly between that island and the user.

5 Prototype

We are currently building a prototype of our Distributed SEMapproach; at the time of
this writing, our current code (2000 lines of Java) deals with the peer-to-peer aspects of
key generation and execution of migration (See Fig. 4.)

The Island Server Codeperforms migration and the island’s part of decryption and
key and signature generation usingdsem,u. This part also introduces the networking
support for the islands. It is a combination of both the original SEM server code, along
with our server-related migration code.

The code on each island is divided into two parts. TheP2P network codeconsists
of the peer-to-peer access layer and the protocols necessary for island communication.
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Fig. 4.Architecture of our system

We use the Project JXTA open source framework [29] to accomplish this. Each island
runs a server that accepts connections from only the SEM server on the same machine.
The server application is built on top of JXTA and uses the peer-to-peer protocols, such
as searching and pinging, available. It executes the distributed aspects of key generation
(distribution of shares ofdsem,u) and migration.

Specifically, during the distributed SEM operations we use JXTA’s discovery ser-
vice to find islands with the information needed (e.g. sharesof dsem,u). We plan to
leverage the security features of the JXTA framework to secure the P2P activities of the
distributed SEM network. These include secure P2P groups torestrict access to the net-
work and secure pipes to allow safe distribution of shares toan island during migration.
Furthermore, we envision the use of outbound authentication data of secure coproces-
sors [25] in JXTA XML messages to validate the source of messages generated in the
migration and revocation algorithms. The capabilities of the secure coprocessors will
be exposed in the Java code using the Java Native Interface (JNI) [27].

TheSEM server codeaccepts requests from users and handles most of those without
using the P2P layer. When a migration or key registration request is received, however,
the server code forwards the request to the internal server running JXTA and the internal
server completes the request.

This is a modular approach that allows us to change the peer-to-peer implemen-
tation in the future. In the current prototype, we have implemented our network code
in a simplified version. (Integration with the SEM server code, utilization of security
features in the P2P layer, and porting on to the 4758 remain tobe done.)

The Certificate Authority Codeparticipates in key generation, as in the original
SEM architecture. With our additions it is necessary for theCA to connect to an island
and initiate a P2P registration request. We have implemented the code to perform reg-
istration in the network. (However, it is not yet integratedwith the original SEM key
generation code.)

TheClient User Codecombines the functionality of the original SEM architecture,
which consisted of the user’s half of signature generation and decryption, along with
with the additional steps required to request migration andprocess the migration re-
sponse. (This remains a task for the future.)
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Our code will be available for public download. Since the original SEM code is cov-
ered under the GPL, our changes—for migration and support of distributed functionality—
are as well.

6 Related Work

Trusted Hardware and P2PMarchesini and Smith [18] built ahardened GnutellaP2P
communication system within secure coprocessors; Boneh etal [13] also considered
the potential of combining trusted computing with P2P.

Strong Forward SecrecyTzeng and Tzeng [32] considered strong forward security with
threshold cryptography for El Gamal signatures.

Standard Revocation Techniques Certificate Revocation Lists and variations on this
method (e.g.,∆-CRLs) are one of the most common methods of certificate revocation.
To revoke a certificate, the CA adds the serial number of the revoked certificate to the
CRL and then publishes that CRL to a directory. Since this is only done periodically,
CRLs are not a guarantee that a certificate is still valid. Also, since CRLs may be very
large, users will generally not want to have to download themvery often. In order to
check whether a certificate is revoked, a user must potentially download a long CRL. To
mitigate this problem,∆-CRLs only distribute a list of the certificates revoked since the
last CRL was distributed. Additionally, Cooper notes that when a new CRL is issued
there will be a peak time in which many requests are made to download the CRL from
the directory (because everyone wants to make sure that certificates aren’t revoked and
a CRL expires at the same time for everyone). He suggests spreading out the requests
for CRLs over time by “over-issuing” CRLs such that a new CRL is published before
the old one expires [7].

Another similar technique isWindowed Key Revocation, which uses CRLs but with
a twist that certificates are assumed to be valid for a certain“window” of time and
that CRLs have a reduced size due to the revocation window [20]. Additionally, in this
scheme verifiers can control the allowed “window” time and tocheck if a certificate is
revoked, the verifier checks the windowed CRL issued or grabsa new certificate from
the CA.

The Online Certificate Status Protocol (OCSP)provides online verification that a
certificate is still valid. This requires a CA to generate a digital signature for each re-
quest because the response from the CA must be signed [21]. The CA stores an internal
log of the status of all certificates or possibly just a CRL that it doesn’t publish. So,
addition of revoked certificates is quick and the certificatestatus is updated instantly. A
user must be online and must connect to the CA and check the status of a certificate.

Certificate status verification is a computationally expensive operation, as the re-
sponse from the CA must be digitally signed. If a single validation server performs
OCSP, then all requests must be routed to it, potentially overloading the server. Secu-
rity may be weakened by a distributed environment because ifany keys of any OCSP
servers are compromised, then the entire system is compromised.

With Certificate Revocation Trees, instead of keeping entire list of revoked serial
numbers, we keep a list of ranges of serial numbers that are good or bad. This saves
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space (better than standard CRLs), but adding a serial can involve a good amount of
computation as it can require the entire tree to be recomputed. Still, revocation status
can be quickly determined by a fast search through the tree.

Newer Revocation TechniquesIn [4], Boneh et al give a discussion of the benefits of the
original SEM architecture with regards to other current solutions. Since the publication
of that paper, a few other techniques for certificate revocation have been developed. Mi-
cali’s NOVOMODOapproach [23] uses one-way hashing and hash chains to show the
validity or revocation status of certificates. CentralizedNOVOMODO—in which the
central secure server responds to all validity requests—is prone to performance issues
and denial of service attacks as it is the central source for certificate validity proofs.
Micali also presented a distributed version: having one central trusted server send out
an array of the current validity proofs for all users to each server in the network. Micali
does not discuss solutions to many potential problems that could occur during a distri-
bution, such as bandwidth problems, network partition or untrusted server corruption.
Micali states that it should be very difficult to attack the central server, as it does not
accept incoming requests, but an attacker could instead attack the network surrounding
the server, preventing it from distributing the array. In other words, distributed NOVO-
MODO still has a central “head” that can be severed (albeit ina more difficult way) in
order to shutdown the system.

Ding et al introduceServer-Aided Signatures (SAS), [8] a technique based on medi-
ated cryptography similar to the SEM architecture with the focus on minimizing client
computation load. While Distributed SEM works with both signature generation and
decryption, SAS only deals with signature generation. It achieves a performance boost
for the user by only requiring the user to compute a hash chainduring setup, in a similar
fashion to NOVOMODO, but differing in that the user keeps thechain secret. In SAS,
the server must be stateful and, for each user, must save their certificate,i, and all of
the signatures already generated for that user. This amountof state makes migration
infeasible as every signature would have to be distributed on other islands using thresh-
old cryptography. Additionally, in SAS the corruption of a server allows the attacker to
produce user signatures because all of the prior signaturesare saved on the server.

SEM Tsudik [31] and Boneh et al [3] have also followed up on their original SEM
work. [16] explores adding proactive updates to the key halves.

7 Conclusions and Future Work

In this paper we have introduced a method to distribute SEM byusing a network that
combines the benefits of secure coprocessors and peer-to-peer networking, and provides
providing efficient and uninterrupted access to private data stored on a trusted third
party, even in the event of occasional server compromise. This approach avoids repli-
cation of data across the network while also avoiding the common use of distributed
computation in order to access the secrets stored.

Once the implementation is completed, an area of great interest will be performance
testing and tuning. The performance of both migration itself and the entire application
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running on the full P2P network (using secure coprocessors)will be reveal much infor-
mation about our approach to distributed SEM—and the feasibility of this P2P/trusted
hardware network.

Also, the IBM 4758 is a relatively expensive special-purpose device. Recent ad-
vances intrusted computing—both with COTS hardware (e.g., [10, 19, 30]) as well
with experimental CPUs (e.g., [6, 17, 22, 28])—explore the potential of achieving simi-
lar functionality (albeit a lower level of physical security) in standard desktop platforms.
We plan to explore the potential (and relative performance)of distributed SEM on these
platforms as well. We also plan to use our framework of P2P on trusted hardware to ex-
plore other applications as well. Finally, general Byzantine attacks must be considered
in the Distributed SEM network and extra steps (e.g., [1]) must be taken to ensure the
correct completion of all operations.
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