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ABSTRACT
Market-driven dynamic spectrum auctions can drastically
improve the spectrum availability for wireless networks strug-
gling to obtain additional spectrum. However, they face sig-
nificant challenges due to the fear of market manipulation.
A truthful or strategy-proof spectrum auction eliminates the
fear by enforcing players to bid their true valuations of the
spectrum. Hence bidders can avoid the expensive overhead
of strategizing over others and the auctioneer can maximize
its revenue by assigning spectrum to bidders who value it
the most. Conventional truthful designs, however, either
fail or become computationally intractable when applied to
spectrum auctions. In this paper, we propose VERITAS, a
truthful and computationally-efficient spectrum auction to
support an eBay-like dynamic spectrum market. VERITAS
makes an important contribution of maintaining truthful-
ness while maximizing spectrum utilization. We show ana-
lytically that VERITAS is truthful, efficient, and has a poly-
nomial complexity of O(n3k) when n bidders compete for k
spectrum bands. Simulation results show that VERITAS
outperforms the extensions of conventional truthful designs
by up to 200% in spectrum utilization. Finally, VERITAS
supports diverse bidding formats and enables the auctioneer
to reconfigure allocations for multiple market objectives.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks

General Terms
Algorithm, Design, Economics

Keywords
Spectrum Auctions, Mechanism Design

1. INTRODUCTION
An increasing number of users, homes and enterprises rely

on wireless technology for their daily activities. However,
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the growth of wireless networks has been hampered by the
inefficient distribution of radio spectrum. Historical static
allocations have led to an artificial shortage of spectrum:
new wireless applications starve for spectrum, while large
chunks of it remain idle most of the time under their current
owners. This misallocation has prompted a wide interest
in an open, market-based approach for redistributing the
spectrum where new users can gain access to the spectrum
they desperately need and existing owners can gain financial
incentives to “lease” their idle spectrum.

Auctions are among the best-known market-based alloca-
tion mechanisms due to their perceived fairness and alloca-
tion efficiency – everyone has an equal opportunity and the
goods are sold to bidders who value them the most. Indeed,
FCC (Federal Communications Commission) and its coun-
terparts across the world have auctioned unused spectrum
for billions of dollars in the past decade. However, a FCC-
style spectrum auction targets long-term national/regional
leases, requiring huge up-front investments. It often takes
months or years to conclude, involves only a few large cor-
porate players, and entails significant manual negotiations.

In this paper, we introduce a very different auction format
to support the open market-based spectrum redistributions.
We consider a dynamic spectrum auction system akin to the
eBay marketplace that serves and scales to many small play-
ers without manual mediations. In this marketplace, wire-
less nodes request spectrum in their local neighborhoods in
short-terms. These small players request spectrum based on
present demands and pay for what they really need without
burdensome up-front investments in the FCC-style auctions.

One critical requirement to initiate the proposed market-
place is to ensure that auctions are quickly conducted to
enable on-demand short-term spectrum redistribution. Bid-
ders request spectrum on the fly and the auctioneer pro-
cesses them immediately. From an economic perspective,
the fundamental obstacle is the significant overhead taken
by both the auctioneer and bidders to avoid market manip-
ulation. Bidders must strategize over others on how to bid,
and the auctioneer applies Bayesain settings to increase its
revenue. This overhead and the fact that it might not be
the best strategy can easily discourage bidders from par-
ticipations. Consequently, an auction with too few bidders
will be both unprofitable for the auctioneer and potentially
inefficient.

In response to this challenge, we develop a truthful (or
strategy-proof) spectrum auction. A truthful auction guar-
antees that if a bidder bids the true valuation of the re-
source, its utility will not be less than that when it lies.



Hence, the dominating strategy for a bidder is to bid its
true valuation. To bidders, a truthful auction eliminates
the expensive overhead of strategizing about other bidders
and prevents market manipulation. Thus it can attract a
wide range of network nodes/establishments to engage in
the marketplace. To the auctioneer, by encouraging bidders
to reveal their true valuations, a truthful auction can help
the auctioneer increase its revenue by assigning spectrum to
the bidders who value it the most. For the same reason,
many classical auction systems are made truthful, including
the sealed-bid secondary-price [15], k-position [10, 11] and
VCG auctions [2, 5].

While prior works have enforced truthfulness in conven-
tional auctions, we show that existing truthful designs ei-
ther fail or become computationally prohibitive when ap-
plied to spectrum auctions. The fundamental reason is that
unlike goods (e.g. paintings, bonds, electricity) in conven-
tional auctions, spectrum is reusable among bidders sub-
jecting to the spatial interference constraints. Because in-
terference is only a local effect, bidders in close proxim-
ity cannot use the same spectrum frequency simultaneously
but well-separated bidders can. These heterogeneous inter-
dependencies among bidders make secondary-price and k-
position auctions no longer truthful. Furthermore, these
constraints make the problem of finding the optimal spec-
trum allocation NP-complete [8], and hence a real-time spec-
trum auction with many bidders must resort to greedy allo-
cations that are computationally efficient. Unfortunately, it
has been shown that the VCG auction loses its truthfulness
under greedy allocations [9].

In this paper, we propose VERITAS, a truthful dynamic
spectrum auction framework that only requires polynomial
complexity. VERITAS is a sealed-bid truthful auction: bid-
ders submit their bids privately to the auctioneer, who grants
spectrum channels to the selected bidders but charges them
with prices equal or less than their actual bids. VERITAS
provides the following key advantages:

• VERITAS achieves truthfulness with computationally-
efficient spectrum allocation and pricing mechanisms,
making it feasible for the online short-term auction.

• VERITAS provides the auctioneer with the capability
and flexibility of maximizing its customized objective.
The auctioneer can configure the order of allocation
and the amount of spectrum offered to maximize the
revenue or the social welfare.

• VERITAS provides the bidders the flexibility of diverse
demand formats. A bidder can request spectrum by
the exactly number of channels it would like to obtain,
or by a range defined by the minimal and maximal
number of channels.

Our analytical and experimental results reveal the follow-
ing findings:

• VERITAS provides truthful and computationally- effi-
cient spectrum auctions by sequentially allocating spec-
trum to bidders following a bid-dependent ranking,
and by charging each winner with the minimum it
needs to pay to win the auction.

• VERITAS has a computational complexity of O(n log n+
nk|E|), where n is the number of bidders, k is the
number of channels auctioned, and |E| is the number

of edges in the conflict graph used to represent the
interference condition among bidders.

• The auctioneer can customize the ranking metric to
achieve desired market outcomes, such as maximizing
the revenue. VERITAS’s spectrum allocation algo-
rithm performs similarly to the best-known greedy al-
location algorithms that do not consider truthfulness.

• In untruthful auctions, the auction revenue increases
with the number of winning bidders. In contrary, the
revenue of truthful auctions (and VERITAS) increases
with the number of winning bidders initially but de-
creases when the winning bidders exceed a threshold.
VERITAS introduces a screening mechanism that op-
timizes the number of channels auctioned to maximize
the revenue.

2. PRELIMINARIES AND PROBLEM
DEFINITION

We start by introducing a set of notations used to define
a truthful spectrum auction. We consider a collusion-free
spectrum auction setting, where one auctioneer auctions k
channels to n bidders located in a geographic region. We
assume that the channels have uniform characteristics and
values, so that bidders request spectrum by submitting the
number of channels they demand and the per-channel prices
they would like to pay. To make the problem tractable, we
represent the conflict condition among bidders by a conflict
graph – two bidders either interfere with each other and can-
not use the same channels, or can reuse the same channels
simultaneously.

Channel request (di) – It represents the number of chan-
nels requested by bidder i. In strict requests, a bidder ac-
cepts to receive either di channels or 0 channel; in range
requests, a bidder accepts any x channels if 0 ≤ x ≤ di.

Per-channel bid (bi) – It represents the per-channel bid
submitted by bidder i. Let B = {b1, b2, . . . , bn} represent
the set of bids submitted by all the bidders.

Per-channel true value (vi) – Each bidder i has a per-
channel valuation vi which describes the true price i is will-
ing to pay for each channel. In most cases, this valuation is
private and is known only to the bidder itself.

Clearing price (pi) – Given the bid set B, the auctioneer
will allocate channels to bidders and charge price pi, referred
to as the clearing price for each winner i. This price might
be different across bidders but must not exceed the bid sub-
mitted by i times the number of channels assigned to i.

Bidder utility (ui) – The utility of bidder i is the residual
worth of the channels. That is, ui = vi · da

i - pi if i obtains
da

i channels, and 0 if it obtains none.

Definition 1. A truthful auction is one in which no bid-
der i can obtain higher utility ui by setting bi 6= vi.

Definition 2. An efficient and a truthful spectrum auc-
tion is one which is truthful and maximizes the efficiency of
spectrum usage subject to the interference constraints.

Given the above definitions, we now describe the two
unique properties that set spectrum auctions fundamentally
different from (and much more difficult than) conventional
multi-unit auctions. First, spectrum can be spatially reused



concurrently – two conflicting bidders must not use the same
channels simultaneously yet well-separated bidders can. While
a conventional auction with n bidders and k channels can
only have at most k winners, spectrum auction can have
more than k winners. Let’s consider a simple example of
n = 3 bidders competing for k = 2 channels, each request-
ing 1 channel. Figure 1(left) plots the conflict graph, where
each vertex represents a bidder and two vertices share an
edge if they conflict. A conventional auction will sell chan-
nels to at most 2 bidders, while an efficient spectrum auc-
tion can assign channels to all 3 bidders. Second, the con-
flict constraints among bidders are in general heterogenous,
making the problem of optimizing spectrum allocation NP-
complete [8] even when each bidder requests one channel.

a
CH2
b c a: CH1

CH2
b: CH2 c: CH1

Figure 1: An illustrative example on spectrum allo-
cations. (Left) The conflict graph of a network with
3 bidders. (Right) The optimal spectrum allocation
when there are 2 channels.

Next, we show that these unique properties of spectrum
allocation bring significant challenges into truthful and effi-
cient spectrum auction designs. Existing truthful designs in
conventional auctions, when applied to spectrum auctions,
either fail to be truthful, require exponential computational
complexity, or significantly degrade spectrum utilization.

3. CHALLENGES OF TRUTHFUL AND EF-
FICIENT SPECTRUM AUCTION DESIGN

In this section, we illustrate the challenges in designing
truthful and efficient spectrum auctions. We start from two
truthful designs from conventional auctions and show that
they become untruthful when applied to spectrum auctions.
We then introduce a simple (naive) design of truthful spec-
trum auction which leads to significant loss of spectrum us-
age, but serves as the baseline in our paper. For the ease of
understanding, we assume each bidder requests one channel.
The same conclusion applies to the scenario where bidders
request multiple channels. In each auction design, the pric-
ing is applied after the spectrum allocation.

3.1 Secondary Pricing Spectrum Auctions
Consider the following auction algorithm. Sort the bids in

descending order. Allocate one channel to each of the top l
bidders and charge them the (l+1)th bidder’s bid. This sec-
ondary pricing auction was originally proposed and shown
to be truthful in the seminal paper of Vickery [15], and later
extended to cases where each bidder requests more than one
items [10, 11]. The natural extension to spectrum auctions
leads to the following allocation and pricing algorithms.

Allocation:
1. Sort the bids in descending order and set each bidder’s

available channel set as channel 1 to k.

2. Allocate a channel m to the first bidder i in the sorted
order using the lowest indexed channel in i’s available
channel set, remove i from the list, remove m from i’s
conflicting neighbors’ available channel sets.
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Figure 2: This example shows why the one with sec-
ondary pricing is untruthful. The left part shows the
auction results when all bidders truthfully bid. The
right part shows that bidder c improves its utility
by bidding higher than its true value.
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Figure 3: This example shows why a VCG-style
spectrum auction is untruthful. When bidder c
raises its bid (right part), it increases its utility by
getting a channel and paying less than its true value.

3. Repeat 2 until all the bidders have been considered.

Pricing:
Charge winner i the highest bid of its unallocated con-

flicting neighbors. If there is no such neighbor, charge 0.
We show that the above auction is untruthful using a

counter example. Figure 2 shows the conflict graph of 4
bidders (a, b, c, d) competing for 2 channels. When bidding
truthfully, the utilities are 5, 3, 0, 1 respectively. However,
when bidder c cheats by raising its bids to 3, it will obtain
a channel and be charged with 0, increasing its utility to
1. Hence, by bidding untruthfully bidder c has improved its
utility, which contradicts the definition of truthfulness.

3.2 VCG-Style Spectrum Auctions
We now consider applying VCG-style designs to spec-

trum auctions. VCG auctions are generally intractable be-
cause they require the optimal allocation of resources. Ex-
isting works have exploited greedy allocation schemes paired
with the VCG-style pricings to design truthful auction al-
gorithms [10, 11]. For spectrum auction with combinatorial
interference constraints, the natural extension (with polyno-
mial complexity) is to use a greedy allocation (of Section 3.1)
with a VCG-style pricing mechanism. The price charged to
bidder i is the bid of its first rejected neighbor who would
have been allocated if i were absent from the auction.

Again, we use a counter example to show that this design
is untruthful in the context of spectrum auctions. Figure 3
shows a network of 5 bidders. When bidder c changes its
bid from 2 to 4, it increases its utility from 0 to 1.

3.3 A Simple Truthful Spectrum Auction
Next we show that when the corresponding conflict graph

is a unit disk graph, existing truthful designs can be applied



to spectrum auctions by sacrificing spectrum utilization sig-
nificantly. For simplicity, we assume that the bidders are
located in a rectangular region. We divide the region into
squares, each with the length of the maximal interference
range of the bidders, and split k channels into 4 subsets
with k/4 channels each. In each square box, we can apply
the original secondary pricing mechanism assuming all the
bidders in this box conflict with each other. That is, we al-
locate k/4 channels to the top k/4 bidders in each box and
charge them the bid of the (k/4 + 1)th bidder in the same
box. It is straightforward to show that this auction design
is truthful, and hence we omit the proof.

While being truthful, this auction design suffers from sig-
nificant degradation in spectrum utilization. The static par-
tition of spectrum among the boxes leads to at least a fac-
tor of 4 in spectrum degradation, let alone the degradation
within each box where bidders are assumed to conflict with
all others. This observation, in fact, motivates us to design
a sophisticated spectrum auction that achieves truthfulness
and utilizes spectrum efficiently.

4. VERITAS AUCTION DESIGN
Motivated by the observations from Section 3, we propose

VERITAS, a truthful and computationally-efficient spectrum
auction design that also utilizes spectrum efficiently. VER-
ITAS consists of a greedy spectrum allocation algorithm
to distribute channels among bidders and a pricing mech-
anism to charge winning bidders. By strategically designing
the greedy allocation algorithm, VERITAS achieves similar
spectrum utilization/efficiency as the well-known spectrum
allocation algorithms in polynomial time. By designing a
pricing mechanism to charge each winner with the mini-
mum it needs to pay to win the auction, VERITAS enforces
auction truthfulness despite the complex heterogeneous in-
terference constraints.

We design VERITAS to support diverse forms of spectrum
requests. In this section, we introduce the main algorithm
of VERITAS with strict requests, and the proofs of its truth-
fulness and computational complexity. In strict requests, a
bidder i requests spectrum by di channels and only accepts
allocations of either 0 or di channels. We show in Section 5
that VERITAS can be easily extended to three other bid-
ding formats, namely (i) range requests where bidder i re-
quests spectrum by di channels but accepts to receive any
number of channels between 0 and di, (ii) contiguous strict
requests where the channels in strict requests assigned to i
must be contiguously aligned, and (iii) contiguous range re-
quests where the channels in range requests assigned to i
must be contiguously aligned.

4.1 VERITAS Main Algorithm
We start from the main VERITAS algorithm designed for

strict requests. We represent each bidder i’s bid as [di, bi],
where di is the number of channels requested by i and bi is
the per-channel bid from i. We describe VERITAS by its
spectrum allocation and pricing algorithms. We first assume
that the bid set B is sorted in descending order of bi. In
Section 4.3 we show that VERITAS can use flexible sorting
functions f(bi) and only require f(bi) to be an increasing
function of the bid and not affected by other bidders.

For easy illustration, we first introduce a few notations.

• D = {d1, d2, ..., dn} represents the number of channels
demanded by the bidders.

• G = (V, E) represents the conflict graph where V is
the collection of the bidders and E is the collection of
edges where two bidders share an edge if they conflict.

• N(i) represents the set of i’s conflicting neighbors who
cannot share the same channel with i simultaneously,
i.e. the set of bidders sharing edges with i in G.

• Distinct(N(i)) represents the distinct set of channels
that have been assigned to all the members of N(i).

• TOP(B) represents the 1st bidder in the bidding set
B sorted in a manner of descending bi.

• aij = 1 if channel j is assigned to bidder i, else 0.

VERITAS–Allocation Based on the sorted bid set B, the
algorithm (see Algorithm 1) allocates bidders sequentially
from the highest one to the lowest one. For each bidder i,
the algorithm first checks whether there are enough channels
to satisfy i, i.e. Distinct(N(i))+di ≤ k. If so, the function
Assign(i, di) assigns to i di channels with the lowest avail-
able indices that are not in Distinct(N(i)).

Algorithm 1 VERITAS-Alloc(B, D, G)

1: B′=sorted B
2: while B′ 6= ∅ do
3: i=TOP(B′);
4: if Distinct(N(i)) + di ≤ k then
5: Assign(i, di)
6: end if
7: B′ = B′ \ {bi}
8: end while

VERITAS–Pricing VERITAS charges each winner i with
the bid of its critical neighbor multiplied by the number of
channels allocated to i.

Definition 3. Given {B \ bi}, a critical neighbor C(i) of
bidder i is a bidder in N(i) where if i bids lower than C(i),
i will not be allocated, and if i bids higher than C(i), i will
be allocated.

At the first sight, finding the critical neighbor seems com-
putationally expensive. It requires inserting i immediately
after each of its neighbors and running Algorithm 1 repeat-
edly to determine i’s allocation statuses. VERITAS over-
comes this problem by introducing an intelligent pricing al-
gorithm that identifies the critical neighbor for each bidder
by running Algorithm 1 only once. The basic idea is that
for each bidder i, first take i out of the sorted bid list B′

and run VERITAS-Alloc. When assigning channels to i’s
neighbors, remove the allocated channels from i’s available
channel set. The first winning neighbor who makes the num-
ber of i’s available channels below its demand di is i’s critical
neighbor. We describe the VERITAS-Pricing algorithm in
Algorithm 2, where avail ch is the set of currently available
channels at i, owned ch is the number of channels currently
owned by i, and {c1, c2, .., ck} is the set of k channels.

Toy Example Consider the example in Figure 3 and take
bidder c as an instance. When k = 2, c is denied when
bidding truthfully, resulting in zero utility. When c raises its
bid to 4, VERITAS charges c by its critical neighbor e’s bid
which is 3, and c’s utility becomes 2−3 = −1 < 0. Therefore,
c cannot improve its utility by bidding untruthfully.



Algorithm 2 VERITAS-Pricing(B, D, G, i)

1: B′=sorted B
2: owned ch =

∑k
j=1 aij

3: if owned ch = 0 then
4: pi = 0
5: return
6: end if
7: pi = 0
8: avail ch = {c1, c2, ..., ck}
9: B′′ = B′ \ {bi}

10: while (B′′ 6= ∅) AND (owned ch > 0) do
11: q=TOP(B′′)
12: if Distinct(N(q)) + dq ≤ k then
13: Assign(q, dq)
14: if q ∈ N(i) then
15: avail ch = avail ch\ channels allocated to q
16: if |avail ch| < owned ch then
17: pi = bq · di

18: owned ch = 0
19: end if
20: end if
21: end if
22: B′′ = B′′ \ {bq}
23: end while

Next, we prove that VERITAS is truthful. We show that
the combination of the greedy allocation and critical neigh-
bor based pricing is essential to achieve truthfulness.

4.2 VERITAS Truthfulness
We prove that VERITAS is truthful by showing that given

B in one private auction round, no bidder can obtain higher
utility by bidding other than its true value. Our proof con-
sists of three steps: (1) We prove that VERITAS’s allocation
is monotonic – given B, if a bidder is allocated by bidding b,
then it will also be allocated by bidding higher than b. (2)
We show that for each bidder, there exists a critical value
such that the bidder wins by bidding higher than this value
and loses by bidding lower. The critical value is the bid of
its critical neighbor. (3) We show that by charging winning
bidders based on their respective critical values, no bidder
can obtain higher utility by bidding other than its true value.

(1) Monotonic Allocation

Lemma 1. If any bidder i is allocated by bidding b1
i , it

will also be allocated if it bids b2
i , where b2

i > b1
i (provided all

the other bids and channel demands remain the same).

Proof. We prove this lemma by contradiction. Consider
two sorted lists of bids, B1 and B2 in Figure 4. The bids of
B1 and B2 are the same except for bidder i. In B1, bidder
i bids b1

i , and in B2, b2
i . Define the position of bidder i

in B1 and B2 by pos(b1
i ) and pos(b2

i ) respectively. Since
b1
i < b2

i , we have pos(b1
i ) > pos(b2

i ). Moreover, the two
sorted bid lists are exactly the same before pos(b2

i ) because
the demands and bids of all other bidders remain the same.
Assume that bidder i is not allocated with B2, then the
number of available channels at pos(b2

i ) is less than di. But
VERITAS-Alloc algorithm never deallocates channels, hence
there must be strictly less than di channels for all positions
after pos(b2

i ) in B1, which implies that bidder i must not be
allocated in B1. This is a contradiction. Hence it cannot be
that bidder i is allocated in B1 and not allocated in B2.

pos(b1

i
)

B2

B1

SameBids

X T U V W Z

SameBids

pos(b2

i
)

Figure 4: Two sorted bid lists where only i’s bid
is different. Bids between positions X and T are
the same for both list B1 and B2, also bids between
positions W and Z are the same for both lists.

Similarly, we can also show the following:

Lemma 2. If any bidder i is rejected by bidding b2
i , its bid

will also be rejected if it bids b1
i , where b2

i > b1
i (provided all

the other bids and channel demands remain the same).

(2) Critical Neighbor/Value
The two lemmas above lead us to the following key lemma.

Lemma 3. For any bidder i, if i would be rejected by bid-
ding some value, then there exists a unique position in the
sorted bid list, such that if i’s bid is placed before that posi-
tion i will win, and if i’s bid is placed after that position it
will lose. Moreover, that position is occupied by one of i’s
neighbors in N(i).

Proof. The proof for the first part simply follows Lemma 1
and Lemma 2. The number of available channels for any
bidder i only decreases when the allocation is conducted for
each bidder along the sorted bid list. And this can only
happen when those channels are allocated to i’s neighbors,
hence that unique position must be occupied by a neighbor
of bidder i.

We define the bid of the neighbor in this critical position
as the critical value of bidder i. When i can be allocated at
any position in the bid list, then its critical value is 0. Based
on the description of the VERITAS-Pricing algorithm (Al-
gorithm 2), we arrive at the following lemma:

Lemma 4. VERITAS-Pricing charges winning bidders by
their critical values multiplied by the number of channels
they obtained, and losing bidders by zeros.

Now we establish the second key lemma, which shows that
if any bidder i wins, then its clearing price is no more than
its submitted bid times the number of its assigned channels.

Lemma 5. For each winner i in VERITAS, its clearing
price is less than (or equal to) its submitted bid bi multiplied
by the number of requested channels di.

Proof. There are two cases. If i can always be allocated,
VERITAS charges it with zero which is equal to its criti-
cal value of zero. Our claim holds. Otherwise, VERITAS
charges i based on the bid of its critical neighbor. Since i
does obtain channels with bi, it implies (by Lemma 1) that
any bid which puts bidder i before its current position in
the bid order (any per-channel bid higher than bi) will also
be satisfied. So the per-channel clearing price must either
be derived from a bidder with bid ≤ bi or 0, and hence i’s
clearing price cannot be greater than bi · di.



Case 1 2 3 4
i bids bi X X

√ √
i bids vi X

√
X

√

Table 1: Four possible allocation results when i bids
truthfully and untruthfully.

√
denotes i wins the

auction, and X denotes i loses the auction.

(3) Auction Truthfulness
Based on the above lemmas, we now prove the main result

of this section: the truthfulness of the VERITAS algorithm.

Theorem 1. VERITAS spectrum auction is truthful.

Proof. Table 1 lists all the possible allocation results
when i bids bi (bi 6= vi) and vi. Let ub

i and ut
i be i’s utilities

when bidding bi and vi respectively. By the definition of a
truthful auction, we will show that ut

i ≥ ub
i if bi 6= vi in all

four cases.
We start from the scenario where i bids higher than its

true value, bi > vi.

• Case 1 : i loses with both bids. Because VERITAS
charges denied bidders by zeros, the utility ut

i = ub
i =

0, our claim holds.

• Case 2 : i wins by bidding vi, yet loses by bidding
higher value bi. From Lemma 1, this cannot happen.

• Case 3 : Since bidder i is rejected when bidding truth-
fully, i’s critical neighbor (Lemma 3) must be ranked
before i when i bids truthfully. And this is also the
neighbor which determines the per-channel clearing
price when i bids bi. It implies that the per-channel
clearing price must be greater than (or equal to) i’s
true value, which makes ub

i ≤ 0. But ut
i = 0, hence

ut
i ≥ ub

i .

• Case 4 : i wins with both bids. By Lemma 4, in both
cases VERITAS charges i the same price which is i’s
critical value. Hence, ut

i = ub
i .

Next we consider the scenario where bi < vi.

• Case 1 : This case is the same as the Case 1 above.

• Case 2 : From Lemma 5, when i bids truthfully, its
per-channel clearing price is no more than vi, namely
ut

i ≥ 0. Since ub
i = 0, we have ut

i ≥ ub
i .

• Case 3 : i loses by bidding vi, yet wins by bidding lower
value bi. From Lemma 1, this cannot happen.

• Case 4 : This is the same as the Case 4 above.

We have shown that when any bidder bids other than its
true value, its utility cannot be more than that when it bids
its true value. This completes the proof.

4.3 Flexible Bid Ranking Metrics
The allocation and pricing algorithms in the previous sec-

tion perform on the bid set that is sorted in descending or-
der of bid bi. However, it is straightforward to show that
VERITAS remains truthful when the bid set is sorted in the
descending order of a function f(bi). The only requirement
for f(bi) is that it is an increasing function of the bid bi, and
not affected by the bids of other bidders. For example, the
possible sorting functions are bi,

bi
|N(i)|+1

and bi · |N(i)|.

Capable of supporting flexible bid ranking metrics is a
key advantage of VERITAS. Auctioneers can design differ-
ent metrics to tune the VERITAS allocation algorithm to-
wards desired goals. For example, it has been shown that to
maximize the sum of winning bids, also known as the social
welfare [11], the best-known greedy allocation algorithm as-

signs channel following the descending order of bi
|N(i)+1| [14].

4.4 VERITAS Computational Complexity
We now analyze the running time of VERITAS for a given

conflict graph G = (V, E) with n bidders and k channels.
First, VERITAS-Alloc takes O(n log n) time to sort the bids.
To allocate channels to bidder i, VERITAS-Alloc needs to
examine i’s neighbors for all k channels to find the available
lowest-indexed channels. This process takes 2k|E| time for
n bidders. Therefore, the overall complexity of VERITAS-
Alloc is O(n log n + k|E|). Second, VERITAS-Pricing uses
the sorted bids from VERITAS-Alloc and hence its com-
plexity only comes from the process of finding the avail-
able lowest-indexed channels, which is 2k|E| for each bid-
der. Therefore, the overall complexity of VERITAS-Pricing
is O(nk|E|). Together, the overall complexity of VERITAS
with strict requests is O(n log n + nk|E|).

Theorem 2. VERITAS runs in time O(n log n+nk|E|),
where |E| is the number of edges in the conflict graph G, n
is the number of bidders, and k is the number of channels

auctioned. Because |E| ≤ n(n−1)
2

, VERITAS runs in time

less than O(n3k).

5. EXTENDING TO OTHER REQUEST
FORMATS

In this section, we show that VERITAS can be extended
to support different spectrum request formats. In particu-
lar, we focus on range-based requests where bidder i requests
di channels but accepts to obtain any number of channels
between 0 and di. We also show that VERITAS and Range-
VERITAS can be applied to cases where the channels as-
signed to each bidder are contiguously aligned in frequency.

5.1 Range-VERITAS Auction Design
We start from relaxing the spectrum request format to

be range based rather than the strict di or 0 channels. We
show that VERITAS can be modified slightly to provide the
bidders with this flexibility while maintaining truthfulness.

Range-VERITAS-Allocation We modify the VERITAS-
Alloc algorithm (Algorithm 1) in step 4 and 5. When the
number of available channels for i is less than di, we allocate
whatever is possible.

Range-VERITAS-Pricing Similarly to the VERITAS-
Pricing algorithm, Range-VERITAS charges winning bid-
ders based on the bids of their critical neighbors. The funda-
mental difference is that now the bidder has multiple (rather
than one) critical neighbors because bidding below each crit-
ical neighbor will result into the allocation of different num-
ber of channels. For each set of additional channels obtained
by bidding higher than the last critical neighbor, Range-
VERITAS charges with the bid of the last critical neighbor.
We list the pricing algorithm in Algorithm 4. Compared
to VERITAS-Pricing, the new algorithm differs in step 12,
13, 17 and 18. In step 12 and 13, the bidder is allocated



Algorithm 3 Range-VERITAS-Alloc(B, D, G)

1: B′=sorted B
2: while B′ 6= ∅ do
3: i=TOP(B′);
4: if Distinct(N(i)) ≤ k then
5: Assign(i, min(di, k −Distinct(N(i))))
6: end if
7: B′ = B′ \ {bi}
8: end while

Algorithm 4 Range-VERITAS-Pricing(B, D, G, i)

1: B′=sorted B
2: owned ch =

∑k
j=1 aij

3: if owned ch = 0 then
4: pi = 0
5: return
6: end if
7: pi = 0
8: avail ch = {c1, c2, ..., ck}
9: B′′ = B′ \ {bi}

10: while (B′′ 6= ∅) AND (owned ch > 0) do
11: q=TOP(B′′)
12: if Distinct(N(q)) < k then
13: Assign(q, min(k −Distinct(N(q)), dq))
14: if q ∈ N(i) then
15: avail ch = avail ch\ channels allocated to q
16: if |avail ch| < owned ch then
17: pi = pi + bq · (owned ch− |avail ch|)
18: owned ch = |avail ch |
19: end if
20: end if
21: end if
22: B′′ = B′′ \ {bq}
23: end while

with channels if there is any available; in step 18, we update
owned ch to the number of currently available channels so
that the clearing price for each bundle of channels is accu-
mulated in step 17. The total clearing price for i is the sum
of prices charged for all of its assigned channels.

Toy Example We use the example in Figure 5 to explain
how Range-VERITAS charges winning bidders. Assume k =
3 and di = 2. Figure 5 (left) shows the allocation result
when every bidder is truthful. To compute the clearing price,
say for bidder e, we consider the bidder list < a, b, c, d >.
Using Range-VERITAS-Alloc, e’s available channels are not
affected until c is allocated with 2 channels {1, 2}. Then
there is only 1 available channel for e, which is less than 2,
the number of channels e obtained from the auction. This
means by bidding below c, e can obtain at most 1 channel.
Hence for that (2 − 1) channel, e is charged by c’s bid 2.
When e’s neighbor d is allocated with channel {3}, there is
no available channel for e, then for that left incremental 1
channel, e is charged by d’s bid 1. So the total price e needs
to pay for {1, 2} is 2 + 1 = 3, and e’s utility is 3 ∗ 2− 3 = 3.

Figure 5 (right) shows the auction result if c lies by bid-
ding 4 instead of the true value 2. Now let us look at the
clearing price for c. Consider the bidder list < a, b, e, d >.
Using Range-VERITAS-Alloc, a first gets channels {1, 2}
and b gets channel {3}. Since b is c’s neighbor, now c has
2 available channels. Next e is allocated with 2 channels

v=6

b=6

u=1+6

v=1

b=1

u=1

v=5

b=5

u=3

v=2

b=2

u=0

v=3

b=3

u=1+2

a: 
CH{1,2}

b:
CH{3}

d: 
CH{3}

c:
X

e:
CH{1,2}

v=6

b=6

u=1+6

v=1

b=1

u=0

v=5

b=5

u=5

v=2

b=4

u=-1-1

v=3

b=3

u=2

a: 
CH{1,2}

b:
CH{3}

d: 
X

c:
CH{1,2}

e:
CH{3}

Figure 5: An example showing how Range-
VERITAS-Pricing works. When bidder c raises its
bid (right part), it obtains a negative utility.

{1, 2}, so the number of c’s available channels reduces to
0, which is less than the channels c obtained from auction.
Therefore for these (2−0) channels, c is charged by e’s bid 3
per channel, which means c’s utility is (2− 3) ∗ 2 < 0. That
is, c cannot obtain a higher utility by bidding untruthfully.

5.2 Range-VERITAS Truthfulness
Consider two different bids b1

i and b2
i , b1

i < b2
i . Let d1

i and
d2

i denote the number of channels i obtains in each case; p1
i

and p2
i represent the total clearing price at i; pos(b1

i ) and
pos(b2

i ) be the positions of the bidder i in the sorted bid
lists using the two bids.

Lemma 6. When b1
i < b2

i , the following statements hold:

1. d1
i ≤ d2

i .

2. The amount charged for d1
i (d2

i = d1
i + δ, where δ ≥ 0)

channels is the same for both bids.

3. When the bid is b2
i , for the exactly (d2

i − d1
i ) channels,

the per-channel clearing price is greater than b1
i .

4. When the bid is b2
i , for the exactly (d2

i − d1
i ) channels,

the per-channel clearing price is no more than b2
i .

Proof. For statement 1, the arguments are the same as
those used in Lemma 1 – Because all the bidders before
pos(b2

i ) are the same in both the sorted bid lists (Figure 4),
the higher bid (b2

i ) obtains at least the same number of chan-
nels as that of the lower bid (b1

i ).
For statement 2, consider the two sorted lists of bids in

Figure 4. Since i gets d1
i channels at position pos(b1

i ), the
critical neighbors for the d1

i channels must be located after
position pos(b1

i ). By using these critical neighbors’ bids,
Range-VERITAS calculates the prices for these d1

i channels.
Since the list of bidders after pos(b1

i ) does not change, both
cases will charge the same amounts for the d1

i channels.
Statement 3 follows the argument that only d1

i channels
are available at position pos(b1

i ). Range-VERITAS will use
one or more neighbors located before pos(b1

i ) to determine
the prices for the additional (d2

i−d1
i ) channels. Since all bids

before pos(b1
i ) are greater than b1

i , the per-channel price for
the (d2

i − d1
i ) channels is greater than b1

i .
The argument for statement 4 comes from those of Lemma 5.

For each bundle of channels i obtains, the price is deter-
mined by the neighbor below whom i will lose that bundle
of channels. Since i does get additional (d2

i − d1
i ) channels

at pos(b2
i ), any bid that pushes i before pos(b2

i ) will also let
i get them. Hence the price for (d2

i − d1
i ) channels cannot



be determined by the neighbors before pos(b2
i ), namely the

per-channel price for the (d2
i − d1

i ) channels cannot be more
than b2

i .

Using the above statements, we now prove that Range-
VERITAS is truthful. Again, we consider all the possible
cases listed in Table 1. Note that

√
represents the case

when the bidder obtains one or more channels.

Theorem 3. For range requests, Range-VERITAS spec-
trum auction is truthful.

Proof. We start from the case when i bids higher than
its true value and show ut

i ≥ ub
i if bi > vi.

• Case 1-3 : The arguments are similar as those in the
corresponding cases in Theorem 1.

• Case 4 : i wins with bi or vi. Let d and (d + 4d)
represent the number of channels assigned to i when
bidding vi and bi. From Lemma 6, 4d ≥ 0. Let p and
(p + 4p) represent the clearing prices in each case.
From Lemma 6, part 2, we know that the d channels
are charged the same, then we have ut

i = (vid−p), and
ub

i = (vid− p)+ (vi4d−4p). From Lemma 6, part 3,
the per-channel price for 4d is larger than vi, namely
4p > vi4d. Therefore ub

i = (vid−p)+(vi4d−4p) <
(vid− p) = ut

i.

Next we show that when a bidder bids lower than its true
value bi < vi, it cannot increase its utility.

• Case 1-3 : They are similar as those in Theorem 1.

• Case 4 : i wins with bi or vi. Let d and (d + 4d)
represent the number of channels assigned to i when
bidding bi and vi. From Lemma 6, 4d ≥ 0. Let
p and (p + 4p) represent the clearing prices in each
case. Again, from Lemma 6, part 2, we know that
the d channels are charged the same, then we have
ub

i = (vid − p), and ut
i = (vid − p) + (vi4d − 4p).

From Lemma 6, part 4, the per-channel price for 4d
is no more than vi, namely 4p ≤ vi4d. Therefore
ut

i = (vid− p) + (vi4d−4p) ≥ (vid− p) = ub
i .

From the above, we have shown that for all possible cases, no
bidder can improve its utility by bidding untruthfully.

5.3 Contiguous Spectrum Requests
VERITAS and Range-VERITAS can be easily extended

to scenarios where bidders require their allocated channels
to be contiguously aligned in frequency. The pricing mech-
anisms remain the same, while in the allocation processes,
we check whether di or x ≤ di contiguously aligned channels
are available. We can show that the modified auction algo-
rithms are still truthful. The proof follows on similar lines
as Theorem 1. In the interest of space, we omit the proof.

Theorem 4. Contiguous-VERITAS algorithm is truthful.

Theorem 5. For contiguous range based bids, Contiguous-
Range-VERITAS algorithm is truthful.

6. EXPERIMENTAL RESULTS
In this section, we perform experiments to evaluate the

performance of VERITAS. First, we explore the unique prop-
erty of truthful auctions by comparing VERITAS to a revenue-
maximizing yet non-truthful auction. Second, we examine

the efficiency of VERITAS by comparing it to the simple
truthful auction described in Section 3.3. We also com-
pare VERITAS’s greedy allocation to the best-known greedy
mechanisms in spectrum allocation. Finally, we investigate
the impacts of different ranking metrics and allocation pat-
terns to demonstrate VERITAS’s flexibility.

We assume a single auctioneer that handles bidders in a
large geographic area. We randomly deploy bidders in a
square 1×1 area, and apply a distance-based interference
model to produce the corresponding conflict graph. Any
two bidders within 0.1 distance will conflict with each other
and hence cannot be allocated with the same channels. We
assume that each bidder’s true valuation (and hence its bid)
is uniformly distributed over (0, 1]. By default, each bid-
der requests one channel. The results are averaged over 5
random seeds.

We use the following three performance metrics.

• Revenue: The sum of charges to all the winners.

• Spectrum Utilization: The sum of allocated channels
of all the winning bidders.

• User Satisfactory: The percentage of winning bidders.
When each bidder demands only one channel, it is the
ratio of the spectrum utilization to the total number
of bidders. Otherwise, it is the percentage of bidders
who are allocated with one or more channels.

6.1 Truthful vs Non-Truthful Auctions
To explore the property of truthfulness, we compare VER-

ITAS with a non-truthful revenue-maximizing auction. The
non-truthful scheme chooses winners to maximize the rev-
enue and charges winners by their actual bids. When each
bidder requires only one channel, the clearing problem in
non-truthful auction reduces into a maximum weighted in-
dependent set problem. We use the well-known solutions
from [14]. Given a set of bids, the non-truthful auction al-
ways produces higher revenue compared to VERITAS since
VERITAS charges winners less than their actual bids. How-
ever, this comparison is unfair because bidders in non-truthful
auctions have no incentive to bid their true values. Never-
theless, we plot the results of both auctions based on the
same set of bids to illustrate the trends of spectrum utiliza-
tion and revenue as the number of bidders and the available
channels increase.

In Figure 6, we plot the spectrum utilization and rev-
enue for both the non-truthful auction ((a)-(c)) and VERI-
TAS ((d)-(f)). Both systems perform similarly in terms of
spectrum utilizations, which grow with the number of chan-
nels auctioned and the number of players, and eventually
saturate. On the other hand, the two systems behave dif-
ferently in terms of the revenue as the number of channels
increases. The revenue of the non-truthful auction keeps in-
creasing, while the revenue of VERITAS starts to decline
once the number of channels auctioned exceeds a value.

This significant difference comes from the fact that the two
auctions have fundamentally different charging mechanisms:
the non-truthful auction charges winners by their actual bids
while the truthful auction (and VERITAS) charges winners
by the bids of their critical neighbors. In the non-truthful
auction, increasing the number of channels also increases the
number of winners, and hence the revenue which is the sum
of winning bids. In VERITAS, although the number of win-
ners increases, the charge to individual winner decreases as
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Figure 6: Comparing VERITAS to the non-truthful revenue-maximizing spectrum auction. Top 3 figures
assume the non-truthful spectrum auction and bottom 3 are for VERITAS.

the pool of losing bidders shrinks. For a better illustration,
Figure 6(c) and (f) plot the revenues against the user satis-
factions. We see that for VERITAS, there exists an optimal
user satisfactory level which balances the number of winners
and their charges to maximize the revenue.

Motivated by this interesting phenomenon, we propose to
let the auctioneer determine the number of channels auc-
tioned in order to maximize its revenue. In Section 7, we
will discuss analytically how to choose the number of chan-
nels auctioned given the information of the conflict graph
and the bid distribution.

6.2 Simple vs Sophisticated Truthful Auctions
Next, we compare VERITAS with the simple truthful

scheme in Section 3.3. The key distinction between them
is that VERITAS seeks to improve the efficiency in spec-
trum usage, while the simple auction design sacrifices spec-
trum utilization to convert the problem into the conventional
auction setting. Given the interesting revenue-satisfaction
tradeoff in Figure 6(f), a natural question is “Can VER-
ITAS’s improved efficiency in spectrum usage also lead to
higher revenue?”

To answer this question, we compare VERITAS and the
simple auction in two scenarios. First, we fix the number of
channels auctioned and vary the number of bidders. Second,
we fix the number of bidders but vary the number of channels
auctioned. These experiments allow us to understand both
approaches under different levels of resource contention.

1) Varying the number of bidders – From Figure 7(a)-
(b), we see that the simple truthful auction performs poorly
in terms of spectrum utilization because it sacrifices spec-
trum reuse to maintain truthfulness. However, when the
number of bidders is small, the simple design produces higher
revenue than VERITAS. This is because when less than 200

bidders compete for 8 channels, more than 90% of them suc-
ceed in VERITAS but less than 50% succeed in the simple
design. For a fair comparison, Figure 7(c) compares both ap-
proaches in terms of the tradeoff between revenue and user
satisfaction. Given the same bidder satisfaction, VERITAS
increases the revenue significantly by up to 200%.

2) Varying the number of channels auctioned – Sim-
ilarly, Figure 8(a) shows that VERITAS improves spectrum
utilization significantly. From Figure 8(b), we observe that
although the maximal revenues of both auction systems are
similar, VERITAS achieves the maximum using 3 channels
while the simple design requires 10 channels. For a fair com-
parison, we plot the revenue per channel as a function of the
bidder satisfactory rate by varying the number of channels
auctioned (Figure 8(c)). Again, VERITAS significantly out-
performs the simple design.

6.3 Efficiency of VERITAS
In Section 6.2, we have shown that improving allocation

efficiency is a critical requirement for truthful auctions. Next,
we evaluate VERITAS’s efficiency by comparing its alloca-
tion algorithms to two best-known greedy algorithms that
maximize the spectrum utilization and the social welfare
(sum of winning bids). In particular, we compare:

• Greedy - 1/(X + 1) [14]: The best-known greedy allo-
cation algorithm that maximizes the spectrum utiliza-
tion. This algorithm allocates channels sequentially.
Each time it sorts bidders by ranking 1/(X +1) where
X = |N(i)| is i’s conflict degree, and assigns chan-
nels to the highest-ranked bidder. Note that this algo-
rithm updates Xs after each allocation, while VERI-
TAS keeps the same order to maintain truthfulness.

• Greedy - b/(X + 1) [14]: The best-known greedy al-
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Figure 7: Comparing VERITAS and the simple truthful design by auctioning 8 channels to 10–500 bidders.
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Figure 8: Comparing VERITAS and the simple truthful design by auctioning 1–30 channels to 300 bidders.

location that maximizes the sum of winning bids (or
social welfare [11]) by using a ranking of b/(X + 1).
This algorithm also updates Xs and reorders bidders
after each allocation.

• VERITAS - b: VERITAS with a ranking metric of b.

• VERITAS - b/(X +1): VERITAS with a ranking met-
ric of b/(X + 1). By considering the conflicting de-
gree X, this ranking metric intends to maximize the
social welfare. Unlike Greedy-b/(X+1), it does not re-
order bidders after each allocation in order to maintain
truthfulness.

• VERITAS - 1/(X +1): As a reference, VERITAS with
a ranking metric of 1/(X + 1).

The comparisons are fair since all these algorithms are of
polynomial complexity. Both greedy algorithms are within
proven distances to the optimal solution (NP-complete), and
serve as good benchmarks to evaluate VERITAS.

Random Topologies Figure 9(a)-(c) compare the greedy
and VERITAS algorithms in terms of the spectrum utiliza-
tion, the sum of winning bids, and the revenue, assum-
ing each bidder requests one channel. As expected, the
1/(X + 1) metric maximizes the spectrum utilization while
the b/(X + 1) metric maximizes the sum of winning bids.
More importantly, VERITAS achieves similar performance
(<5% degradation) as those greedy algorithms. The perfor-
mance degradation in VERITAS comes from the fact that
the greedy allocation algorithms update X value after each
allocation while VERITAS must use the original X to en-
force truthfulness. Finally, with a uniformly random conflict

graph, b and b/(X + 1) metrics in VERITAS perform simi-
larly.

Clustered Topologies To create clustered topologies, we
initially distribute 60 bidders in a 0.5x 0.5 area, and then
increase bidders up to 300 by adding 60 bidders in the center
each time. Figure 9(d)-(f) compare VERITAS to the greedy
algorithms. As the level of clustering increases, the use of
the ranking metric b/(X + 1) gradually outperforms b by
considering the impact of conflict degree.

The above results clearly demonstrate VERITAS’s alloca-
tion efficiency. We note that VERITAS also allows the auc-
tioneer to optimize customized utility functions other than
the revenue. For example, to maximize the social welfare,
VERITAS can choose b/(X + 1) as the ranking metric.

6.4 Supporting Different Demand Patterns
In addition to providing flexibility to the auctioneer, VER-

ITAS also offers flexible demand formats to the bidders.
Next, we examine how these different demand patterns im-
pact the auction results. We compare: strict requests (0/di)
where di represents bidder i’s demand, range requests [0, di],
and continuous strict requests (0/Cont di).

Figure 10(a)-(b) compare the spectrum utilization and
revenue of the three patterns when auctioning channels to
200 bidders with di = 10. We observe that the use of range
requests leads to the highest spectrum utilization and max-
imizes revenue using less channels. In Figure 10(c), we plot
revenue as a function of the number of channels auctioned
using range requests. The results show that the optimal
number of channels auctioned depends heavily on di.
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Figure 9: Comparing the performance of VERITAS to untruthful greedy allocations with different ranking
metrics. Top 3 figures assume random conflict graphs and bottom 3 figures assume clustered conflict graphs.
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Figure 10: VERITAS under different demand/allocation patterns. (a)-(b) di=10, (c) varying di: 3,5,10.

7. MAXIMIZING REVENUE BY OPTIMIZ-
ING THE NUMBER OF CHANNELS
AUCTIONED

As discussed in Section 6.1, the auctioneer can maximize
its revenue by choosing the number of channels auctioned
kopt. The choice of kopt should be made before the actual
auction to maintain truthfulness. While this optimization
can be highly complex due to its dependency on the network
topology, we provide an analytical framework to derive kopt

assuming the conflict topology is all-connected (clique) and
the bids are independent and identically-distributed. In this
case, VERITAS’s pricing reduces to k-position pricing [15].
Finally, we use simulations to evaluate its performance when
it is applied to non-clique conflict graphs.

Consider n bidders competing for k channels and each
bidder demands one channel. Let b1 ≥ b2 ≥ ...bn. In this
case, VERITAS assigns channels to the top k ranked bidders
and charge each of them with bk+1. Hence the total revenue
is k · bk+1, which is a random variable. We assume that

each bidder’s bid bi (i = 1..n) follows the same independent
distribution with the probability density function p(x) and
cumulative distribution function F (x). Our problem is to
find the optimal k that maximizes the expected revenue:

kopt = argmax
k=1..n

E(k · bk+1) = argmax
k=1..n

∫
kpbk+1(x) · xdx (1)

where pbk+1(x) is the probability density function for bk+1:

pbk+1(x) =
n!

(n− k − 1)!k!
F (x)n−k−1 ·(1−F (x))k ·p(x) (2)

When the bid follows uniform distribution in the range of
(0, 1], that is p(x) = 1 and F (x) = x, then we can derive

E(k · bk+1) =
n!

(n− k − 1)!(k − 1)!

∫ 1

0

xn−k(1− x)kdx (3)

and

kopt(n) =

{
n
2
, n is even

n−1
2

, n+1
2

, n is odd
(4)

In a random network, we propose to approximate kopt by
the average conflict degree n plus one. Figure 11 compares
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Figure 11: Theoretical prediction of the optimal
number of channels to be auctioned.

our predicted kopt and the actual performance of VERITAS
in non-clique conflict graphs. We vary the number of bidders
from 100 to 300 in the same deployment area, mapping to
the average conflict degrees of 3, 6, 8, and hence n of 4, 7,
9 in (4). We observe that the proposed predictions are very
close to the actual optimal values. As the conflict degree
increases, our prediction requires more channels because it
conservatively assumes that local interference graphs are all-
connected. Finally, we note that the optimizations for other
types of network topologies are much harder, and we seek
to address them in a future study.

8. RELATED WORK
Auctions have been used by FCC to allocate scarce spec-

trum resource [3]. Huge body of works follow on the designs
of wireless spectrum auctions in different scenarios. These
include transmit power auctions [6] where bidders use the
same spectrum band but bid transmit power to minimize
the interference, and spectrum band auctions [1, 4, 7, 13]
where bidders obtain different spectrum channels to mini-
mize the interference. However, none of these addresses the
problem of truthfulness/strategy-proofness.

Truthfulness/strategy-proofness is a crucial property from
the economic perspective. It has been applied to other sce-
narios beyond traditional auctions such as the multi-cast
routing [16]. The notion of truthful bidding in sealed-bid
auctions was first brought out by Vickery in his seminal
paper [15], which introduced the secondary pricing for one-
item auctions. This work was then generalized to multiple-
unit combinatorial auctions by Clarke [2] and Groves [5], re-
sulting into the famous Vickery-Clarke-Groves(VCG) mech-
anism. To achieve truthfulness, this celebrated scheme re-
quires the optimal welfare-maximizing allocation, which un-
fortunately is a NP-complete problem in general multi-unit
auctions. Since then, there have been some works on truth-
ful mechanism design using greedy algorithms or linear pro-
gramming for specific classes of bidders in specific problem
domains [10] [11]. We point the interested readers to the
survey in [12] for more details.

As discussed in Section 3, these existing solutions, when
applied to spectrum auctions, either lose the truthfulness, re-
quire exponential complexity, or result in significant degra-
dation of spectrum utilization. We build VERITAS using
the observations from existing proposals, and achieve truth-
fulness in a spectrum-efficient and computationally-efficient

manner. VERITAS also allows the auctioneer to tailor its
allocation mechanism towards different economic or spec-
trum objectives, and provides bidders with diverse bidding
formats.

9. CONCLUSIONS
In this work, we propose VERITAS, a truthful and effi-

cient dynamic spectrum auction system to serve many small
players. Like an eBay marketplace, VERITAS allows wire-
less users to obtain and pay for the spectrum based on their
demands, and enables spectrum owners to maximize their
revenues by assigning spectrum to the bidders who truly
value it the most. We prove analytically VERITAS’s truth-
fulness and computational efficiency. We also show that
VERITAS is highly efficient and flexible, and can be eas-
ily reconfigured to suit multiple needs of the auctioneer and
bidders.
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