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Computer security protocols usually terminate in a computer; however, the human-based services
which they support usually terminate in a human. The gap between the human and the computer
creates potential for security problems. We examine this gap, as it is manifested in secure Web
servers. Felten et al. demonstrated the potential, in 1996, for malicious servers to impersonate
honest servers. In this paper, we show how malicious servers can still do this—and can also forge
the existence of an SSL session and the contents of the alleged server certificate. We then consider
how to systematically defend against Web spoofing, by creating a trusted path from the browser
to the human user. We present potential designs, propose a new one, prototype it in open-source
Mozilla, and demonstrate its effectiveness via user studies.
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1. INTRODUCTION

The World Wide Web has become the standard medium for delivery of electronic
information services to human users. Consequently, the interface between the
user and his browser plays a critical role in the effectiveness of this service
delivery. User interface issues, such as flashiness, aesthetics, and ease of use,
have received considerable attention. In this work, we examine the security
aspects of Web user interfaces. Does user perception of the signals indicating a
secure connection exists imply that a secure connection exists?
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Today, the security of the Web relies on secure socket layer (SSL) [Rescorla
2001], a protocol that uses public-key cryptography to achieve confidential-
ity and integrity of messages, and (optionally) authentication of parties. In a
typical “secure” Web session, the client machine authenticates the server and
establishes an encrypted, MAC’d channel using SSL. After establishing the
SSL channel, the Web browser displays corresponding signals to indicate that
an SSL session has been set up. Typically, these signals include locking the SSL
padlock, changing the protocol header to https, popping up warning windows,
and permitting the user to call up a window containing server certificate infor-
mation. The human uses these signals to make his or her trust judgment about
the server.

However, if an adversarial server can provide content that causes the browser
to produce similar signals without actually having an authenticated SSL ses-
sion, then the user will make incorrect trust judgments. The adversary can thus
subvert the secure Web session simply by creating the illusion that the browser
has displayed these signals.

The effectiveness of “secure” Web sessions thus critically depends on the pres-
ence of a trusted path between the Web browser and its human user. Through
this trusted path, the browser can communicate relevant trust signals that
the human can easily distinguish from the adversary’s attempts at spoof and
illusion.

Background. The research that this paper reports had roots in our consid-
eration of public-key infrastructure (PKI).

In theory, public-key cryptography enables effective trust judgments on elec-
tronic communication between parties who have never met. Although the bulk
of PKI work focuses on distribution of certificates, we started instead with a
broader definition of “infrastructure” as “that which is necessary to achieve
this vision in practice,” and focused on server-side SSL PKI as perhaps the
most accessible (and e-commerce critical) embodiment of PKI in our society.

Loosely speaking, the PKI in SSL establishes a trusted channel between the
browser and server. Our initial set of projects [Jiang et al. 2001; Smith 2000,
2001; Smith and Safford 2001] examined how to extend the trust from the
channel itself into data storage and computation at the server.

However, the “secure Web” will not work unless the human is able to make
effective trust judgments about the server with which his or his browser is in-
teracting. Our immediate motivation was that, for our server-hardening tech-
niques to be effective, the human needs to determine if the server is using them;
however, this issue has broader implications, as Section 6 will discuss.

Related Work. In their seminal work, Felten et al. [1997] introduced the
term “Web spoofing” and showed how a malicious site could forge many of the
browser user interface signals that humans use to decide the server identity.
Subsequent researchers [Paoli et al. 1997] also explored this area. (In Section 2,
we discuss our work in this space.)

In related work on security issues of user interfaces, Tygar and
Whitten [1996] examined both the spoofing potential of hostile Java applets
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as well as the role of user interfaces in the security of email cryptography sys-
tems [Whitten and Tygar 1999]. Work in making cryptographic protocols more
tenable to the human—including visual hashes [Perrig and Song 1999] and per-
sonal entropy [Ellison et al. 2000]—also fits into this space. In concurrent work,
Yee [2002] discussed user interface design for security; Lefranc and Naccache
[2003] examined using malicious Java for spoofing some SSL signals, and other
groups [Fogg et al. 2002; Friedman et al. 2003; Turner 2003] have examined
how users draw trust conclusions about Web sites.

The world of multilevel security has also considered issues of human-
readable labels on information. The compartmented mode workstation (CMW)
[Rome 1995] is an OS that attempts to realize this security goal (and others)
within a modern windowing system. Although CMW itself is not a solution1 for
Web spoofing, the approach CMW used for labeling is a good starting point for
further exploration—which we consider in Section 3.3.

Subsequent to the work reported here, our own group has been looking at
security and trusted path issues regarding browsers and client-side authen-
tication [Marchesini et al. 2003]. As this paper has gone to press, additional
spoofing techniques have emerged (e.g. Secunia [2004]), as has follow-on work
on spoofing defenses (e.g., Herzberg and Gbara [2004]).

This Paper. In this paper, we discuss our experience in designing, building,
and evaluating trusted paths between the Web browser and the human users.

Section 2 discusses the problem that our initial investigations revealed: the
current browser paradigm makes it possible for an adversarial server to subvert
a user’s trust judgment, by causing her browser to produce signals that are
similar or identical to those produced by a secure session.

Section 3 develops criteria for systematic, effective solutions. A good solu-
tion should secure as broad as possible family of parameters that humans use
to form trust judgments about servers. We discuss some solution strategies
we considered and then present the one we settled on, synchronized random
dynamic (SRD) boundaries.

Section 4 discusses how we implemented this solution in open-source Mozilla;
Section 5 discusses how we validated our approaches with user studies;
Section 6 offers some conclusions and discusses avenues for future work.

2. SPOOFING SERVER-SIDE SSL

In the first part of our work, we examined whether the browser technology
(current when we began the experiments) permitted an adversarial server to
provide material that effectively mimics the signals of a trusted, secure browser.

2.1 Spoofing Overview

To make an effective trust judgment about a server, perhaps the first thing a
user might want to know is the identity of the server.

1CMW labels files according to their security levels. Since the browser would run within one security
level, all of its windows would have the same label. The users still could not distinguish the server
material from the browser user interface.
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Can the user accurately determine the identity of the server with which his
browser is interacting?

On a basic level, a malicious server can offer realistic content from a URL
that disguises the server’s identity. Such impersonation attacks occur in the
wild: by offering spoofed material via a URL in which the spoofer’s host-
name is replaced with an IP address (the Hoke case [Maremont 1999; United
States Securities and Exchange Commission 1999] is a good example); by
typejacking—registering a hostname deceptively similar to a real hostname, of-
fering malicious content there, and tricking users into connecting (the “PayPai”
case [Sullivan 2000] is a good example). Furthermore, as is often pointed
out [Barbalac 2000], RFC 1738 permits the hostname portion of a URL to
begin with a username and password. Hoke could have made his spoof of a
Bloomberg press release even more effective by prepending his IP-hostname
with a “bloomberg.com” username. Many Web browser configurations will suc-
cessfully parse URL http://www.bloomberg.com@1234567/ and fetch a page
from the server whose IP address, expressed as a decimal numeral, was 1234567.
(Subsequent to our research, IE suffered a bug that permitted an escape char-
acter in the URL to cause only the username to be displayed!)

However, we expected that many Web users might use more sophisticated
identification techniques that would expose these attacks. Users might examine
the location bar for the precise URL they are expecting; or examine the SSL
icon and warning windows to determine if an authenticated SSL session is
taking place; or even make full use of the server PKI by examining the server’s
certificate and validation information. Can a malicious server fool even these
users?

Felten et al. [1997] showed that, in 1996, a malicious site could forge many of
the browser’s user interface signals that humans use to decide server identity,
except the SSL lock icon for an SSL session. Instead, Felten et al. used a real
SSL session from the attacker server to trick the user—which might expose the
adversary to issues in obtaining an appropriate certificate, and might expose
the hoax, depending on how the browser handles certificate validation.

Since subsequent researchers [Paoli et al. 1997] reported difficulty reproduc-
ing this work and since Web techniques and browser user interface implemen-
tation have evolved a lot since 1996, we began our work by examining whether
and to what degree Web spoofing was still possible, with current technology
[Ye et al. 2002].

Our experiment was more successful than we expected. To summarize our
experiment, for Netscape 4.75/4.76 on Linux and Internet Explorer 5.5 on
Windows 98—current when we started our work2—using unsigned JavaScript
and DHTML, we can produce an entry link that, by mouse-over, appears to go
to an arbitrary site S. If the user clicks on this link, and either his browser has
JavaScript disabled or he is using a browser/OS combination that we do not

2Obviously, as our work becomes archived, new versions of browsers emerge. We have tested our
demo in new versions: Netscape 6.0, 7.0 in Linux; and IE 6.0 in Windows 2000, Windows XP; the
demo still works well. As noted, the only nit is predicting which theme (classic or modern) the user
has chosen in Netscape 6.0 and 7.0, Windows XP.
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support, then he really will go to site S. Otherwise, the user’s browser opens
a new window that appears to be a functional browser window which contains
the content from site S. Buttons, bars, location information, and most browser
functionality can be made to appear correctly in this window. However, the user
is not visiting site S at all; he is visiting ours. The whole window is a Web page
delivered by our site.

Furthermore, if the user clicks on a “secure” link from this window, we can
make convincing SSL warning window appear and then displays the SSL lock
icon and the expected https URL. Should the user click on the buttons for secu-
rity information, he or she will see the expected SSL certificate information—
except no SSL connection exists, and all the sensitive information that the user
enters is being sent in plain text to us.

A demonstration is available at our Web site.

2.2 Technical Details

When we describe our spoofing work, listeners sometimes counter with the
objection that it is impossible for the remote server to cause the browser to
display a certain type of signal. The crux of our spoofing work rests in the fact
that this objection is not a contradiction. For this project, we assumed that the
browser has a set of proper signals it displays as a function of server properties.
Rather than trying to cause the browser to break these rules, we simply use the
rich graphical space the Web paradigm provides to generate harmless graphical
content that, to the user, looks just like these signals.

The Princeton paper [Felten et al. 1997] seemed to imply that a malicious
server could change or overwrite the client’s location bar. In our initial attempts
at spoofing, we tried to add our own graphical material over official browser sig-
nals such as the location bar and the SSL lock icon. This was not successful.
We then tried to open a new window with the location bar turned off and status
bar on.3 However, this approach creates problems in modern browsers. With
some Netscape Navigator configurations, turning off one bar invokes a secu-
rity alarm. With Internet Explorer, we can turn off the bar without triggering
alarms. But unfortunately, we cannot convincingly insert a fake location bar,
since a noticeable empty space separates browser bars (where the location bar
should be) and server-provided content (where our fake bar is).

Leaving all the bars in the new window makes spoofing impossible, and
turning off some caused problems. However, we noticed that these problems do
not occur if we turn off all the bars in the new window. Furthermore, when we
do this, we can then replace all of them with our own fake ones—and they all
appear with the correct spacing, since that’s under our control. We can get fake
bars simply by using images, culled from real browsers via xv or screen print.
Since the browser happily gives its name to the server, we know whether to
provide Netscape or Internet Explorer images. Our first attempts to place the
images on the fake window resulted in fake-looking bars: for example, Netscape
4.75 leaves space on the right side, apparently for a scroll bar. However, creating

3Through subsequent email conversations, we learned that this is what the Princeton work
did [Dean and Wallach 2001].
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a frame and filling it with a background image avoids this problem. Background
images get repeated; we address that problem by constraining the frame to
exactly the size of the element.

We then went through a careful process of filling this window with material
that looked just like the official browser elements, and correlating this display
with the expected display for the session being spoofed. This work was charac-
terized by the pattern of trying to achieve some particular effect, finding that
the obvious techniques did not work, but then finding that the paradigm pro-
vided some alternate techniques that were just as effective. For one example,
whenever it seemed difficult to pop up a window with a certain property, we
could achieve the same effect by displaying an image of such a window, and
using precaching to get these images to the user’s machine before they are
needed. This pattern made us cautious about the effectiveness of simplistic de-
fenses that eliminate some channel of graphical display. Over and over again,
we found the richness provided a workaround.

For each client platform we targeted, we carefully examined how to provide
server content that, when rendered, would appear to be the expected window
element. Since the user’s browser kindly tells the server its OS and browser
family to which it belongs, we can customize the response appropriately.

2.2.1 Fake Interaction. To make the fake bars convincing, we need to make
them as interactive as the real ones.

We do this mainly by giving an event handler for the onmouseover,
onmouseout, and onclick events. This is the same technique used widely to cre-
ate dynamic buttons in ordinary Web pages. When the user moves the mouse
over a button in our fake bars, it changes to a new look—implying that it got the
focus—and we display the corresponding messages on the status bar. Similar
techniques can also be applied to the fake menu bar and other places.

2.2.2 Pop-Up Menu Bar. If the client clicks on the fake menu bar, he will
expect a pop-up menu, as in the real browser. For Internet Explorer, we con-
struct a convincing fake pop-up menu using a popup object with an image of
the real pop-up menu. For Netscape, we use the layer feature, also with an
image of real pop-up menu. Genuine pop-up menus have interactive capability,
as users click various options; we can use image maps to enable such interaction
(although we have not implemented that yet).

Recall that to get convincing fake bars in Netscape, we needed to load them
as backgrounds in frames. This technique creates a problem for spoofing pop-
up menus: the fake pop-up is constrained to the frame, and the fake menu bar
frame is too small for convincing menus. However, this problem has a simple so-
lution: we replace a multiframe approach with one frame—containing a merged
background image.

2.2.3 SSL Icons and the Status Bar. Another key to convince the client
that a secure connection has been established is the lock icon on the status bar.

Our approach frees the attacker from having to get certified by a trust
root and also frees him from being discovered via his certificate information.
In our attack, our window displays a fake status bar of our own choosing.
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Consequently, when we wish the user to think that an SSL session is underway,
we simply display a fake status bar containing a lock icon.

During the course of a session, various updates and other information can
appear on the status bar asynchronously (i.e. not always directly in response
to a user event). When this information does not compromise our spoof, we
simulate this behavior in our fake window by using the JavaScript embedded
timer to check the window.status property and copy it into the fake status bar.
For Internet Explorer, we use the innerText property to carry out this trick.

Netscape did not fully support innerText until Version 6. However, we felt
that displaying some type of status information (minimally, displaying the URL
associated with a link, when the mouse moves over that link) was critical for
a successful spoof and (at the time of experiment) not supporting victims with
browsers in the Netscape 4.7X family would overly limit our audience. So, we
used the layer feature: the spoofed page contains layers, initially hidden, con-
sisting of status text; when appropriate, we cause those layers to be displayed.
Again, since the fake status bar is simply an image that we control, nothing
prevents us from overwriting parts of it.

2.2.4 SSL Warning Windows. Browsers typically pop up warning windows
when users establish and exit an SSL connection. To preserve this behavior, we
need to spoof warning windows.

Although JavaScript can pop up an alert window which looks similar to
the SSL warning window, the SSL warning window has a different icon in
order to prevent Web spoofing. To work around this in Netscape Navigator, we
again use the layer feature. The spoofed page contains an initially hidden layer
consisting of the warning window. We show that layer at the time the warning
dialog should be popped up—being careful so that the raised window does not
cover input fields. For Internet Explorer, we use a modal dialog with HTML
that shows the same content as the warning window. Unfortunately, there is a
“Web page dialog” string appended on the title bar in the spoofed window.

2.2.5 SSL Certificate Information. A genuine locked SSL icon indicates
that, in the current session, traffic between the browser and server is protected
against eavesdropping and tampering.

To date, the most common SSL scenario is server-side authentication. The
server possesses a key pair and a certificate from a standard trust root bind-
ing the public key to identity and other information about this server. When
establishing an SSL session with a server, the browser evaluates the server
certificate; if acceptable, the browser then establishes SSL session keys
sharable only by the entity who knows the private key matching the public
key in the certificate.

Consequently, to evaluate whether or not a “trusted” session exists, a sophis-
ticated user will not only check for the SSL icon, but will also inspect the server
certificate information: in Netscape 4.75/4.76, a user does this by clicking on the
“Security” icon in the tool bar, which then pops up a “Security Info” window that
displays the server certificate information; in Internet Explorer and Netscape
6, a user does this by double-clicking the SSL icon.
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In our spoof, since we control the bars, we control what happens when the
user clicks on icons. As a proof of concept, in our Netscape 4.75/4.76 spoof,
double-clicking the security icon now opens a new window that looks just
like the real security window. The primary buttons work as expected; clicking
“view certificate information” causes a fake certificate window to pop up, show-
ing certificate information of our own choosing. (One flaw in our spoof: the fake
certificate window has three buttons in the upper right corner, not one.)

The same tricks would work for Internet Explorer, although we have not
yet implemented that case. As future work, since Netscape’s Personal Security
Manager has been touted as a solution to client security management, it would
be interesting to examine the implications of spoofing there.

2.2.6 Location Bar Interaction. Editable location bars are one aspect of
spoofing that has been made more difficult by evolving Web technology. Here,
we need to either gamble on the user’s configuration, or give up on this behavior.
As we noted, JavaScript cannot change a real location bar, but it can hide the
real location bar, and put a fake one in the position where it is expected. The
fake location bar can show the URL that the client is expecting to see. But
besides displaying information, a real location bar has two common interactive
behaviors: receiving input from the keyboard and displaying a pulldown history
menu.

To receive input in our fake bar, we can use the standard INPUT tag in HTML.
However, this technique creates a portability problem: how to confine the ed-
itable fake location line to the right spot in the fake location bar. The INPUT tag
takes a size attribute in number of characters, but character size depends
on the font preferences the user has selected. That is, we can use a style
attribute to specify a known font and font size, so the input field will be the right
size—but if the user has selected the option “use my fonts, not the document’s,”
then the browser will ignore our specification and use the user’s instead. We
try to address this problem by deleting the location line from the location bar
in our background image (to prevent giving away the spoof, in case our fake
bar is smaller than the original one); by specifying reasonable fonts and font
sizes; and by hoping that the users who insist on using their own fonts have
not specified very small or very large ones.

More robust spoofing of editable location lines requires knowing the user’s
font preferences. In Netscape, this preference information is only available to
signed scripts; in Internet Explorer, it is not clear if will be available at all.

Another typical location bar behavior is displaying a pulldown menu of sites
the user previously visited. On Netscape 4.75/4.76, this appears to consist of
places the user has recently typed into the location bar. A more complete his-
tory menu is available from the “Go” tool. Displaying a fake pulldown history
menu can be done using similar technique as in the menu bar implementation,
discussed above. However, we have run into one limit: users expect to be able to
pull down their navigation history; however, our spoofing JavaScript does not
appear to be able to access this information because our script is not signed.

One technique would be to always display a fake or truncated history. For
Netscape 4.75/4.76, where the location pulldown is done via an “arrow” button
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to the right of the location line, we could also simply erase the arrow from our
fake location bar.

2.2.7 Covering Our Tracks. JavaScript gives the Web designer the ability
to change the default behavior of HTML hyperlinks. As noted, this is a useful
feature for spoofing. By overloading the onmouseover method, we can show
misleading status information on the status bar. By overloading the onclick
method, a normal user click can invoke complicated computation.

We use this feature to cover our tracks, should a user have the audacity to
visit our spoofed entry link with an unexpected browser/OS combination, or
with JavaScript turned off.

The entry link of our experimental attack, the door that opens the attacker’s
world to the client, has just one line: <a href= "realsite" onclick="return
openWin()"> Bringing the mouse over this link displays “realsite” on the status
line, as expected.

If the JavaScript is turned off in the user’s browser, the onclick method will
not be executed at all, so it just behaves the same as a normal hyperlink. If
JavaScript is turned on, onclick executes our openWin function. This function
checks the navigator object, which has the information about the browser, the
version, the platform and so on. If the browser/OS pair is not what we want,
the function returns false, and the normal execution of clicking a hyperlink is
resumed, the user is brought to the real site. Otherwise the fake window will
pop up.

2.2.8 Precaching. In order to make the browser looks real, we use true
browser images grabbed from screen. Since our spoof uses a fair number of
images, the spoofed page might take an unusually long time to load on a slow
network. This is not desirable from an attacker’s point of view. To alleviate
this problem, we use precaching. Each page precaches the images needed for
the next page. Consequently, when the client goes to the next page, the images
necessary for spoofing are already in cache.

2.3 Further Discussion

2.3.1 Signed Scripts. Because it gives more control to the user, Netscape
Navigator also provides an API to query about the preferences and even change
preferences—but, as noted earlier, usage of these features is restricted to
“signed scripts,” and we did not allow that for our attack. If we relax this re-
striction, more interesting scenarios are possible. For example, the attacker can
query the security level the browser is running and whether the image switch
is turned on or not. This information can then be used to guide the attack. One
can imagine scenarios where the query is embedded in an “innocent” signed
page, and the information is sent back for a later attack from a different server.

Netscape 6 includes user-selectable formats; if the user does not select the
“classic” format, then our spoof would be easily detectable. We have not yet
figured out how to query for the user’s format preference; however, given the
fact that the driving force behind Web evolution has been “make the pages fun”
rather than “make the pages trustable,” we predict that sooner or later, querying
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for format will be possible. Furthermore, the majority of users never bother to
change the default themes. If we target to the default themes, it would give us
a pretty good chance of not being detected. Another approach here would be to
exploit the fact that users probably are not clear about who controls what part of
their configuration: we could simply offer a window saying “would you like clas-
sic or modern theme?” We would then provide the appropriate spoofed material.

2.3.2 Dynamic Code Generation for HTML. In our experimental attack,
all the Web pages are statically written, and our pages are composed of frames.
In some situations, it may be more convenient to only call a JavaScript func-
tion in this page, and dynamically generate HTML code for each frame. This
alternative approach would offer several advantages: it would make it easier
to coordinate behavior among the frames, via shared variables; some environ-
mental variables (e.g., window size) could be queried dynamically to make the
fake window fit more easily in the environment.

2.3.3 New Technology. After we published some of our preliminary spoof-
ing results, two companies contacted us, claiming to offer countermeasures.

Articsoft’s “WebAssurity” [ArticSoft 2002] has two parts: one signs server
pages, and the other embeds in the browser and verifies signatures. This
solution requires changing the server infrastructure and also would require
that a malicious server cannot spoof the signals associated with a successful
validation.

GeoTrust’s “True Site” [GeoTrust 2003] embeds an image icon into pages
from servers that register with GeoTrust. When the browser user clicks on
the icon, the browser invokes a new window which establishes an SSL ses-
sion to GeoTrust Web site and displays the server information. However, our
techniques easily enabled a complete spoof of the GeoTrust approach—we
demonstrated this for a visitor (although trademark issues and fear of DMCA
prevent us from making this demonstration publicly available).

2.3.4 Other Factors. However, our goal was enabling users to make
effective trust judgments about Web content and interaction. The above spoof-
ing techniques focused on server identity. As some researchers [Ellison 1999]
observe, identity is just one component for such a judgment—usually not a
sufficient component, and perhaps not even a necessary component.

Arguably, issues including delegation, attributes, more complex path vali-
dation, and properties of the page source should all play a role in user trust
judgment; arguably, a browser that enables effective trust judgments should
handle these issues and display the appropriate material. The existence of
password-protected personal certificate and key pair stores in current browsers
is one example of this extended trust interface; Bugnosis [Alsaid and Marti
2002] is an entertaining example of some potential future directions.

The issue of how the human can correctly identify the trust-relevant user
interface elements of the browser will only become more critical as this set
of elements increases. Spoofing can attack not just perceived server identity,
but any element of the current and future browser interfaces. In Section 6, we
revisit some of these issues.
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Table I. Comparison of Strategies Against Design Criteria

Minimizing Minimizing
Inclusiveness Effectiveness User Work Intrusiveness

No turnoff No Yes Yes No
Backgrounds Yes Yes No No
MAC Phrase Yes No No Yes
Meta Title No No Yes Yes
Meta Window No No Yes Yes
Boundaries No Yes Yes Yes
CMW-style Yes No No Yes
SRD Yes Yes Yes Yes

3. TOWARD A SOLUTION

To address this fundamental trust problem in server-side SSL, we needed to
design a more effective solution—and to see that this solution is implementable
in usable technology.

Section 3.1 presents the basic framework and the need for a trusted path
from browser to user. Section 3.2 presents some design criteria for this trusted
path. Section 3.3 discusses some approaches we considered; Section 3.4 presents
the approach we chose to prototype. Table I summarizes how these approaches
measure according to these criteria.

3.1 Basic Framework

We will start with a slightly simplified model.
The browser displays graphical elements to the user. When a user requests

a page P from a server A, the user’s browser displays both the content of P
as well as status information about the content and the channel over which
P was obtained. The browser executes two functions from this input page: it
displays sets of graphical elements in the window as content from the server;
and it displays sets of graphical elements in the window as status about this
server content. Web spoofing attacks can work because no clear difference exists
between how status and content are displayed. For a page PB from an innocent
server B, a clever Web designer can offer a page PA from a server A such that
the overlap between content(PA) and status(PB, B) is substantial. Such overlap
can trick the user into mistaking the browser’s rendering of the content of PA
as status from PB.

What makes this particularly challenging is that not only must a clear differ-
ence exist—the user must also be able to perceive this difference easily. What
matters is not just the actual display of the graphical elements, but the human
perception of the graphical elements. As long as the human perception of status
and content have overlap, then spoofing is possible.

From the above analysis, we can see the approach to systematically stopping
Web spoofing is twofold:

(1) The browser should clearly distinguish the ranges of the content and status
functions, even when filtered by human perception, so that malicious colli-
sions are not possible.
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(2) The browser should make it impossible for status to have empty output, even
when filtered by human perception, so that users can always recognize a
server’s attempt to forge status information.

In some sense, this is the classic trusted path problem. The browser software
becomes a trusted computer base (TCB); and we need to establish a trusted
path from the status component to the user, that cannot be impersonated by
content component.

3.2 Design Criteria

We consider some criteria we believed a solution should satisfy. (Section 5.4
revisits these issues.)

First, the solution should work:

(1) Inclusiveness. We need to ensure that users can correctly recognize as large
a subset of the status data as possible. Browsing is a rich experience; many
parameters play into user trust judgment and, as Section 6 discusses, the
current parameters may not even be sufficient. A piecemeal solution will
be insufficient; we need a trusted path for as much of this data as possible.

(2) Effectiveness. We need to ensure that the status information is provided in
a way that the user can effectively recognize and utilize it. For one example,
if the status information is separated (in time or in space) from the corre-
sponding content, then the user may already have made a trust judgment
about the content before even perceiving the status data.

Second, the solution should be low impact:

(3) Minimizing user work. A solution should not require the user to participate
too much. This constraint eliminates the naive cryptographic approach of
having the browser digitally sign each status component, to authenticate
it and bind it to the content. This constraint also eliminates the approach
that users set up customized, unguessable browser themes. To do so, the
users would need to know what themes are and to configure the browser
for a new one instead of just taking the default one.

(4) Minimizing intrusiveness. The paradigm for Web browsing and interaction
is fairly well established, and exploited by a large legacy body of sites and
expertise. A trusted path solution should not break the wholeness of the
browsing experience. We must minimize our intrusion on the content com-
ponent: on how documents from servers and the browser are displayed.
This constraint eliminates the simplistic solution of turning off Java and
JavaScript.

3.3 Considered Approaches

Having established the problem and criteria for considering solutions, we now
proceed to examine potential strategies.

3.3.1 No Turnoff. As discussed above, one way to defend against Web spoof-
ing is make it impossible for an element’s status to be empty. One possible
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approach is to prevent elements such as the location and status bars from be-
ing turned off in any window.

However, we rejected this approach for several reasons. First, we felt that
this would be overly intrusive on Web content, and thus not be accepted by
the community. Many Web sites depends on pop-up windows to display ad-
vertisements, sometimes from third parties. Requiring bars would diminish
the effectiveness of the advertisements, by revealing the third parties and by
decreasing the aesthetic effect. Further, suppressing “back” and “forward” but-
tons may be important for Web sites with specific intended browsing patterns.
Second, many Web elements—such as alerts and warning windows—do not
naturally have “bars” to begin with. Training users to “look for the location
bar” would require them to use a different technique to authenticate these
browser elements. Third, malicious servers—through tricks such as raising an
image of a window—can create the illusion of a Web element with arbitrary
bars, no matter what rule the browser enforces. Thus, we felt that no “turnoff”
would overly constrict the display of server pages and still not cover a broad
enough range of browser-user channels and malicious server techniques.

3.3.2 Customized Content. Another set of approaches consists of trying to
clearly label the status material. One strategy here would draw from Tygar and
Whitten [1996] and use user-customized backgrounds on status windows. This
approach has a potential disadvantage of being too intrusive on the browser’s
display of server content. A less intrusive version would have the user enter an
arbitrary “MAC phrase” at the start-up time of the browser. The browser could
then insert this MAC phrase into each status element (e.g., the certificate win-
dow, SSL warning boxes, and so on) to authenticate it. However, this approach,
being text-based, had too strong a danger of being overlooked by the user.

Overall, we decided against this whole family of approaches, because we felt
that requiring the user to participate in the customization would violate the
“minimal user work” constraint.

3.3.3 Metadata Titles. We considered having some metadata, such as page
URL, displayed on the window title. Since the browser sends the title informa-
tion to the machine window system, the browser can ensure that the true URL
always is displayed on the window title. However, we did not really believe that
users would pay attention to this title bar text; furthermore, a malicious server
could still spoof such a window by offering an image of one within the regular
content.

3.3.4 Metadata Windows. We considered having the browser create and
always keep open an extra window just for metadata. The browser could label
this window to authenticate it, and then use it to display information such as
URL, server certificate, and so on.

Initially, we felt that this approach would not be effective, since separating
the data from the content window would make it too easy for users to ignore
the metadata. Furthermore, this approach would require a way to correlate the
displayed metadata with the browser element in question. If the user appears to
have two server windows and a local certificate window open, he or she needs to
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figure out to which window the metadata is referring. As we will discuss shortly,
CMW uses a metadata window, and a side effect of Mozilla code structure forced
us to introduce one into our design.

3.3.5 Boundaries. In an attempt to fix the window title scheme, we con-
sidered an alternative where we use thick color instead of tiny text. Windows
containing pure status information from the browser would have a thick border
with a color that indicated trusted; windows containing at least some server-
provided content would have a thick border with another color that indicated
untrusted. Because its content would always be rendered within an untrusted
window, a malicious server would not be able to spoof status information—or so
we thought. Unfortunately, this approach suffers from the same vulnerability as
above: a malicious server could still offer an image of a nested trusted window.

3.3.6 CMW-Style Approach. As noted earlier, the compartmented mode
workstation was a windowing OS designed to enforce multilevel security la-
bels and information flow. CMW needs to defend against a similar spoofing
problem: how to ensure that a program cannot subvert the security labeling
rules by opening an image that appears to be a nested window of a different se-
curity level. To address this problem, CMW adds a separate metadata window
at the bottom of the screen, puts color-coded boundaries on the windows and a
color (not text) in the metadata window, and solves the correlation problem by
having the color in the metadata window change according to the security level
of the window currently in focus.

The CMW approach inspired us to try merging the boundary and metadata
window scheme: we keep a separate window always open, and this window
displays the color matching the security level of the window currently in focus.
If the user focuses on a spoofed window, the metadata window color would not
be consistent with the apparent window boundary color.

We were concerned about how this CMW-style approach would separate (in
time and space) the window status component from the content component. This
separation would appear to fail the effectiveness and user-work criteria: the
security level information appears later and in a different part of the screen;
the user must explicitly click on the window to get it to focus, and then confirm
the status information.

What users are reputed to do when “certificate expiration” warnings pop up
suggests that by the time a user clicks, it is too late.

3.4 Prototyped Approach

We liked the approaches that clearly identified the source of an element
(browser, or server), since that naturally aligns with the notion of “trusted
path.” We also liked the colored boundary approach, since colors are more effec-
tive than text, and coloring boundaries according to trust level easily binds the
boundary to the window content. The user cannot perceive the one without the
other. Furthermore, each browser element—including password windows and
other future elements—can be marked, and the user need not wonder which
label matches which window (or which technique to use to authenticate which
type of element).
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Fig. 1. Inset and outset border styles.

Fig. 2. The architecture of our SRD approach.

However, the colored boundary approach had a substantial disadvantage:
unless the user customizes the colors in each session or actively interrogates
the window (which would violate the “minimize work” criteria), the adversary
can still create spoofs of nested windows of arbitrary security levels.

Consequently, we developed the synchronized random dynamic (SRD) bound-
ary approach. In addition to having trusted and untrusted colors, the thick
window borders would have two styles (e.g., inset and outset, as shown in
Figure 1). At random intervals the browser would change the styles on all
its windows. Figure 2 sketches this overall architecture. (One might wonder
whether just randomly animating the lock icon would suffice; however, that
would not protect pop-up windows and other browser elements that do not
naturally have “locks.”)

The SRD solution would satisfy the design criteria:

(1) Inclusiveness. All windows would be unambiguously labeled as to whether
they contained status or content data.

(2) Effectiveness. Like static colored boundaries, the SRD approach shows an
easy-to-recognize security label at the same time and in the same screen
space as the content. Since a malicious server cannot predict the random-
ness, it cannot provide spoofed status that satisfies the synchronization.

(3) Minimizing user work. To authenticate a window, all a user would need to
do is observe whether its border is changing in synchronization with the
reference window.
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(4) Minimizing intrusiveness. By changing the window boundary but not inter-
nals, the server content, as displayed, is largely unaffected.

In the SRD boundary approach, we focus on distinguishing browser-provided
status from server-provided content. We build a trusted path, so that the status
information presented by the browser can be correctly and effectively under-
stood by the human user. In theory, this approach should continue to work as
new forms of status information emerge.

3.4.1 Reality Intervenes. As one might expect, the reality of prototyping
our solution required modifying this initial vision.

We first prototyped the SRD-boundary solution using Mozilla open source
on Linux. We noticed that when our build of Mozilla pops up certain warn-
ing windows, all other browser threads are blocked. When the threads block,
the SRD borders on all windows but the active one freeze. This freez-
ing may generate security holes. A server might raise an image with a
spoofed SRD boundary, whose lack of synchronization is not noticeable be-
cause the server also submitted some time-consuming content that slows down
the main browser window so much that it appears frozen. Such windows
greatly complicate the semantics of how the user decides whether to trust a
window.

To address this weakness, we needed to reintroduce a metadata reference
window, opened at browser start-up with code independent of the primary
browser threads. This window is always active and contains a flashy-colored
pattern that changes in synchronization with the master random bit—and
with the boundaries. If a boundary does not change in synchronization with
the reference window, then the boundary is forged and its color should not be
trusted.

Our reference window is like the CMW-style window in that uses nontextual
material to indicate security. However, ours differs in that it uses dynamic
behavior to authenticate boundaries, it requires no explicit user action, and it
automatically correlates to all the unblocked on-screen content.

As a side effect, having a distinguished reference window protects against a
malicious server trying to confuse the user by launching many windows (real
or fake, via images) with false boundaries dancing the wrong the way.

4. IMPLEMENTATION

We wanted to take our trusted path design into the real world, which requires
real code, not just a sketch.

4.1 Development

Implementing our trusted path took several steps. First, we needed to add
thicker-colored boundaries to all windows. Second, the boundaries needed to
dynamically change. Third, the changes needed to happen in a synchronized
fashion. Finally, as noted, we needed to work around the fact that Mozilla
sometimes blocks browser window threads.
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Fig. 3. This diagram shows the overall structure of our implementation of SRD in Mozilla. The
Mozilla layout engine takes XUL files as input and constructs a DOM tree. The root of the tree is
the window object. For each window object, JavaScript reads the random number from borderStyle
module and sets or removes the window object attribute. The layout engine presents the window
object differently according to the attribute. The different appearances are defined in CSS files.

Figure 3 shows the overall structure.

4.1.1 Starting Point. We looked at open source browsers and found two
good candidates, Mozilla and Konqueror. We chose Mozilla over Konqueror for
three primary reasons. First, Konqueror is not only a Web browser, but also
the file manager for KDE desktop, which makes it unnecessarily complicated
for our purposes. Second, Mozilla is closely related to Netscape, which has a
larger market share on current desktops. Third, Konqueror only runs on Linux;
Mozilla is able to adapt to several platforms. (We also considered Galeon, which
is an open source Web browser using the same layout engine as Mozilla. How-
ever, when we started our experiment, Galeon was not robust enough, so we
chose Mozilla instead of Galeon.)

4.1.2 Adding Colored Boundaries. The first step of our prototype was to
add special boundaries to all browser windows. To do this, we needed to under-
stand why browser windows look the way they do.

Mozilla has a configurable and downloadable user interface, called a chrome.
The presence and arrangement of different elements in a window is not
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Fig. 4. The layout engine uses XUL and CSS files to generate the browser user interface.

hardwired into the application, but rather is loaded from a separate user inter-
face description, the XUL files. XUL is an XML-based user interface language
that defines the Mozilla user interface.

The style information—describing how a XUL document should look when
prepared for viewing by a human—is included in a separate document called a
stylesheet. Mozilla uses cascading style sheets (CSS) to describe what each XUL
element should look like. Collectively, the set of sheets is called a skin. Mozilla
has customizable skins. Changing the CSS files changes the look and feel of the
browser. (Figure 4 sketches this structure.)

The original Mozilla only has one type of window, without any boundary. We
added an orange boundary into the original window skin to mark the trusted
windows containing material exclusively from the browser. Then we defined a
new type of window, external window, with a blue boundary. We added the ex-
ternal window skin into the global skin file and changed the navigator window
to invoke an external window instead.

As a result, all the window elements in XUL files will have thick orange
boundaries, and all the external windows would have thick blue boundaries.
Both the primary browsing windows as well as the windows opened by server
content would be external windows with blue boundaries.

4.1.3 Making the Boundaries Dynamic. We next needed to make the
boundaries change dynamically.

In the Mozilla browser, window objects can have attributes. These attributes
can be set or removed. When the attribute is set, the window can be displayed
with a different style.

To make window boundaries dynamic, we added a borderStyle attribute to
the window. When the borderStyle attribute is set, the boundary style is outset;
when the borderStyle attribute is removed, the boundary style is inset. Mozilla
observes the changes in attributes and updates the display accordingly.

With a reference to a window object, browser-internal JavaScript code can
automatically set the attribute and remove the attribute associated with that
window. We get this reference with the method:

document.getElementById("windowID")

When browser-internal JavaScript code changes the window’s attribute, the
browser observer interface notices the change and schedules a browser event.

ACM Transactions on Information and System Security, Vol. 8, No. 2, May 2005.



Trusted Paths for Browsers • 171

The event is executed, and the browser repaints the boundary with different
style.

Each XUL file links to JavaScript files that specify what should happen in
that window with each of the events in the browsing experience. We placed the
attribute-changing JavaScript into a separate JavaScript file and linked it into
each corresponding XUL file.

With the setInterval method, a JavaScript function can be called automat-
ically at regular time intervals. We let our function be called every 0.5 s, to
check a random value 0 or 1. If the random value is 0, we set the window’s
borderStyle attribute to be true; else we remove this attribute. The window’s
onload event calls this setInterval method to start this polling.

4.1.4 Adding Synchronization. All the browser-internal JavaScript files
need to look at the same random number, in order to make all windows change
synchronously. Since we could not get the JavaScript files in Mozilla source
to communicate with each other, we used a Cross Platform Component Object
Model (XPCOM) module to have them communicate to a single C++ object that
directed the randomness.

XPCOM is a framework for writing cross-platform, modular software.
As an application, XPCOM uses a set of core XPCOM libraries to selec-
tively load and manipulate XPCOM components. XPCOM components can
be written in C, C++, and JavaScript and are the basic element of Mozilla
structure.

JavaScript can directly communicate to a C++ module through XPConnect.
XPConnect is a technology which allows JavaScript objects to transparently
access and manipulate XPCOM objects. It also enables JavaScript objects to
present XPCOM-compliant interfaces to be called by XPCOM objects.

We maintained a singleton XPCOM module in Mozilla which tracks the
current “random bit.” We defined a borderStyle interface in XPIDL (Cross
Platform Interface Description Language), which only has a read-only string,
which means the string only can be read by JavaScript, but cannot be set by
JavaScript.

The XPIDL compiler transforms this XPIDL file into a header file
and a typelib file. The nsIBorderStyle interface has a public function,
GetValue, which can be called by Mozilla JavaScript through XPConnect. The
nsBorderStyleImp class implements the interface, and also has two private
functions, generateRandom and setValue. When a JavaScript call accesses the
borderStyle module through GetValue, the module uses these private func-
tions to update the current bit (from /dev/random) if it is sufficiently stale. The
module then returns the current bit to the JavaScript.

Mozilla dynamically loads or unloads XPCOM modules during runtime.
When a module is needed, Mozilla searches a registration category to find a
pointer to this module, then create an instance of it. The registration and un-
registration processes are mostly taken care of by the Genericfactory class. But
every XPCOM module needs a factory class to glue the Genericfactory class
with itself. nsBorderStyleModule.cpp is the factory class of nsBorderStyleImp.
All the factory classes have similar structure.
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In order for the JavaScript to read the random bit, we need to get a pointer
to the borderStyle module. Our code asks for the privilege to use XPConnect
technology, for JavaScript cannot read from C++ code directly. This privilege is
automatically granted to the browser user interface code. Through XPConnect,
we ask the component manager to return a pointer to the borderStyle module.
We pass the borderStyle interface ID number as parameter to let the compo-
nent manager know which module we need. If the instance of the borderStyle
module has been created, the component manager simply returns a pointer
to it. Otherwise, the component manager creates an instance, then returns a
pointer to it.

4.1.5 Addressing Blocking. As noted earlier, Mozilla had scenarios where
one window, such as the enter-SSL warning window, can block the oth-
ers. Rather than trying to rewrite the Mozilla thread structure, we let the
borderStyle module fork a new process, which uses the GTK+ toolkit create a
reference window. When a new random number is generated, the borderStyle
module passes the new random number through the pipe to the reference pro-
cess. The reference window changes its image according to the random number
to indicate the border style.

The idea in the GTK+ program is creating a window with a viewport. A
viewport is a widget which contains two adjustment widgets. Changing the
scale of these two adjustment widgets enable to allow the user only see part of
the window. The viewport also contains a table which contains two images: one
image stands for inset style, the other stands for outset. When random number
is 1, we set the adjustment scale to show the inset image; otherwise we show
the outset image.

4.2 Why This Works

To review, our solution rests on the axioms that the server material has to
be displayed within a window opened by the browser, that only the browser
gets to choose which type of window (trusted or untrusted) to use, and that
only the browser gets to see the current random bit. A malicious server might
create real or illusory inset or outset windows, but does not know what the
current correct state should be. Furthermore, the existence of the distinguished
reference window (Section 3.4) gives the user a distinguished reference point
as to the current state.

This foundational assumption—that only the browser sees the bit—is sup-
ported by documentation. Malicious JavaScript cannot otherwise perceive the
inset/outset attribute of its parent window; it only can access the attributes
provided to them through the script engine implementation, and Mozilla does
not provide any interface to access the window boundary attribute we added
to it. The same argument holds for the Netscape-based plug-ins, since Mozilla
does not provide the random bit in its API functions.

When the Mozilla layout engine Gecko reads XUL files and renders the
browser user interface, it treats the window object as a regular XUL element, one
regular document object model (DOM) node in the DOM tree. Browser-internal
JavaScript can set or remove attributes in the window object. However, from the
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point of view of server-provided JavaScript, this window object is not a regular
DOM element, but is rather the root object of the whole DOM tree. The root
window does not provide the window.style interface. It also does not support
any attribute functions, according to the DOM reference in Mozilla.org [2001].
Therefore, even though server-side JavaScript can get a reference of the win-
dow object and call functions like window.open, it cannot read or manipulate
the window border style to compromise SRD boundaries.

This foundational assumption is also supported by empirical testing.
In our prototype implementation, a separate code module reads system-

generated randomness and provides this string to the main browser. For ad-
ditional security, we could move our random-bit module into its own address
space, and thus use OS protections to help keep its bits private.

4.3 Prototype Status

Initially, we implemented SRD for the main navigator elements in modern skin
Mozilla (Mozilla-0.9.2.1, current when we started) for Linux. (Subsequently,
we upgraded to new Mozilla releases and Windows—which raised new issues,
as discussed later.) Furthermore, we have prepared scripts to install and undo
these changes in the Mozilla source tree; to reproduce our work, one would need
to download the Mozilla source, run our script, then build. These scripts are
available on our Web site.

4.3.1 Inner SRD versus Outer SRD. In the current browsing paradigm,
some otherwise untrusted windows, such as the main surfing window, contain
trusted elements, such as menu bars, and so on. As far as we could tell in our
spoofing work, untrusted material could not overlay or replace these trusted
elements, if they are present in the window.

The SRD approach thus leads to a design question: Should we just mark the
outside boundaries of windows? Or should we also install SRD boundaries on
individual elements, or at least on trusted ones? We use the terms outer SRD
and inner SRD, respectively, to denote these two approaches.

Inner SRD raises some additional questions that may take it further away
from the design criteria. For one thing, having changing, colored boundaries
within the window arguably weaken satisfaction of the minimal intrusive-
ness constraint. For another thing, what about elements within a trusted win-
dow? Should we announce that any element in a region contained in a trusted
SRD boundary is therefore trusted? Or would introducing such anomalies (e.g.,
whether a bar needs a trusted SRD boundary to be trustable depends on the
boundary of its window) needlessly and perhaps dangerously complicate the
user’s participation?

For now, we have stayed with outer SRD. Animated GIFs giving the look and
feel of browsers enhanced with outer SRD and inner SRD are available on our
Web site.

4.3.2 Upgrading for Newer Mozilla Releases. As noted earlier, we ini-
tially implemented SRD boundaries in Mozilla 0.9.2.1, the stable release when
we started our work. Later, mozilla.org released Mozilla 1.0, the milestone
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release. In order to make SRD boundaries works for the real world, we needed
to upgrade for Mozilla 1.0.

Mozilla 1.0 did not change the main structure. However, small changes made
the externalwindow tag in XUL files not recognizable. Instead, we used an
external attribute; when a window is set with the external attribute, the
boundary color is blue, means the window content is from the server, so it
is untrustworthy.

The newer Mozilla fixed a structural problem that led to a bug in SRD
for the older Mozilla. In the older Mozilla, alert, windows, confirm windows,
and prompt windows are all handled by the same code, regardless of whether
the server page content or the browser invokes them—which made it hard
for our code to determine whether to label each as “trusted” or “untrusted.”
However, Mozilla 1.0 added a security manager component, which we use to
keeps track who is the caller of the alert window. If it is the server con-
tent, we mark the alert window as “untrusted,” otherwise, we mark it as
“trusted.”

In hindsight, the difficulty in upgrading our modifications is not surprising:
if systems are not designed for security properties, adding them afterward is
generally difficult.

4.3.3 Porting to Windows. If our SRD code is going to have an impact in
the real world, it also needs to work on Windows. So, we also ported our SRD
modifications to Mozilla on Windows.

Mozilla on Windows uses Cygwin to compile and run the Linux code for
the Windows platform. In order to make SRD boundaries work in Windows,
we needed to solve two problems. First, we needed a good random number
generator, to replace /dev/random. Second, the reference window process in
Linux used the GTK+ graphic toolkit, which needed to be reimplemented using
Windows process.

To replace /dev/random in Windows, we used EGADS [Secure Software,
Inc.], which contains an implementation of a pseudorandom number generator
and an entropy gateway. EGADS has two parts: an entropy-collecting server
and a client. The EGADS server is installed as a Windows system service;
when the client calls egads_init, the server is launched and starts to collect
entropy. The client side can read the entropy through an anonymous pipe.
EGADS comes as a dynamic link library (DLL), compiled with Visual C++. A
special tag should be added into Makefile.win, so that Mozilla is aware that
EGADS is a Windows DLL.

The reference window process is implemented in Visual C++, containing
several classes. The reference window process needs read the random bit out
of the borderStyle XPCOM module. Since the Mozilla/Windows build process
did not support an anonymous pipe, we used a named pipe and specified that
only one process can read that named pipe. As soon as the pipe is created, the
reference window process launches and links to that pipe.

The actual program has two threads, sharing one integer. One thread takes
care of reading the random bit and update the sharing integer, the other thread
takes care of reading the sharing integer and updating the images. The reason
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we need two threads is the pipereading thread is blocked whenever the pipe is
empty.

4.4 Known Issues

Our current prototype has several areas that require further work. We present
them in order of decreasing importance.

(As discussed earlier, we have already fixed the most critical known issue—
correctly labeling Alert windows—identified in our preliminary reports.)

4.4.1 Signed JavaScript. Above, we discussed how server-provided
JavaScript cannot access the random bit through the window.style attribute,
because the script engine does not implement this interface. However, signed
JavaScript from the server can ask for privileges to use XPConnect, which can
enable JavaScript to directly connect to the browser’s internal modules with-
out using the script engine. The user can then choose to grant this privilege or
not. If the user grants the privilege, then the signed JavaScript can access the
borderStyle module and read the random bit.

To exploit this, an attacker would have to open an empty window (see below)
or simulate one with images, and then change the apparent boundary according
to the bit. For now, the user can defend against this attack by not granting such
privileges; however, a better long-term solution is simply to disable the ability
of signed JavaScript to request this privilege.

4.4.2 Chrome Feature. Mozilla added a new feature chrome to the window.
open method. If a server uses the JavaScript then Mozilla will open an empty
window without any boundary. The chrome feature lets the server eliminate
the browser default chrome and thus take control of the whole window appear-
ance. However, this new window will not be able to synchronize itself with the
reference window and the other windows. Furthermore, in our experiments,
this new window could not respond to the right mouse click and other reserved
keystrokes, like Alt+C for copy under Linux. So far, the chromeless window is
not a threat to SRD boundaries.

However, Mozilla is living code. The Mozilla developers work hard to improve
its functionality; and the behavior of the chrome feature may evolve in the
future4 in ways that are bad for our purposes.

Consequently, a future issue we plan for our code is to ensure that our in-
ternal browser code puts SRD boundaries on all windows, even chromeless
ones.

4.4.3 Pseudosynchronization. Another consequence of real implementa-
tion was imprecise synchronization. Within the code base for our prototype,
it was not feasible to coordinate all the SRD boundaries to change at precisely
the same real-time instant. Instead, the changes all happen within an approx-
imately 1-s interval. This imprecision is because only one thread can access
the XPCOM module; all other threads are blocked until it returns. Since the

4For example, the XUL vulnerability announced as we went to press merits further exploration
[Secunia 2004].
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JavaScript calls access the random value sequentially, the boundaries change
sequentially as well.

However, we actually feel this increases the usability: the staggered changes
make it easier for the user to perceive that changes are occurring.

4.4.4 Other Attack Avenues. We note that in this study, we assume that
the adversary accesses the user’s machine only via responses to the user’s Web
requests; we also assume that services and security protections provided by this
interface work as advertised. If the adversary finds new flaws in JavaScript
protections, or buffer overflow problems on how the browser handles certain
inputs, or finds some other avenue to inject code or trigger malicious activity
on the client’s platform, then she may very well be able to subvert browser
protections such as our solution (e.g., by using a hostile executable and an OS
hole to spy on the random bit process, and report back to the server site).

Protecting against such software and OS security issues is outside the scope
of this paper, although exploring how to graft a browser-level trusted path onto
an OS-provided trusted path, for scenarios where the OS can reasonably protect
against mutually hostile applications, is an interesting area of future work.

Examining the interval time is another area of future work. For example,
with an interval of 0.5 s, if a user only looks at a spoofed page for 5 s, then a
malicious server’s guess at dancing might be correct for 1 in 210 users.

5. USABILITY

The existence of a trusted path from browser to user does not guarantee that
users will understand what this path tells them. Consequently, we conducted
user studies to evaluate the usability of communicating security information
via the SRD boundary.

Because our goal is to effectively defend against Web spoofing, our group
plans future tests that are not limited to the SRD boundary approach, but
would cover the general process of how humans make trust judgments, in order
to provide more information on how to design a better way to communicate
security-related information.

5.1 Test Design

The design of the SRD boundary includes two parameters: the boundary
color and the synchronization. The parameters express different information:
the boundary color indicates the source of the material; the synchronization
indicates whether the source is trustworthy, that is, whether it is the ex-
pected/reliable source for this material.

In our tests, we vary the two parameters to determine whether the users
can understand the information each parameter tries to express. We vary the
boundary color between two states: orange implies the source is the browser
(and thus trusted to report status information); blue implies the source is the
server (and thus not trusted).

We vary the synchronization parameter between three states. If the border
changes synchronously, then the material is from the expected source (and thus
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is trustworthy). If the border changes asynchronously, then the material is not
from the expected source (and thus is not trustworthy). If the border is static,
then the material is not from the expected source (and thus is not trustworthy).

According to our semantics, a trusted status window should have two signals:
an orange boundary color and synchronized changes. Combining the variations
for each of the two parameters (two colors and three change patterns) leads
to six possible combinations. We eliminate the cases where neither of the two
signals of a trusted window is present (blue asynchronous and blue static),
leaving us to test four parameter combinations: (1) orange-static boundary;
(2) orange-synchronized boundary; (3) blue-synchronized boundary; (4) orange-
asynchronous boundary. Only the second case indicates a trusted window be-
cause it has both of the signals indicating a trustworthy and trusted source.

We tested the four different signal combinations under two different methods
for checking the security of a Web site: (1) viewing the certificate window; and
(2) observing the pop-up warning window (i.e., the window that warns users
they are entering an SSL session). Users were told to initiate an SSL session
by going to a Web site from which they would typically access their email.

We wanted to test whether users could correctly interpret the SRD signals
in the two different methods of checking security information, and also to de-
termine whether the reference window was redundant for the SRD approach
to work.

We then ran two four-part test sessions. In the first test session, we turned
off the reference window and used only the SRD boundary in the main surf-
ing window as a synchronization reference. Users observed the SRD boundary
in the certificate window, alternating (in different instances) among the four
different signal combinations described above. In the second test session, we
examined the full SRD approach and left the reference window on as a synchro-
nization reference. Users observed the SRD boundary in the security-warning
window, alternating among the four different signal combinations.

We also simulated the CMW-style approach. In the conventional CMW ap-
proach, the mouse has to be clicked on the window to get it to focus. In our test,
we used mouse-over, which gets the information to the user sooner. In this case,
the status information provided by the reference window arrives at the same
time when the user move the mouse into the window. Boundaries were static;
however, a reference window always showed the color indicating the source of
the window to which the mouse points. Using the same color signals as above,
orange indicates a trusted source (the browser); blue indicates an untrusted
source. When users point the mouse to the pop-up warning window or the cer-
tificate window, the reference window will be orange if the information is coming
directly from the browser.

5.2 User Study

We conducted a total of nine sessions (four signal combinations times two se-
curity methods, plus one CMW-style test) with a total of 37 undergraduate
and graduate student volunteers. Each subject participated in all of the test
sessions. Subjects first answered a brief questionnaire regarding demographic
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characteristics, as well as questions about their typical computer use and gen-
eral knowledge of computer security. Next, subjects were given a brief introduc-
tion to security information (e.g., what a certificate is and what it does during
an SSL session). Then they were introduced to the SRD boundary approach
and informed of the two parameters (orange color and synchronized boundary
changes) that would signal a trusted window. Subjects also viewed the original
Mozilla user interface, in order to become familiar with the buttons and win-
dow appearance. The information on basic security issues, the SRD boundary
approach and the Mozilla interface, was provided to subjects in a three-page
handout, while the experiment leader talked through the information. This
introductory information session lasted approximately 5–10 min in which sub-
jects could also ask clarification questions.

The scenario for the test sessions was for users to access the Web server from
which they would access their email account. Before checking email, they must
verify that the browser is indeed communicating with the secure email server.
Users never actually accessed their email or entered any private information
during the test sessions. Instead, they started our modified browser and entered
an SSL session with the server. As described above, in the first test, subjects
checked the server certificate that the browser appeared to present. The certifi-
cate window popped-up with each of the four different boundary combinations.
In the second test, subjects observed a pop-up reference window (opened with
the browser) and the pop-up security-warning window (opened when entering
an SSL session), which demonstrated each of the four different boundary com-
binations. In the third test, subjects observed a pop-up reference window for
any color change when they put their mouse over the pop-up security-warning
window.

Users were asked to observe the windows for 5 s before they answered a series
of questions regarding what they observed of the two parameters in the window
boundaries and whether they thought the window was secure (from the trusted
source). The entire test took approximately 1 h. Subjects volunteered after
responding to advertisements about the study in campus buildings. Subjects
were paid $10 for their participation.

User Characteristics. The 37 subjects included both undergraduate (n = 21)
and graduate (n = 16) students and ranged in age from 18 to 40, with a mean age
of 23. Over half of the subjects were computer science (CS) or engineering majors
(n = 22), though these subjects performed no differently (based on statistical
comparisons) than subjects from other major areas of study. Subjects were asked
to self-rate their own expertise as Internet users on a scale of 1 = expert,
2 = knowledgeable, 3 = inexperienced. 27% rated themselves as an expert and
73% as knowledgeable. (In future work, we plan to add more granularity here,
in case users were tending to underrate their expertise.) However, there were
no statistically significant differences in results across different types of users.

The subjects are all students on a campus with ubiquitous wired and wire-
less networks. Students are required to own computers, and they demonstrate a
higher-than-average computer and Web usage than the average American com-
puter user. So, while the subjects of our study are somewhat more advanced
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Table II. Percent of Subjects Identifying Trusted and Untrusted Sources of Security Information
Across Three Methods

Accurately Identified Accurately Identified
% of Subjects Who Trusted Window Untrusted Window
Method 1: SRD boundary in certificate and

main browser window
70% 87%

Method 2: SRD Boundary in pop-up reference
and security-warning windows

89% 89%

Method 3: CMW-style color change in
reference window with mouse-over of
warning window

81% No test

than the average user, our sample is fairly representative of the campus on
which the study was done. Since our subjects have higher-than-average knowl-
edge, this user study is a conservative test of the SRD method and is somewhat
analogous to an experimental study in medicine of high-risk groups. In such
studies of high-risk groups, only those subjects who have the greatest chance
to benefit from an experimental drug, for example, are included in the study.
If the drug produces no obvious benefits even among high-risk subjects, then
there is no need to conduct the study within lower risk groups.

Some of our questions dealt with the subjects’ computer use and security
knowledge. 92% of subjects spend at least 1 h per day on the Web, in addition to
email. 97% have purchased products online, and nearly all have done so in the
last 6 months. 65% have heard the phrase SSL (all of the experts and half of
the knowledgeable users; CS majors more likely than nonmajors to have heard
of SSL). 50% of those who have heard of SSL say they know what SSL means.

When submitting private information online, only 25% say they always check
security features on their browser. 36% sometimes check security features; 39%
rarely or never check the security features.

Of those who sometimes or always check security features, 51% check the
URL for https; 70% check the lock icon; 35% check the certificate.

SRD Test Results. Across the three test sessions, subjects accurately iden-
tified the signal of a trusted window 80% of the time and accurately identified
an untrusted window 87% of the time.

Table II summarizes the results for each method. Subjects were most suc-
cessful in accurately identifying a trusted window in method two in which the
SRD boundary is displayed in both the pop-up reference window and the pop-
up security-warning window. Subjects in method two also accurately identified
untrusted windows.

In paired-samples t-tests, subjects were significantly more accurate in
method two than method one (t = 2.2, df = 35, p < 0.05). While accuracy
was also greater in method two compared to method three, this difference is
not statistically significant.

Test Analysis. In the SRD tests, subjects observed the signals under two dif-
ferent conditions: between the certificate and main browser windows; between
the reference window and the warning window. In both cases they had to assess
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“trustworthiness” of the windows based on the SRD boundary’s color changes
and synchronization. In both cases, across the different methods for checking
security, the users were consistently accurate.

We had expected that the reference window might be too distracting for
users. To our surprise, users were significantly more accurate using the refer-
ence window—and almost two-thirds of the subjects ranked method two over
method one for ease of use. Since the SRD signals were the same, why did us-
ing the reference window achieve more accuracy? Some users commented that
the reference window made the two SRD signals more observable and easier to
evaluate. Further testing would be interesting.

Although method three achieved good accuracy as well, about half of the
users thought that during the real browsing process, the security information
brought by this approach might be easier to ignore, because method three re-
quired user action in moving the mouse over the pop-up warning window. In
particular, significant gaps exist in time, space, and user action between when
and where the user perceives a window’s content, and when and where they re-
ceive its status information (later, on a different part of the screen, after mouse
focus).

Research in HCI has explored the impact of on-screen separation of data
in terms of human eyesight [Dix et al. 1997]. Humans have two kinds of light
sensitive photoreceptors, rods and cones. Since rods dominate peripheral vision
but are unable to resolve fine details, our ability to read or distinguish falls off
inversely as the distance from our point of focus. This loss of discrimination
sets limits on the amount that can be seen without moving the eyes. A user
concentrating on the middle of the screen cannot be expected to read helpful
information displayed elsewhere on the screen. In a regular browser session,
a user’s eyes tend to focus on the center of the main browser window. The
CMW method requires users to frequently move their eyes from the center of
concentration to the reference window during the quick pop-up-click process,
which might not be as effective to deliver security information.

Further research here—as well as tests designed to measure the effective-
ness of security signals when the user is browsing quickly and thinking about
something else—would also be interesting.

5.3 User Study Conclusions

Overall, the usability results support the minimal user work property of our
SRD approach: it is easy to learn even for people unfamiliar with security is-
sues. The SRD does not require users to do much work; all they need to do is
observe. The status information reaches them automatically. No Web browser
configuration or details are involved. The primary and most difficult task for
increasing computer security remains how to get users to understand why it is
important for them to check for security signals in the first place.

5.3.1 User Learn Quickly. Other valuable feedback from our user study
was that all users with Web experience and regular Internet use learned quickly
about evaluating security signals. After reading the brief instructions, the vast
majority understood the meaning of the signals they would evaluate during the
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test sessions. Others said they fully understood the signals after the first few
test sessions.

Our subjects were very interested to learn about what they could do to de-
tect and verify the security of private browser sessions. Subjects who were not
familiar with terms like SSL or even with the standard signals of the lock icon
or https told us they were pleased to learn about these security features, and
planned to use them in the future. Computer scientists typically conclude that
the reasons users do not use security features is because (1) they do not care
and (2) security features are too hard to learn to use (e.g., PKI tools [Tygar and
Whitten 1996]). While these reasons may be true, our findings suggest that at
least part of the explanation for general users’ lack of use of security features
is that they are unaware of what types of security features already exist (see
also Friedman et al. [2003]) or how to interpret accurately what the security
features are telling them.

5.3.2 Reference Is Better. Most of our users felt it was better to have the
reference window, because it made the synchronization parameter easy to ob-
serve. The reference window opens earlier than the main window, so it attracts
users’ attention. This result is somewhat ironic when one considers that we
only added the reference window because it was easier than rewriting Mozilla’s
thread code.

5.3.3 Dynamic Is Better. The dynamic effect of SRD boundary increases
its usability. The human users pay more attention to the dynamic items in Web
pages, which is why many Web sites use dynamic techniques. In our user study,
some people did not even notice that a static window boundary existed in the
first session test.

5.3.4 Automatic Is Better. The user comments on CMW-style approach
simulation also indicates that delivering security information without requir-
ing user action could be more reliable in real-world browser sessions. Recent
research further supports this idea since there is some mismatch between what
users say they do when browsing, and what they actually do. For example, many
users base evaluations of credibility on superficial aspects of Web sites, such
as visual design, layout, and text size [Fogg et al. 2002; Turner 2003]. Deliver-
ing security signals via automatic visual displays, such as in the SRD display,
appears to match the type of information users already pay attention to and
evaluate.

5.4 Further Exploration of the Solution Space

Now that we have demonstrated the existence of a trusted path problem with
server-side SSL, and prototyped and validated one solution, it would be fruitful
to explore the solution space more thoroughly.

One area for further examination is our design criteria (Section 3.2). For ex-
ample, we asserted that restrictions such as turning off JavaScript or requiring
all windows to have status and location bars would be too intrusive on Web
content—but what would a study of users or “in-the-wild” Web sites show?
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Another area for further examination is alternate solution strategies. Our
SRD approach introduced a way for users to easily authenticate browser ele-
ments by using data which is unpredictable from the server side. Changing the
style boundary is just one instantiation of this idea. Other approaches include
less intrusive random animation in the border (although less intrusive may
mean less noticeable), or choosing the whole browser “theme” or “skin” at ran-
dom (although we suspect that this may annoy users, and also not necessarily
be noticeable if a window or element is from the wrong theme). Another an-
gle would be to indicate status of an element via an easily perceived item that
cannot be changed by the server: in recent personal communication, K. Yee has
suggested changing the cursor symbol.

Our current user studies examined whether or not users “got it.” In practice,
users often understand security, but rank other things (such as aesthetics or
ease of use) ahead of it. Subsequent studies that measure whether users still
understand the security message when they are focused on a stressful deadline,
or whether users will leave SRD (or other security features) enabled when given
the choice to disable them, would be interesting.

6. CONCLUSIONS AND FUTURE WORK

The security of the standard “secure” Web paradigm critically depends on a
trusted path between the browser and the user. Our work has shown that this
path can be easily spoofed by a malicious server, and has offered one validated,
prototyped solution to this problem.

A systematic, effective defense against Web spoofing requires establishing
a trusted path from the browser to its user, so that the user can conclusively
distinguish between genuine status messages from the browser itself and ma-
liciously crafted content from the server.

Such a solution must effectively secure all channels of information the human
may use as parameters for his or her trust decision; must be effective in enabling
user trust judgment; must minimize work by the user and intrusiveness in
how server material is rendered, and be deployable within popular browser
platforms.

Any solution which uses static markup to separate server material from
browser status (and does not otherwise constrain the channels) cannot resist the
image spoofing attack. In order to prove the genuineness of browser status, the
markup strategy has to be unpredictable by the server. Since we did not want to
require active user participation, our SRD solution obtains this unpredictability
from randomness.

This, we believe our SRD solution meets these criteria. We offer this work
back to the community, in hopes that it may drive more thinking and also with-
stand further attempts at spoofing and phishing, which (as this paper goes to
press) is increasingly becoming a critical topic (e.g., Lininger and Vines [2005]).

This research also suggests many new avenues of research.

Browser design. The difficulty of carrying out and maintaining our proto-
typed solution (both general Web technology as well as specific browser code-
bases are moving targets) supports the oft-repeated wisdom that security needs
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to be built in from the beginning, rather than added in afterwards. A rethinking
of browser design and structure, to make trusted paths and other security func-
tionality easier to build and more likely to remain secure against future tech-
nology evolution would be an interesting line of inquiry.

Parameters for trust judgment. The existence of a trusted path from browser
to user does not guarantee that the browser will tell the user true and useful
things.

What is reported in the trusted path must accurately match the nature of
the session. Unfortunately, the history of the Web offers many scenarios where
issues arose because the reality of a browsing session did not match the user’s
mental model. Invariably this happens because the deployed technology is a
richer and more ambiguous space than anyone realizes. For example, it is nat-
ural to think of a session as “SSL with server A” or “non-SSL”. It is interesting to
construct “unnatural” Web pages with a variety of combinations of framesets,
servers, 1 × 1-pixel images, and SSL elements, and then observe what vari-
ous browsers report. For one example, on Netscape platforms we tested, when
an SSL page from server A embedded an image with an SSL reference from
server B, the browser happily established sessions with both servers—but only
reported server A’s certificate in “Security Information.” Subsequently, it was
reported [Bonisteel 2001] that many IE platforms actually use different vali-
dation rules on some instances of these multiple SSL channels. Another issue
is whether the existence of an SSL session can enable the user to trust that the
data sent back to the server will be SSL protected [Norman 2002].

What is reported in the trusted path should also provide what the user needs
to know to make a trust decision. For one example [Ellison 2000], the Palm com-
puting “secure” Web site is protected by an SSL certificate registered to Modus
Media. Is Modus Media authorized to act for Palm computing? Perhaps the
server certificate structure displayed via the trusted path should include some
way to indicate delegation. For another example, the existence of technology
(or even businesses) that add higher assurance to Web servers (such as our We-
bALPS [Jiang et al. 2001; Smith 2000, 2001] work) suggests that a user might
want to know properties in addition to server identity. Perhaps the trusted path
should also handle attribute certificates.

Other uncertain issues pertaining to effective trust judgment include how
browsers handle certificate revocation [Weiser 2001] and how they handle CA
certificates with deliberately misleading names [Norman 2002].

Access control on UI. Research into creating a trusted path from browser
to user is necessary, in part, because Web security work has focused on what
machines know and do, and not on what humans know and do. It is now un-
thinkable for server content to find a way to read sensitive client-side data,
such as their system password; however, it appears straightforward for server
content to create the illusion of a genuine browser window asking for the user’s
password. Integrating security properties into document markup is an area of
ongoing work; it would be interesting to look at this area from a spoof-defense
point of view.
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Multilevel security. It is fashionable for younger scientists to reject the
Orange Book [Department of Defense 1985] and its associated body of work
regarding multilevel security as being archaic and irrelevant to the modern
computing world. However, our defense against Web-spoofing is essentially a
form of MLS: we are marking screen elements with security levels and trying to
build a user interface that clearly communicates these levels. (Of course, we are
also trying to retro-fit this into a large legacy system.) It would be interesting
to explore this vein further.

Visual hashes. In personal communication, Perrig suggests using visual
hash information [Perrig and Song 1999] in combination with various tech-
niques, such as metadata and user customization. Hash visualization uses a
hash function transforming a complex string into an image. Since image recog-
nition is easier than string memorization for human users, visual hashes can
help bridge the security gap between the client and server machines, and the
human user. We plan to examine this in future work.

Digital signatures. Another interesting research area is the application of
spoofing techniques to digital signature verification tools. In related work [Kain
et al. 2002], we have been examining how to preserve signature validity but still
fool humans. However, both for Web-based tools, as well as non-Web tools that
are content rich, spoofing techniques might create the illusion that a document’s
signature has been verified, by producing the appropriate icons and behavior.
Countermeasures may be required here as well.

Formal model of browser content security. Section 3.1 discussed the basic
framework of distinguishing browser-provided content from server-provided
content rendered by the browser. However, formally distinguishing these cat-
egories raises additional issues, since much browser-provided content still de-
pends on server-provided parameters. More work here could be interesting.
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