Introduction
Class 1, 18.05, Spring 2014
Jeremy Orloff and Jonathan Bloom

1 Probability vs. Statistics

In this introduction we will preview what we will be studying in 18.05. Don’t worry if many of the terms are unfamiliar, they will be explained as the course proceeds.

Probability and statistics are deeply connected because all statistical statements are at bottom statements about probability. Despite this the two sometimes feel like very different subjects. Probability is logically self-contained; there are a few rules and answers all follow logically from the rules, though computations can be tricky. In statistics we apply probability to draw conclusions from data. This can be messy and often involves as much art as science.

Probability example
You have a fair coin (equal probability of heads or tails). You will toss it 100 times. What is the probability of 60 or more heads? There is only one answer (about 0.028444) and we will learn how to compute it.

Statistics example
You have a coin of unknown provenance. To investigate whether it is fair you toss it 100 times and count the number of heads. Let’s say you count 60 heads. Your job as a statistician is to draw a conclusion (inference) from this data. There are many ways to proceed, both in terms of the form the conclusion takes and the probability computations used to justify the conclusion. In fact, different statisticians might draw different conclusions.

Note that in the first example the random process is fully known (probability of heads = .5). The objective is to find the probability of a certain outcome (at least 60 heads) arising from the random process. In the second example, the outcome is known (60 heads) and the objective is to illuminate the unknown random process (the probability of heads).

2 Frequentist vs. Bayesian Interpretations

There are two prominent and sometimes conflicting schools of statistics: Bayesian and frequentist. Their approaches are rooted in differing interpretations of the meaning of probability.

Frequentist: Probability measures the frequency of various outcomes of an experiment. For example, saying a fair coin has a 50% probability of heads means that if we toss it many times then we expect about half the tosses to land heads.
Bayesian: Probability is an abstract concept that measures a state of knowledge or a degree of belief in a given proposition. In practice Bayesians do not assign a single value for the probability of a coin coming up heads. Rather they consider a range of values each with its own probability of being true.

In 18.05 we will study and compare these approaches. The frequentist approach has long been dominant in fields like biology, medicine, public health and social sciences. The Bayesian approach has enjoyed a resurgence in the era of powerful computers and big data. It is especially useful when incorporating new data into an existing statistical model, for example, when training a speech or face recognition system. Today, statisticians are creating powerful tools by using both approaches in complementary ways.

3 Applications, Toy Models, and Simulation

Probability and statistics are used widely in the physical sciences, engineering, medicine, the social sciences, the life sciences, economics and computer science. The list of applications is essentially endless: tests of one medical treatment against another (or a placebo), measures of genetic linkage, the search for elementary particles, machine learning for vision or speech, gambling probabilities and strategies, climate modeling, economic forecasting, epidemiology, marketing, googling... We will draw on examples from many of these fields during this course.

Given so many exciting applications, you may wonder why we will spend so much time thinking about toy models like coins and dice. By understanding these thoroughly we will develop a good feel for the simple essence inside many complex real-world problems. In fact, the modest coin is a realistic model for any situations with two possible outcomes: success or failure of a treatment, an airplane engine, a bet, or even a class.

Sometimes a problem is so complicated that the best way to understand it is through computer simulation. Here we use software to run virtual experiments many times in order to estimate probabilities. In this class we will use R for simulation as well as computation and visualization. Don’t worry if you’re new to R; we will teach you all you need to know.
1 Learning Goals

1. Know the definitions and notation for sets, intersection, union, complement.
2. Be able to visualize set operations using Venn diagrams.
3. Understand how counting is used computing probabilities.
4. Be able to use the rule of product, inclusion-exclusion principle, permutations and combinations to count the elements in a set.

2 Counting

2.1 Motivating questions

Example 1. A coin is fair if it comes up heads or tails with equal probability. You flip a fair coin three times. What is the probability that exactly one of the flips results in a head?

answer: With three flips, we can easily list the eight possible outcomes:

\{TTT, TTH, THT, THH, HTT, HTH, HHT, HHH\}

Three of these outcomes have exactly one head:

\{TTH, THT, HTT\}

Since all outcomes are equally probable, we have

\[P(1 \text{ head in 3 flips}) = \frac{\text{number of outcomes with 1 head}}{\text{total number of outcomes}} = \frac{3}{8}. \]

Think: Would listing the outcomes be practical with 10 flips?

A deck of 52 cards has 13 ranks (2, 3, \ldots, 9, 10, J, Q, K, A) and 4 suits (\spadesuit, ♥, ♦, ♣). A poker hand consists of 5 cards. A one-pair hand consists of two cards having one rank and three cards having three other ranks, e.g., \{2♥, 2♣, 5♥, 8♣, K♦\}
Test your intuition: the probability of a one-pair hand is:

a) less than 5%
b) between 5% and 10%
c) between 10% and 20%
d) between 20% and 40%
e) greater than 40%

At this point we can only guess the probability. One of our goals is to learn how to compute it exactly. To start, we note that since every set of five cards is equally probable, we can compute the probability of a one-pair hand as

\[P(\text{one-pair}) = \frac{\text{number of one-pair hands}}{\text{total number of hands}} \]

So, to find the exact probability, we need to count the number of elements in each of these sets. And we have to be clever about it, because there are too many elements to simply list them all. We will come back to this problem after we have learned some counting techniques.

Several times already we have noted that all the possible outcomes were equally probable and used this to find a probability by counting. Let’s state this carefully in the following principle.

Principle: Suppose there are \(n \) possible outcomes for an experiment and each is equally probable. If there are \(k \) desirable outcomes then the probability of a desirable outcome is \(k/n \). Of course we could replace the word desirable by any other descriptor: undesirable, funny, interesting, remunerative, ...

Concept question: Can you think of a scenario where the possible outcomes are not equally probable?

Here’s one scenario: on an exam you can get any score from 0 to 100. That’s 101 different possible outcomes. Is the probability you get less than 50 equal to 50/101?

2.2 Sets and notation

Our goal is to learn techniques for counting the number of elements of a set, so we start with a brief review of sets. (If this is new to you, please come to office hours).

2.2.1 Definitions

A **set** \(S \) is a collection of elements. We use the following notation.

Element \(x \in S \): the element \(x \) is in the set \(S \).

Subset \(A \subset S \): the set \(A \) is a subset of \(S \) if all of its elements are in \(S \).

Complement \(A^c \) or \(S - A \): The complement of \(A \) in \(S \) is the set of elements of \(S \) that are not in \(A \).
Union $A \cup B$: the union of A and B is the set of all elements in A or B (or both).

Intersection $A \cap B$: the intersection of A and B is the set of all elements in both A and B.

Empty set \emptyset: the empty set is the set with no elements.

Disjoint: A and B are disjoint if they have no common elements. That is, if $A \cap B = \emptyset$.

Difference $A - B$: the difference of A and B is the set of elements in A that are not in B.

Let’s illustrate these operations with a simple example.

Example 2. Start with a set of 10 animals

$$S = \{ \text{Antelope, Bee, Cat, Dog, Elephant, Frog, Gnat, Hyena, Iguana, Jaguar} \}.$$

Consider two subsets:

$$M = \text{the animal is a mammal} = \{ \text{Antelope, Cat, Dog, Elephant, Hyena, Jaguar} \}$$

$$W = \text{the animal lives in the wild} = \{ \text{Antelope, Bee, Elephant, Frog, Gnat, Hyena, Iguana, Jaguar} \}.$$

Our goal here is to look at different set operations.

Intersection: $M \cap W$ contains all wild mammals: $M \cap W = \{ \text{Antelope, Elephant, Hyena, Jaguar} \}$.

Union: $M \cup W$ contains all animals that are mammals or wild (or both).

$M \cup W = \{ \text{Antelope, Bee, Cat, Dog, Elephant, Frog, Gnat, Hyena, Iguana, Jaguar} \}$.

Complement: M^c means everything that is not in M, i.e. not a mammal.

$M^c = \{ \text{Bee, Frog, Gnat, Iguana} \}$.

Difference: $M - W$ means everything that’s in M and not in W.

So, $M - W = \{ \text{Cat, Dog} \}$.

There are often many ways to get the same set, e.g. $M^c = S - M$, $M - W = M \cap L^c$.

The relationship between union, intersection, and complement is given by De Morgan’s laws:

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

In words the first law says everything not in $(A$ or B) is the same set as everything that’s (not in A) and (not in B). The second law is similar.

2.2.2 Venn Diagrams

Venn diagrams offer an easy way to visualize set operations.

In all the figures S is the region inside the large rectangle, L is the region inside the left circle and R is the region inside the right circle. The shaded region is the set indicated underneath each figure.
Proof of DeMorgan’s Laws

Example 3. Verify DeMorgan’s laws for the subsets $A = \{1, 2, 3\}$ and $B = \{3, 4\}$ of the set $S = \{1, 2, 3, 4, 5\}$.

answer: For each law we just work through both sides of the equation and show they are the same.
1. $(A \cup B)^c = A^c \cap B^c$:
 Right hand side: $A \cup B = \{1, 2, 3, 4\} \Rightarrow (A \cup B)^c = \{5\}$.
 Left hand side: $A^c = \{4, 5\}$, $B^c = \{1, 2, 5\} \Rightarrow A^c \cap B^c = \{5\}$.
 The two sides are equal. QED

2. $(A \cap B)^c = A^c \cup B^c$:
 Right hand side: $A \cap B = \{3\} \Rightarrow (A \cap B)^c = \{1, 2, 4, 5\}$.
 Left hand side: $A^c = \{4, 5\}$, $B^c = \{1, 2, 5\} \Rightarrow A^c \cup B^c = \{1, 2, 4, 5\}$.
 The two sides are equal. QED

Think: Draw and label a Venn diagram with A the set of male students and B the set of sophomores. Shade the region illustrating the first law. Can you express the first law in this case as a non-technical English sentence?
2.2.3 Products of sets

The product of sets S and T is the set of ordered pairs:

$$S \times T = \{(s, t) \mid s \in S, t \in T\}.$$

In words the right-hand side reads “the set of ordered pairs (s, t) such that s is in S and t is in T.

The following diagrams show two examples of the set product.

<table>
<thead>
<tr>
<th>\times</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,1)</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
</tr>
<tr>
<td>2</td>
<td>(2,1)</td>
<td>(2,2)</td>
<td>(2,3)</td>
<td>(2,4)</td>
</tr>
<tr>
<td>3</td>
<td>(3,1)</td>
<td>(3,2)</td>
<td>(3,3)</td>
<td>(3,4)</td>
</tr>
</tbody>
</table>

$\{1, 2, 3\} \times \{1, 2, 3, 4\}$

$[1, 4] \times [1, 3] \subset [0, 5] \times [0, 4]$

The right-hand figure illustrates that if $A \subset S$ and $B \subset T$ then $A \times B \subset S \times T$.

2.3 Counting

If S is finite, we use $|S|$ or $\#S$ to denote the number of elements of S.

Two useful counting principles are the inclusion-exclusion principle and the rule of product.

2.3.1 Inclusion-exclusion principle

The inclusion-exclusion principle says

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

We can illustrate this with a Venn diagram. S is all the dots, A is the dots in the blue circle, and B is the dots in the red circle.
$|A|$ is the number of dots in A and likewise for the other sets. The figure shows that $|A| + |B|$ double-counts $|A \cap B|$, which is why $|A \cap B|$ is subtracted off in the inclusion-exclusion formula.

Example 4. In a band of singers and guitarists, seven people sing, four play the guitar, and two do both. How big is the band?

answer: Let S be the set singers and G be the set guitar players. The inclusion-exclusion principle says

\[
\text{size of band} = |S \cup G| = |S| + |G| - |S \cap G| = 7 + 4 - 2 = 9.
\]

2.3.2 Rule of Product

The *Rule of Product* says:

If there are n ways to perform action 1 and then by m ways to perform action 2, then there are $n \cdot m$ ways to perform action 1 followed by action 2.

We will also call this the **multiplication** rule.

Example 5. If you have 3 shirts and 4 pants then you can make $3 \cdot 4 = 12$ outfits.

An extremely important point is that the rule of product holds even if the ways to perform action 2 depend on action 1, as long as the number of ways to perform action 2 is independent of action 1. To illustrate this:

Example 6. There are 5 competitors in the 100m final at the Olympics. In how many ways can the gold, silver, and bronze medals be awarded?

answer: There are 5 ways to award the gold. Once that is awarded there are 4 ways to award the silver and then 3 ways to award the bronze: answer $5 \cdot 4 \cdot 3 = 60$ ways.

Note that the choice of gold medalist affects who can win the silver, but the number of possible silver medalists is always four.

2.4 Permutations and combinations

2.4.1 Permutations

A permutation of a set is a particular ordering of its elements. For example, the set \{a, b, c\} has six permutations: $abc, acb, bac, bca, cab, cba$. We could have found the number of permutations using the rule of product. That is, there are 3 ways to pick the first element, then 2 ways for the second, and 1 for the first. This gives a total of $3 \cdot 2 \cdot 1 = 6$ permutations.
In general, the rule of product tells us that the number of permutations of a set of k elements is
\[k! = k \cdot (k-1) \cdots 3 \cdot 2 \cdot 1. \]

We also talk about the permutations of k things out of a set of n things. We show what this means with an example.

Example 7. List all the permutations of 3 elements out of the set \{a, b, c, d\}.

answer: This is a long list,

- abc, acb, bac, bca, cab, cba
- abd, adb, bad, bda, dab, dba
- acd, adc, cad, cda, dac, dca
- bcd, bdc, cdb, cdb, dbc, dcb

Note that abc and acb count as distinct permutations. That is, for permutations the order matters.

There are 24 permutations. Note that the rule or product would have told us there are $4 \cdot 3 \cdot 2 = 24$ permutations without bothering to list them all.

2.4.2 Combinations

In contrast to permutations, in combinations order does not matter: permutations are lists and combinations are sets. We show what we mean with an example.

Example 8. List all the combinations of 3 elements out of the set \{a, b, c, d\}.

answer: Such a combination is a collection of 3 elements without regard to order. So, abc and cab both represent the same combination. We can list all the combinations by listing all the subsets of exactly 3 elements.

\[\{a, b, c\} \quad \{a, b, d\} \quad \{a, c, d\} \quad \{b, c, d\} \]

There are only 4 combinations. Contrast this with the 24 permutations in the previous example. The factor of 6 comes because every combination of 3 things can be written in 6 different orders.

2.4.3 Formulas

We’ll use the following notations.

- nP_k = number of permutations (lists) of k distinct elements from a set of size n
- $nC_k = \binom{n}{k}$ = number of combinations (subsets) of k elements from a set of size n

We emphasise that by the number of combinations of k elements we mean the number of subsets of size k.

These have the following notation and formulas:

- **Permutations:** $nP_k = \frac{n!}{(n-k)!} = n(n-1) \cdots (n-k+1)$
- **Combinations:** $nC_k = \frac{n!}{k!(n-k)!} = \frac{nP_k}{k!}$
The notation nC_k is read “n choose k”. The formula for nP_k follows from the rule of product. It also implies the formula for nC_k because a subset of size k can be ordered in $k!$ ways.

We can illustrate the relation between permutations and combinations by lining up the results of the previous two examples.

\[
\begin{array}{cccccc}
abc & acb & bac & bca & cab & cba \\
abd & adb & bad & bda & dab & dba \\
acd & adc & cad & cda & dac & dca \\
bcd & bdc & cdb & dcb & dbc & dcb \\
\end{array}
\]

\{a, b, c\} \quad \{a, b, d\} \quad \{a, c, d\} \quad \{b, c, d\}

Permutations: $4P_3$ \quad Combinations: $4C_3$

Notice that each row in the permutations list consists of all $3!$ permutations of the corresponding set in the combinations list.

2.4.4 Examples

Example 9. Count the following:

i) The number of ways to choose 2 out of 4 things (order does not matter).

ii) The number of ways to list 2 out of 4 things.

iii) The number of ways to choose 3 out of 10 things.

answer:

(i) This is asking for combinations: $\binom{4}{2} = \frac{4!}{2!\cdot 2!} = 6$.

(ii) This is asking for permutations: $4P_2 = \frac{4!}{2!} = 12$.

(iii) This is asking for combinations: $\binom{10}{3} = \frac{10!}{3!\cdot 7!} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120$.

Example 10.

(i) Count the number of ways to get 3 heads in a sequence of 10 flips of a coin.

(ii) If the coin is fair, what is the probability of exactly 3 heads in 10 flips.

answer:

(i) This asks for the number sequences of 10 flips (heads or tails) with exactly 3 heads. That is, we have to choose exactly 3 out of 10 flips to be heads. This is the same question as in the previous example.

\[
\binom{10}{3} = \frac{10!}{3!\cdot 7!} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120.
\]

(ii) Each flip has 2 possible outcomes (heads or tails). So the rule of product says there are $2^{10} = 1024$ sequences of 10 flips. Since the coin is fair each sequence is equally probable. So the probability of 3 heads is

\[
\frac{120}{1024} = .117.
\]
1 Learning Goals

1. Know the definitions of sample space, event and probability function.

2. Be able to organize a scenario with randomness into an experiment and sample space.

3. Be able to make basic computations using a probability function.

2 Terminology

2.1 Probability cast list

- Experiment: a repeatable procedure with well-defined possible outcomes.

- Sample space: the set of all possible outcomes. We usually denote the sample space by Ω, sometimes by S.

- Event: a subset of the sample space.

- Probability function: a function giving the probability for each outcome.

Later in the course we will learn about

- Probability density:

- Random variable: a random numerical outcome

2.2 Simple examples

Example 1. Toss a fair coin.
Experiment: toss the coin, report if it lands heads or tails.
Sample space: $\Omega = \{H, T\}$.
Probability function: $P(H) = .5, \ P(T) = .5$.

Example 2. Toss a fair coin 3 times.
Experiment: toss the coin 3 times, list the results.
Sample space: $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$.
Probability function: Each outcome is equally likely with probability $1/8$.

For small sample spaces we can put the set of outcomes and probabilities into a table.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>HHH</th>
<th>HHT</th>
<th>HTH</th>
<th>HTT</th>
<th>THH</th>
<th>THT</th>
<th>TTH</th>
<th>TTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>
Example 3. Measure the mass of a proton
Experiment: follow some defined procedure to measure the mass and report the result.
Sample space: $\Omega = [0, \infty)$, i.e. in principle we can get any positive value.
Probability function: since there is a continuum of possible outcomes there is no probability function. Instead we need to use a probability density, which we will learn about later in the course.

Example 4. Taxis (An infinite discrete sample space)
Experiment: count the number of taxis that pass 77 Mass. Ave during an 18.05 class.
Sample space: $\Omega = \{0, 1, 2, 3, 4, \ldots \}$.
This is often modeled with the following probability function known as the Poisson distribution:

$$P(k) = e^{-\lambda} \frac{\lambda^k}{k!},$$

where λ is the average number of taxis. We can put this in a table:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>\ldots</th>
<th>k</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>$e^{-\lambda}$</td>
<td>$e^{-\lambda} \lambda$</td>
<td>$e^{-\lambda} \lambda^2/2$</td>
<td>$e^{-\lambda} \lambda^3/3!$</td>
<td>\ldots</td>
<td>$e^{-\lambda} \lambda^k/k!$</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Question: Accepting that this is a valid probability function, what is $\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!}$?

answer: This is the total probability of all possible outcomes, so the sum equals 1. (Note, this follows from the Taylor series $e^\lambda = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!}$.)

In a given setup there can be more than one reasonable choice of sample space. Here is a simple example.

Example 5. Two dice (Choice of sample space)
Suppose you roll one die. Then the sample space and probability function are

<table>
<thead>
<tr>
<th>Outcome</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability:</td>
<td>$1/6$</td>
<td>$1/6$</td>
<td>$1/6$</td>
<td>$1/6$</td>
<td>$1/6$</td>
<td>$1/6$</td>
</tr>
</tbody>
</table>

Now suppose you roll two dice. What should be the sample space? Here are two options.
1. Record the pair of numbers showing on the dice (first die, second die).
2. Record the sum of the numbers on the dice. In this case there are 11 outcomes {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. These outcomes are not all equally likely.

As above, we can put this information in tables. For the first case, the sample space is the product of the sample spaces for each die

$$\{(1,1), (2,1), (3,1), \ldots (6,6)\}$$

Each of the 36 outcomes is equally likely. (Why 36 outcomes?) For the probability function we will make a two dimensional table with the rows corresponding to the number on the first die, the columns the number on the second die and the entries the probability.
In the second case we can present outcomes and probabilities in our usual table.

<table>
<thead>
<tr>
<th>outcome</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
</table>

The sum of two dice

Think: What is the relationship between the two probability tables above?

We will see that the best choice of sample space depends on the context. For now, simply note that given the outcome as a pair of numbers it is easy to find the sum.

Note. Listing the experiment, sample space and probability function is a good way to start working systematically with probability. It can help you avoid some of the common pitfalls in the subject.

Events.

An event is a collection of outcomes, i.e. an event is a subset of the sample space \(\Omega \). This sounds odd, but it actually corresponds to the common meaning of the word.

Example 6. Using the setup in Example 2 we would describe the event that you get exactly two heads in words by \(E = \) ‘exactly 2 heads’. Written as a subset this becomes

\[E = \{HHT, HTH, THH\}. \]

You should get comfortable moving between describing events in words and as subsets of the sample space.

The probability of an event \(E \) is computed by adding up the probabilities of all of the outcomes in \(E \). In this example each outcome has probability 1/8, so we have \(P(E) = 3/8 \).

2.3 Definition of a discrete sample space

Definition. A discrete sample space is one that is listable, it can be either finite or infinite.

Examples. \(\{H, T\} \), \(\{1, 2, 3\} \), \(\{1, 2, 3, 4, \ldots\} \), \(\{2, 3, 5, 7, 11, 13, 17, \ldots\} \) are all discrete sets. The first two are finite and the last two are infinite.

Example. The interval \(0 \leq x \leq 1 \) is not discrete, rather it is continuous. We will deal with continuous sample spaces in a few days.
2.4 The probability function

So far we’ve been using a casual definition of the probability function. Let’s give a more precise one.

Careful definition of the probability function.

For a discrete sample space S a probability function P assigns to each outcome ω a number $P(\omega)$ called the probability of ω. P must satisfy two rules:

Rule 1. $0 \leq P(\omega) \leq 1$ (probabilities are between 0 and 1).

Rule 2. The sum of the probabilities of all possible outcomes is 1 (something must occur)

In symbols Rule 2 says: if $S = \{\omega_1, \omega_2, \ldots, \omega_n\}$ then $P(\omega_1) + P(\omega_2) + \ldots + P(\omega_n) = 1$.

Using summation notation: $\sum_{j=1}^{n} P(\omega_j) = 1$.

The probability of an event E is the sum of the probabilities of all the outcomes in E. That is,

$$P(E) = \sum_{\omega \in E} P(\omega).$$

Think: Check Rules 1 and 2 on Examples 1 and 2 above.

Example 7. Flip until heads (A classic example)

Suppose we have a coin with probability p of heads.

Experiment: Toss the coin until the first heads. Report the number of tosses.

Sample space: $\Omega = \{1, 2, 3, \ldots\}$.

Probability function: $P(n) = (1 - p)^{n-1}p$.

Challenge 1: show the sum of all the probabilities equals 1 (hint: geometric series).

Challenge 2: justify the formula for $P(n)$ (we will do this soon).

Stopping problems. The previous toy example is an uncluttered version of a general class of problems called **stopping rule problems.** A stopping rule is a rule that tells you when to end a certain process. In the toy example above the process was flipping a coin and we stopped after the first heads. A more practical example is a rule for ending a series of medical treatments. Such a rule could depend on how well the treatments are working, how the patient is tolerating them and the probability that the treatments would continue to be effective. One could ask about the probability of stopping within a certain number of treatments or the average number of treatments you should expect before stopping.

3 Some rules of probability

For events A, L and R contained in a sample space Ω.

Rule 1. $P(A^c) = 1 - P(A)$.

Rule 2. If L and R are disjoint then $P(L \cup R) = P(L) + P(R)$.

Rule 3. If L and R are not disjoint, we have the **inclusion-exclusion principle:**

$$P(L \cup R) = P(L) + P(R) - P(L \cap R)$$
We visualize these rules using Venn diagrams.

We can also justify them logically.

Rule 1: A and A^c split Ω into two non-overlapping regions. Since the total probability $P(\Omega) = 1$ this rule says that the probability of A and the probability of 'not A' are complementary, i.e. sum to 1.

Rule 2: L and R split $L \cup R$ into two non-overlapping regions. So the probability of $L \cup R$ is split between $P(L)$ and $P(R)$.

Rule 3: In the sum $P(L) + P(R)$ the overlap $P(L \cap R)$ gets counted twice. So $P(L) + P(R) - P(L \cap R)$ counts everything in the union exactly once.

Think: Rule 2 is a special case of Rule 3.

For the following examples suppose we have an experiment that produces a random integer between 1 and 20. The probabilities are not necessarily uniform, i.e., not necessarily the same for each outcome.

Example 8. If the probability of an even number is .6 what is the probability of an odd number?

answer: Since being odd is complementary to being even, the probability of being odd is $1 - .6 = .4$.

Let’s redo this example a bit more formally, so you see how it’s done. First, so we can refer to it, let’s name the random integer X. Let’s also name the event ‘X is even’ as A. Then the event ‘X is odd’ is A^c. We are given that $P(A) = .6$. Therefore $P(A^c) = 1 - .6 = .4$.

Example 9. Consider the 2 events, A: ‘X is a multiple of 2’; B: ‘X is odd and less than 10’. Suppose $P(A) = .6$ and $P(B) = .25$.

(i) What is $A \cap B$?

(ii) What is the probability of $A \cup B$?

answer: (i) Since all numbers in A are even and all numbers in B are odd, these events are disjoint. That is, $A \cap B = \emptyset$.

(ii) Since A and B are disjoint $P(A \cup B) = P(A) + P(B) = .85$.

Example 10. Let A, B and C be the events X is a multiple of 2, 3 and 6 respectively. If $P(A) = .6$, $P(B) = .3$ and $P(C) = .2$ what is $P(A$ or B)?

answer: Note two things. First we used the word ‘or’ which means union: ‘A or B’ = $A \cup B$. Second, an integer is divisible by 6 if and only if it is divisible by both 2 and 3. This translates into $C = A \cap B$. So the inclusion-exclusion principle says

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = .6 + .3 - .2 = .7.$$

End of class 2 notes
Conditional Probability, Independence and Bayes’ Theorem
Class 3, 18.05, Spring 2014
Jeremy Orloff and Jonathan Bloom

1 Learning Goals

1. Know the definitions of conditional probability and independence of events.
2. Be able to compute conditional probability directly from the definition.
3. Be able to use the multiplication rule to compute the total probability of an event.
4. Be able to check if two events are independent.
5. Be able to use Bayes formula to ‘invert’ conditional probabilities.
6. Be able to organize the computation of conditional probabilities using trees and tables.
7. Understand the base rate fallacy thoroughly.

2 Conditional Probability

Conditional probability answers the question ‘how does the probability of an event change if we have extra information’. We’ll illustrate with an example.

Example 1. Toss a fair coin 3 times.

a) What is the probability of 3 heads?

answer: Sample space \(\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \).
All outcomes are equally likely, so \(P(3 \text{ heads}) = \frac{1}{8} \).

b) Suppose we are told that the first toss was heads. Given this information how should we compute the probability of 3 heads?

answer: We have a new (reduced) sample space: \(\Omega' = \{HHH, HHT, HTH, HTT\} \).
All outcomes are equally likely, so
\[
P(3 \text{ heads given that the first toss is heads}) = \frac{1}{4}.
\]
This is called *conditional probability*, since it takes into account additional conditions. To develop the notation, we rephrase (b) in terms of *events*.

b) Let \(A \) be the event ‘all three tosses are heads’ = \(\{HHH\} \).
Let \(B \) be the event ‘the first toss is heads’ = \(\{HHH, HHT, HTH, HTT\} \).

The **conditional probability** of \(A \) knowing that \(B \) occurred is written
\[
P(A|B)
\]
This is read as ‘the conditional probability of \(A \) given \(B \)’ or ‘the probability of \(A \) conditioned on \(B \)’ or simply ‘the probability of \(A \) given \(B \)’.

We can visualize conditional probability as follows. Think of \(P(A) \) as the proportion of the area of the *whole* sample space taken up by \(A \). For \(P(A|B) \) we restrict our attention to \(B \). That is, \(P(A|B) \) is the proportion of area of \(B \) taken up by \(A \), i.e. \(P(A \cap B)/P(B) \).
Conditional probability: Abstract visualization and coin example

Note, \(A \subset B \) in the right-hand figure, so there are only two colors shown.

The formal definition of conditional probability catches the gist of the above example and visualization.

Formal definition of conditional probability
Let \(A \) and \(B \) be events. We define the conditional probability of \(A \) given \(B \) as

\[
P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad \text{provided } P(B) \neq 0. \tag{1}
\]

Let’s redo the coin tossing example using this definition (1). Recall \(A = \text{‘3 heads’} \) and \(B = \text{‘first toss is heads’} \). We have \(P(A) = 1/8 \) and \(P(B) = 1/2 \). Since \(A \cap B = A \), we also have \(P(A \cap B) = 1/8 \). Now according to (1), \(P(A|B) = \frac{1/8}{1/2} = 1/4 \), which agrees with our answer in example (1b).

3 Multiplication Rule

The following formula is called the **multiplication rule**.

\[
P(A \cap B) = P(A) \cdot P(B). \tag{2}
\]

This is simply a rewriting of the definition (1) of conditional probability. We will see that our use of the multiplication rule is very similar to our use of the rule of product. In fact, the multiplication rule is just a souped up version of the rule of product.

We start with a simple example where we can check all the probabilities directly by counting.

Example 2. Draw two cards from a deck.

Let \(S_1 = \text{‘first card is a spade’} \).
Let \(S_2 = \text{‘second card is a spade’} \).

What is the \(P(S_2|S_1)? \)

answer: We can do this directly by counting: if the first card is a spade then of the 51 cards remaining, 12 are spades.

\[P(S_2|S_1) = 12/51.\]

Now, let’s recompute this using formula (1). We have to compute \(P(S_1) \), \(P(S_2) \) and \(P(S_1 \cap S_2) \):

\[P(S_1) = 1/4 \text{ because there are 52 equally likely ways to draw the first card and 13 of them are spades.}\]
$P(S_2) = 1/4$: this follows by exactly the same logic as for $P(S_1)$. This may seem surprising since we know that the value of first card affects the probabilities for the second card. However, if we look at all possible two card sequences we will see that every card in the deck has equal probability of being the second card. Since 13 of the 52 cards are spades we get $P(S_2) = \frac{13}{52} = 1/4$.

$P(S_1 \cap S_2) = \frac{13 \cdot 12}{52 \cdot 51} = \frac{3}{51}$: This is found by counting the number of ways to draw a spade followed by a second spade and dividing by the number of ways to draw any card followed by any other card.

Now, using (1) we get

$$P(S_2|S_1) = \frac{P(S_2 \cap S_1)}{P(S_1)} = \frac{3/51}{1/4} = \frac{12}{51}. \quad \text{QED}$$

Finally, we verify the multiplication rule by computing both sides of (2).

$$P(S_1 \cap S_2) = \frac{13 \cdot 12}{52 \cdot 51} = \frac{3}{51} \quad \text{and} \quad P(S_2|S_1) \cdot P(S_1) = \frac{12}{51} \cdot \frac{1}{4} = \frac{3}{51}. \quad \text{QED}$$

Think: What is $P(S_2|S_1^c)$?

4 Law of Total Probability

The law of total probability will allow us to use the multiplication rule to find probabilities in more interesting examples. It involves a lot of notation, but the idea is fairly simple. We show the law when the sample space is divided into 3 pieces. It is a simple matter to extend the rule when there are more than 3 pieces.

Law of Total Probability

Suppose the sample space Ω is divided into 3 disjoint events B_1, B_2, B_3 (see the figure below). Then for any event A:

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3)$$

$$P(A) = P(A|B_1) P(B_1) + P(A|B_2) P(B_2) + P(A|B_3) P(B_3) \quad (3)$$

The top equation says ‘if A is divided into 3 pieces then $P(A)$ is the sum of the probabilities of the pieces’. The bottom equation (3) is called the law of total probability. It is just a rewriting of the top using the multiplication rule.
The sample space \(\Omega \) and the event \(A \) are each divided into 3 disjoint pieces. The law holds if we divide \(\Omega \) into any number of events, so long as they are disjoint and cover all of \(\Omega \). Such a division is often called a partition of \(\Omega \).

Our first example will be one where we already know the answer and can verify the law.

Example 3. An urn contains 5 red balls and 2 green balls. Two balls are drawn one after the other. What is the probability that the second ball is red?

answer: The sample space is \(\Omega = \{rr, rg, gr, gg\} \).

Let \(R_1 \) be the event ‘the first ball is red’, \(G_1 = \) ‘first ball is green’, \(R_2 = \) ‘second ball is red’, \(G_2 = \) ‘second ball is green’. We are asked to find \(P(R_2) \).

The fast way to compute this is just like \(P(S_2) \) in the card example above. Every ball is equally likely to be the second ball. Since 5 out of 7 balls are red, \(P(R_2) = \frac{5}{7} \).

Let’s compute this same value using the law of total probability (3). First, we’ll find the conditional probabilities. This is a simple counting exercise.

\[
P(R_2 | R_1) = \frac{4}{6}, \quad P(R_2 | G_1) = \frac{5}{6}.
\]

Since \(R_1 \) and \(G_1 \) partition \(\Omega \) the law of total probability says

\[
P(R_2) = P(R_2 | R_1)P(R_1) + P(R_2 | G_1)P(G_1)
\]
\[
= \frac{4}{6} \cdot \frac{5}{7} + \frac{5}{6} \cdot \frac{2}{7}
\]

\[
= \frac{30}{42} = \frac{5}{7}.
\]

Probability urns

The example above used probability urns. Their use goes back to the beginning of the subject and we would be remiss not to introduce them. This toy model is very useful. We quote from Wikipedia: http://en.wikipedia.org/wiki/Urn_problem

In probability and statistics, an urn problem is an idealized mental exercise in which some objects of real interest (such as atoms, people, cars, etc.) are represented as colored balls in an urn or other container. One pretends to draw (remove) one or more balls from the urn; the goal is to determine the probability of drawing one color or another, or some other properties. A key parameter is whether each ball is returned to the urn after each draw.

It doesn’t take much to make an example where (3) is really the best way to compute the probability.

Example 4. An urn contains 5 red balls and 2 green balls. A ball is drawn. If it’s green a red ball is added to the urn and if it’s red a green ball is added to the urn. (The original ball is not returned to the urn.) Then a second ball is drawn. What is the probability the second ball is red?

answer: The law of total probability says that \(P(R_2) \) can be computed using the expression in Equation (4). Only the values for the probabilities will change. We have

\[
P(R_2 | R_1) = \frac{4}{7}, \quad P(R_2 | G_1) = \frac{6}{7}.
\]
Therefore,

\[P(R_2) = P(R_2|R_1)P(R_1) + P(R_2|G_1)P(G_1) = \frac{4}{7} \cdot \frac{5}{7} + \frac{6}{7} \cdot \frac{2}{7} = \frac{32}{49} \]

5 Using Trees to Organize the Computation

Trees are a great way to organize computations with conditional probability and the law of total probability. The figures and examples will make clear what we mean by a tree. As with the rule of product, the key is to organize the underlying process into a sequence of actions.

We start by redoing Example 4. The sequence of actions are: first draw ball 1 (and add the appropriate ball to the urn) and then draw ball 2.

You interpret this tree as follows. Each dot is called a node. The tree is organized by levels. The top node (root node) is at level 0. The next layer down is level 1 and so on. Each level shows the outcomes at one stage of the game. Level 1 shows the possible outcomes of the first draw. Level 2 shows the possible outcomes of the second draw starting from each node in level 1.

Probabilities are written along the branches. The probability of \(R_1 \) (red on the first draw) is \(\frac{5}{7} \). It is written along the branch from the root node to the one labeled \(R_1 \). At the next level we put in conditional probabilities. The probability along the branch from \(R_1 \) to \(R_2 \) is \(P(R_2|R_1) = \frac{4}{7} \). It represents the probability of going to node \(R_2 \) given that you are already at \(R_1 \).

The multiplication rule says that the probability of getting to any node is just the product of the probabilities along the path to get there. For example, the \(R_2 \) node at the far left represents the event \(R_1 \cap R_2 \) and \(P(R_1 \cap R_2) = P(R_1) \cdot P(R_2|R_1) = \frac{5}{7} \cdot \frac{4}{7} \).

The law of total probability is just the statement that \(P(R_2) \) is the sum of the probabilities of all paths leading to \(R_2 \) (the two circled nodes in the figure). In this case,

\[P(R_2) = \frac{5}{7} \cdot \frac{4}{7} + \frac{2}{7} \cdot \frac{6}{7} = \frac{32}{49}, \]

exactly as in the previous example.

5.1 Shorthand vs. precise trees

The tree given above involves some shorthand. For example, the node marked \(R_2 \) at the far left really represents the event \(R_1 \cap R_2 \), since it ends the path from the root through \(R_1 \) to \(R_2 \). Here is the same tree with everything labeled precisely. As you can see this tree
is more cumbersome to make and use. We usually use the shorthand version of trees. You should make sure you know how to interpret them precisely.

![Tree Diagram]

\[P(R_1) = 5/7 \]
\[P(R_2|R_1) = 4/7 \]
\[P(G_2|R_1) = 3/7 \]
\[P(R_2|G_1) = 6/7 \]
\[P(G_2|G_1) = 1/7 \]
\[R_1 \cap R_2 \]
\[R_1 \cap G_2 \]
\[G_1 \cap R_2 \]
\[G_1 \cap G_2 \]

6 Independence

Two events are independent if knowledge that one occurred does not change the probability that the other occurred. Informally, events are independent if they do not influence one another.

Example 5. Toss a coin twice. We expect the outcomes of the two tosses to be independent of one another. In real experiments this always has to be checked. If my coin lands in honey and I don’t bother to clean it, then the second toss might be affected by the outcome of the first toss.

More seriously, the independence of experiments can by undermined by the failure to clean or recalibrate equipment between experiments or to isolate supposedly independent observers from each other or a common influence. We’ve all experienced hearing the same ‘fact’ from different people. Hearing it from different sources tends to lend it credence until we learn that they all heard it from a common source. That is, our sources were not independent.

Translating the verbal description of independence into symbols gives

\[A \text{ is independent of } B \quad \text{if} \quad P(A|B) = P(A). \]

That is, knowing that \(B \) occurred does not change the probability that \(A \) occurred. In terms of events as subsets, knowing that the realized outcome is in \(B \) does not change the probability that it is in \(A \).

If \(A \) and \(B \) are independent in the above sense, then the multiplication rule gives \(P(A \cap B) = P(A|B) \cdot P(B) = P(A) \cdot P(B) \). This justifies the following technical definition of independence.

Formal definition of independence: Two events \(A \) and \(B \) are **independent** if

\[P(A \cap B) = P(A) \cdot P(B) \quad (5) \]

This is a nice symmetric definition which makes clear that \(A \) is independent of \(B \) if and only if \(B \) is independent of \(A \). Unlike the equation with conditional probabilities, this definition makes sense even when \(P(B) = 0 \). In terms of conditional probabilities, we have:

1. If \(P(B) = 0 \) then \(A \) and \(B \) are independent if and only if \(P(A|B) = P(A) \).
2. If \(P(A) = 0 \) then \(A \) and \(B \) are independent if and only if \(P(B|A) = P(B) \).

Independent events commonly arise as different trials in an experiment, as in the following example.
Example 6. Toss a fair coin twice.
1. Let \(H_1 \) = ‘heads on first toss’ and let \(H_2 \) = ‘heads on second toss’. Since \(P(H_1 \cap H_2) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \), the events are independent.

However we can ask about the independence of any two events, as in the following two examples.

Example 7. Toss a fair coin 3 times.
Let \(H_1 \) = ‘heads on first toss’, \(A \) = ‘two heads total’.
We know \(P(A) = 3/8 \). We have \(H_1 = \{\text{HHH, HHT, HTH, HTT}\} \), so \(P(A|H_1) = 2/4 \).
Since \(P(A|H_1) = P(A) \) the events are not independent.

Example 8. Draw a card from a deck.
Let’s examine the independence of 3 events ‘the card is an ace’, ‘the card is a heart’ and ‘the card is red’.

a) Because each ace is equally likely and each suit is equally likely it makes intuitive sense that whether the card is a heart is independent of whether it’s an ace. Let’s show this formally.

Define the events \(A \) = ‘ace’, \(H \) = ‘hearts’.
We know \(P(A) = 4/52 = 1/13 \), \(P(A|H) = 1/13 \). Since \(P(A) = P(A|H) \) we have that \(A \) is independent of \(H \).

b) Now define the event \(R \) = ‘red’.
\(P(A|R) = 2/26 = 1/13 \). So \(A \) is independent of \(R \). That is, whether the card is an ace is independent of whether it’s red.

c) What about \(H \) and \(R \)?
Since \(P(H) = 1/4 \) and \(P(H|R) = 1/2 \), \(H \) and \(R \) are not independent.

We can also see this the other way around: \(P(R) = 1/2 \) and \(P(R|H) = 1 \), so \(H \) and \(R \) are not independent.

6.1 Paradoxes of Independence

An event \(A \) with probability 0 is independent of itself, since in this case both sides of equation (5) are 0. This appears paradoxical because knowledge that \(A \) occurred certainly gives information about whether \(A \) occurred. We resolve the paradox by noting that since \(P(A) = 0 \) the statement ‘\(A \) occurred’ is vacuous.

Think: For what other value(s) of \(P(A) \) is \(A \) independent of itself?

7 Bayes Theorem

Bayes theorem is a pillar of both probability and statistics and central to the rest of this course.

For two events \(A \) and \(B \) Bayes theorem (also called Bayes rule and Bayes formula) says

\[
P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}.
\]

(6)

Comments: 1. Bayes rule tells us how to ‘invert’ conditional probabilities, i.e. to find
\(P(B|A)\) from \(P(A|B)\).

2. In practice, \(P(A)\) is often computed using the law of total probability.

Proof of Bayes rule

The key point is that \(A \cap B\) is symmetric in \(A\) and \(B\). So the multiplication rule says \(P(B|A) \cdot P(A) = P(A \cap B) = P(A|B) \cdot P(B)\). Now divide through by \(P(A)\) to get Bayes rule.

A common mistake is to confuse \(P(A|B)\) and \(P(B|A)\). They can be very different. This is illustrated in the next example.

Example 9. Toss a coin 5 times. Let \(H_1\) = ‘first toss is heads’ and let \(H_A\) = ‘all 5 tosses are heads’. Then \(P(H_1|H_A) = 1\) but \(P(H_A|H_1) = 1/16\).

For practice, let’s check this with Bayes theorem. The terms are \(P(H_A|H_1) = 1/16\), \(P(H_1) = 1/2\), \(P(H_A) = 1/32\). So,

\[
P(H_1|H_A) = \frac{P(H_A|H_1)P(H_1)}{P(H_A)} = \frac{(1/16) \cdot (1/2)}{(1/32)} = 1.
\]

7.1 The Base Rate Fallacy

The base rate fallacy is one of many examples showing that it’s easy to confuse the meaning of \(P(B|A)\) and \(P(A|B)\) when a situation is described in words. This is one of the key examples from probability and it will inform much of our practice and interpretation of statistics. You should strive to understand it thoroughly.

Example 10. The Base Rate Fallacy

Consider a routine screening test for a disease. Suppose the frequency of the disease in the population (base rate) is 0.5%. The test is highly accurate with a 5% false positive rate and a 10% false negative rate.

You take the test and it comes back positive. What is the probability that you have the disease?

answer: We will do the computation three times: using trees, tables and symbols. We’ll use the following notation for the relevant events:

\(D^+\) = ‘you have the disease’

\(D^-\) = ‘you do not have the disease’

\(T^+\) = ‘you tested positive’

\(T^-\) = ‘you tested negative’.

We are given \(P(D^+) = .005\) and therefore \(P(D^-) = .995\). The false positive and false negative rates are (by definition) conditional probabilities.

\[
P(\text{false positive}) = P(T^+|D^-) = .05 \quad \text{and} \quad P(\text{false negative}) = P(T^-|D^+) = .1.
\]

The complementary probabilities are known as the true negative and true positive rates:

\[
P(T^-|D^-) = 1 - P(T^+|D^-) = .95 \quad \text{and} \quad P(T^+|D^+) = 1 - P(T^-|D^+) = .9.
\]

Trees: All of these probabilities can be displayed quite nicely in a tree.
The question asks for the probability that you have the disease given that you tested positive, i.e. what is the value of $P(D+|T+)$. We aren’t given this value, but we do know $P(T+|D+)$, so we can use Bayes theorem.

$$P(D+|T+) = \frac{P(T+|D+) \cdot P(D+)}{P(T+)}.$$

The two probabilities in the numerator are given. We compute the denominator $P(T+)$ using the law of total probability. Using the tree we just have to sum the probabilities for each of the nodes marked $T+$

$$P(T+) = .995 \times .05 + .005 \times .9 = .05425$$

Thus,

$$P(D+|T+) = \frac{.9 \times .005}{.05425} = 0.082949 \approx 8.3\%.$$

Remarks: This is called the base rate fallacy because the base rate of the disease in the population is so low that the vast majority of the people taking the test are healthy, and even with an accurate test most of the positives will be healthy people. Ask your doctor for his/her guess at the odds.

To summarize the base rate fallacy with specific numbers

95% of all tests are accurate does not imply 95% of positive tests are accurate

We will refer back to this example frequently. It and similar examples are at the heart of many statistical misunderstandings.

Other ways to work Example 10

Tables: Another trick that is useful for computing probabilities is to make a table. Let’s redo the previous example using such a table.

<table>
<thead>
<tr>
<th></th>
<th>$D+$</th>
<th>$D-$</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T+$</td>
<td>45</td>
<td>498</td>
<td>543</td>
</tr>
<tr>
<td>$T-$</td>
<td>5</td>
<td>9452</td>
<td>9457</td>
</tr>
<tr>
<td>total</td>
<td>50</td>
<td>9950</td>
<td>10000</td>
</tr>
</tbody>
</table>

From the table, we see there are 45 sick people who tested positive, and 543 people in total who tested positive.

We construct the table as follows. Pick a number, say 10000 people, and place it as the grand total in the lower right. Using $P(D+) = .005$ we can fill in the number out of the 10000 who are sick ($D+$), likewise healthy ($D-$).

<table>
<thead>
<tr>
<th></th>
<th>$D+$</th>
<th>$D-$</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T-$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>50</td>
<td>9950</td>
<td>10000</td>
</tr>
</tbody>
</table>
Using $P(T+ | D+) = .9$ we can compute the number of sick people who tested positive as
$.9 \cdot 50 = 45$. Likewise for the other entries.

<table>
<thead>
<tr>
<th></th>
<th>$D+$</th>
<th>$D-$</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T+$</td>
<td>45</td>
<td>498</td>
<td></td>
</tr>
<tr>
<td>$T-$</td>
<td>5</td>
<td>9452</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>50</td>
<td>9950</td>
<td>10000</td>
</tr>
</tbody>
</table>

Now we can add up the first (resp., second) row to get the total number people who tested
positive (resp., negative). This gives the full table at the top of the page.

Using the complete table we can compute

$$P(D+ | T+) = \frac{|D+ \cap T+|}{|T+|} = \frac{45}{543} = 8.3\%.$$

Symbols: For completeness, we show how the solution looks when written out directly in
symbols.

$$P(D+ | T+) = \frac{P(T+ | D+) \cdot P(D+)}{P(T+)}$$

$$= \frac{P(T+ | D+) \cdot P(D+)}{P(T+ | D+) \cdot P(D+) + P(T+ | D-) \cdot P(D-)}$$

$$= \frac{.9 \times .005}{.9 \times .005 + .05 \times .995}$$

$$= 8.3\%$$

Visualization: The figure below illustrates the base rate fallacy. The large blue area
represents all the healthy people. The much smaller red area represents the sick people.
The shaded rectangle represents the the people who test positive. The shaded area covers
most of the red area and only a small part of the blue area. Even so, the most of the shaded
area is over the blue. That is, most of the positive tests are of healthy people.

![Visualization of base rate fallacy]

7.2 Bayes rule in 18.05

As we said at the start of this section, Bayes rule is a pillar of probability and statistics.
We have seen that Bayes rule allows us to ‘invert’ conditional probabilities. When we learn
statistics we will see that the art of statistical inference involves deciding how to proceed
when one (or more) of the terms on the right side of Bayes rule is unknown.
1 Learning Goals

1. Know the definition of a discrete random variable.
2. Know the Bernoulli, binomial, Poisson and geometric distributions and examples of what they model.
3. Be able to describe the probability mass function and cumulative distribution function using tables and formulas.
4. Be able to construct new random variables from old ones.
5. Know how to compute expected value (mean).

2 Random Variables

This topic is largely about introducing some useful terminology, building on the notions of sample space and probability function. The key words are

1. Random variable
2. Probability mass function (pmf)
3. Cumulative distribution function (cdf)

2.1 Recap

A discrete sample space Ω is a finite or listable set of outcomes $\{\omega_1, \omega_2 \ldots \}$. The probability of an outcome ω is $P(\omega)$. An event E is a subset of Ω. The probability of an event E is $P(E) = \sum_{\omega \in E} P(\omega)$.

2.2 Random variables as payoff functions

Example 1. A game with 2 dice.

Roll a die twice and record the outcomes as (i, j), where i is the result of the first roll and j the result of the second. We can take the sample space to be

$$\Omega = \{(1,1), (1,2), (1,3), \ldots, (6,6)\} = \{(i,j) \mid i, j = 1, \ldots 6\}.$$

The probability function is $P(i,j) = 1/36$.

In this game, you win $500 if the sum is 7 and lose $100 otherwise. We give this payoff function the name X and describe it formally by

$$X(i, j) = \begin{cases}
500 & \text{if } i + j = 7 \\
-100 & \text{if } i + j \neq 7.
\end{cases}$$

Example 2. We can change the game by using a different payoff function. For example

$$Y(i, j) = ij - 10.$$

In this example if you roll (6,2) then you win $2. If you roll (2,3) then you win -$4 (i.e., lose $4).

Question: Which game is the better bet?

answer: We will come back to this once we learn about expectation.

These payoff functions are examples of *random variables*. A random variable assigns a number to each outcome in a sample space. More formally:

Definition: Let Ω be a sample space. A **discrete random variable** is a function

$$X : \Omega \to \mathbb{R}$$

that takes a discrete set of values. (Recall that \mathbb{R} stands for the real numbers.)

Why is X called a random variable? It’s ‘random’ because its value depends on a random outcome of an experiment. And we treat X like we would a usual variable: we can add it to other random variables, square it, and so on.

2.3 Events and random variables

For any value a we write $X = a$ to mean the *event* consisting of all outcomes ω with $X(\omega) = a$.

Example 3. In Example 1 we rolled two dice and X was the random variable

$$X(i, j) = \begin{cases}
500 & \text{if } i + j = 7 \\
-100 & \text{if } i + j \neq 7.
\end{cases}$$

The *event* $X = 500$ is the set $\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$, i.e. the set of all outcomes that sum to 7. So $P(X = 500) = 1/6$.

We allow a to be any value, even values that X never takes. In example 1, we could look at the event $X = 1000$. Since X never equals 1000 this is just the empty event (or empty set)

$$'X = 1000' = \{\} = \emptyset \quad P(X = 1000) = 0.$$
2.4 Probability mass function and cumulative distribution function

It gets tiring and hard to read and write $P(X = a)$ for the probability that $X = a$. When we know we’re talking about X we will simply write $p(a)$. If we want to make X explicit we will write $p_X(a)$. We spell this out in a definition.

Definition: The probability mass function (pmf) of a discrete random variable is the function $p(a) = P(X = a)$.

Note:
1. We always have $0 \leq p(a) \leq 1$.
2. We allow a to be any number. If a is a value that X never takes, then $p(a) = 0$.

Example 4. Let Ω be our earlier sample space for rolling 2 dice. Define the random variable M to be the maximum value of the two dice:

$$M(i, j) = \max(i, j).$$

For example, the roll (3,5) has maximum 5, i.e. $M(3, 5) = 5$.

We can describe a random variable by listing its possible values and the probabilities associated to these values. For the above example we have:

<table>
<thead>
<tr>
<th>value</th>
<th>a:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf</td>
<td>$p(a)$:</td>
<td>1/36</td>
<td>3/36</td>
<td>5/36</td>
<td>7/36</td>
<td>9/36</td>
<td>11/36</td>
</tr>
</tbody>
</table>

For example, $p(2) = 3/36$.

Question: What is $p(8)$? **Answer:** $p(8) = 0$.

Think: What is the pmf for $Z(i, j) = i + j$? Does it look familiar?

2.5 Events and inequalities

Inequalities with random variables describe events. For example $X \leq a$ is the set of all outcomes ω such that $X(\omega) \leq a$.

Example 5. If our sample space is the set of all pairs of (i, j) coming from rolling two dice and $Z(i, j) = i + j$ is the sum of the dice then

$$Z \leq 4 = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)\}$$

2.6 The cumulative distribution function (cdf)

Definition: The cumulative distribution function (cdf) of a random variable X is the function F given by $F(a) = P(X \leq a)$. We will often shorten this to distribution function.

Note well that the definition of $F(a)$ uses the symbol less than or equal. This will be important for getting your calculations exactly right.

Example. Continuing with the example M, we have

<table>
<thead>
<tr>
<th>value</th>
<th>a:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf</td>
<td>$p(a)$:</td>
<td>1/36</td>
<td>3/36</td>
<td>5/36</td>
<td>7/36</td>
<td>9/36</td>
<td>11/36</td>
</tr>
<tr>
<td>cdf</td>
<td>$F(a)$:</td>
<td>1/36</td>
<td>4/36</td>
<td>9/36</td>
<td>16/36</td>
<td>25/36</td>
<td>36/36</td>
</tr>
</tbody>
</table>
$F(a)$ is called the *cumulative* distribution function because $F(a)$ gives the total probability that accumulates by adding up the probabilities $p(b)$ as b runs from $-\infty$ to a. For example, in the table above, the entry $16/36$ in column 4 for the cdf is the sum of the values of the pmf from column 1 to column 4. In notation:

As events, $'M \leq 4' = \{1, 2, 3, 4\}; \quad F(4) = P(M \leq 4) = 1/36 + 3/36 + 5/36 + 7/36 = 16/36$.

Just like the probability mass function, $F(a)$ is defined for all values a. In the above example, $F(8) = 1$, $F(-2) = 0$, $F(2.5) = 4/36$, and $F(\pi) = 9/36$.

2.7 Graphs of $p(a)$ and $F(a)$

We can visualize the pmf and cdf with graphs. For example, let X be the number of heads in 3 tosses of a fair coin:

- **value a:** 0 1 2 3
- **pmf $p(a):$** 1/8 3/8 3/8 1/8
- **cdf $F(a):$** 1/8 4/8 7/8 1

The colored graphs show how the cumulative distribution function is built by *accumulating* probability as a increases. The black and white graphs are the more standard presentations.
pmf and cdf for the maximum of two dice (Example 4)

Histograms: Later we will see another way to visualize the pmf using histograms. These require some care to do right, so we will wait until we need them.

2.8 Properties of the cdf F

The cdf F of a random variable satisfies several properties:
1. F is non-decreasing. That is, if $a \leq b$ then $F(a) \leq F(b)$.
2. $0 \leq F(a) \leq 1$.
3. $\lim_{a \to \infty} F(a) = 1$, $\lim_{a \to -\infty} F(a) = 0$.

In words, (1) says the cumulative probability $F(a)$ increases or remains constant as a increases, but never decreases; (2) says the accumulated probability is always between 0 and 1; (3) says that as a gets very large, it becomes more and more certain that $X \leq a$ and as a gets very negative it becomes more and more certain that $X > a$.

Think: Why does a cdf satisfy each of these properties?

3 Specific Distributions

3.1 Bernoulli Distributions

Model: The Bernoulli distribution models one trial in an experiment that can result in either success or failure

The most important distribution is also the simplest. A random variable X has a Bernoulli distribution with parameter p if:

1. X takes the values 0 and 1.
2. \(P(X = 1) = p \) and \(P(X = 0) = 1 - p \).

We will write \(X \sim \text{Bernoulli}(p) \) or \(\text{Ber}(p) \), which is read “\(X \) follows a Bernoulli distribution with parameter \(p \)” or “\(X \) is drawn from a Bernoulli distribution with parameter \(p \)”.

A simple model for the Bernoulli distribution is to flip a coin with probability \(p \) of heads, with \(X = 1 \) on heads and \(X = 0 \) on tails. The general terminology is to say \(X \) is 1 on success and 0 on failure, with success and failure defined by the context.

Many decisions can be modeled as a binary choice, such as whether to vote for or against a proposal. If \(p \) is the proportion of the voting population that favors the proposal, than the vote of a random individual is modeled by a Bernoulli(\(p \)).

Here are the table and graphs of the pmf and cdf for the Bernoulli(1/2) distribution and below that for the general Bernoulli(\(p \)) distribution.

<table>
<thead>
<tr>
<th>value (a)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf (p(a))</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>cdf (F(a))</td>
<td>1/2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table, pmf and cdf for the Bernoulli(1/2) distribution

<table>
<thead>
<tr>
<th>values (a)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf (p(a))</td>
<td>1-p</td>
<td>p</td>
</tr>
<tr>
<td>cdf (F(a))</td>
<td>1-p</td>
<td>1</td>
</tr>
</tbody>
</table>

Table, pmf and cdf for the Bernoulli(\(p \)) distribution

3.2 Binomial Distributions

The binomial distribution \(\text{Binomial}(n, p) \), or \(\text{Bin}(n, p) \), models the number of successes in \(n \) independent Bernoulli(\(p \)) trials.

There is a hierarchy here. A single Bernoulli trial is, say, one toss of a coin. A single binomial trial consists of \(n \) Bernoulli trials. For coin flips the sample space for a Bernoulli trial is \(\{H, T\} \). The sample space for a binomial trial is all sequences of heads and tails of length \(n \). Likewise a Bernoulli random variable takes values 0 and 1 and a binomial random variables takes values 0, 1, 2, \ldots, \(n \).

Example 6. \(\text{Binomial}(1, p) \) is the same as \(\text{Bernoulli}(p) \).

Example 7. The number of heads in \(n \) flips of a coin with probability \(p \) of heads follows a \(\text{Binomial}(n, p) \) distribution.
We describe \(X \sim \text{Binomial}(n, p) \) by giving its values and probabilities. For notation we will use \(k \) to mean an arbitrary number between 0 and \(n \).

We remind you that \(\binom{n}{k} = _nC_k \) is the binomial coefficient. It is the number of ways to choose \(k \) things out of a collection of \(n \) things and it has the formula

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}.
\]

Here is a table for the pmf of a \(\text{Binomial}(n, k) \) random variable. We will explain how the binomial coefficients enter the pmf for the binomial distribution after a simple example.

<table>
<thead>
<tr>
<th>values (a):</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>\cdots</th>
<th>(k)</th>
<th>\cdots</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf (p(a)):</td>
<td>((1-p)^n) (\binom{n}{1} p (1-p)^{n-1}) (\binom{n}{2} p^2 (1-p)^{n-2}) \cdots (\binom{n}{k} p^k (1-p)^{n-k}) \cdots (p^n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 8. What is the probability of 3 or more heads in 5 tosses of a fair coin?

answer: The binomial coefficients associated with \(n = 5 \) are

\[
\binom{5}{0} = 1, \quad \binom{5}{1} = \frac{5!}{1!4!} = \frac{5\cdot 4\cdot 3\cdot 2\cdot 1}{4\cdot 3\cdot 2\cdot 1} = 5, \quad \binom{5}{2} = \frac{5!}{2!3!} = \frac{5\cdot 4\cdot 3\cdot 2\cdot 1}{2\cdot 1\cdot 3\cdot 2\cdot 1} = \frac{5\cdot 4}{2} = 10,
\]

and similarly

\[
\binom{5}{3} = 10, \quad \binom{5}{4} = 5, \quad \binom{5}{5} = 1.
\]

Using these values we get the following table for \(X \sim \text{Binomial}(5,p) \).

<table>
<thead>
<tr>
<th>values (a):</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf (p(a)):</td>
<td>((1-p)^5) (5p(1-p)^4) (10p^2(1-p)^3) (10p^3(1-p)^2) (5p^4(1-p)) (p^5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We were told \(p = 1/2 \) so

\[
P(X \geq 3) = 10 \left(\frac{1}{2} \right)^3 \left(\frac{1}{2} \right)^2 + 5 \left(\frac{1}{2} \right)^4 \left(\frac{1}{2} \right)^1 + \left(\frac{1}{2} \right)^5 = \frac{16}{32} = \frac{1}{2}.
\]

Think: Why is the value of 1/2 not surprising?

3.3 Explanation of the binomial probabilities

For concreteness, let \(n = 5 \) and \(k = 2 \) (the argument for arbitrary \(n \) and \(k \) is identical.) So \(X \sim \text{binomial}(5, p) \) and we want to compute \(p(2) \). The long way to compute \(p(2) \) is to list all the ways to get exactly 2 heads in 5 coin flips and add up their probabilities. The list has 10 entries:

HHHTT, HTHTT, HTTHT, HTHTH, THTHT, THTTH, THTHT, TTHTH, TTTTH

Each entry has the same probability of occurring, namely

\(p^2(1-p)^3 \).
This is because each of the two heads has probability p, each of the 3 tails has probability $1 - p$, and because the individual tosses are independent we can multiply probabilities. Therefore, the total probability of exactly 2 heads is the sum of 10 identical probabilities, i.e., $p(2) = 10p^2(1-p)^3$, as shown in the table.

This guides us to the shorter way to do the computation. We have to count the number of sequences with exactly 2 heads. To do this we need to choose 2 of the tosses to be heads and the remaining 3 to be tails. The number of such sequences is the number of ways to choose 2 out of 5 things, that is $\binom{5}{2}$. Since each such sequence has the same probability, $p^2(1-p)^3$, we get the probability of exactly 2 heads $p(2) = \binom{5}{2}p^2(1-p)^3$.

Here are some binomial probability mass function (here, frequency is the same as probability).

3.4 Geometric Distributions

A random variable X has a geometric distribution with parameter p if it takes the values 0, 1, 2, 3, ... and its pmf is given by $p(k) = P(X = k) = (1 - p)^k p$.

We denote this by $X \sim \text{geometric}(p)$ or geo(p).
Let's describe this in neutral language by having one Bernoulli(p) trial model a coin toss with $P(\text{heads}) = p$. The geometric distribution then models the number of tails before the first heads. It is an example of a discrete distribution that takes an infinite number of values.

Things can get confusing when we work with successes and failure since we might want to model the number of successes before the first failure or we might want the number of failures before the first success. To keep straight things straight you can translate to number of tails before the first heads.

Example 9. Suppose that the inhabitants of an island plan their families by having babies until the first girl is born. Assume the probability of having a girl with each pregnancy is 0.5 independent of other pregnancies, that all babies survive and there are no multiple births. What is the probability that a family has k boys?

answer: In neutral language we can think of boys as tails and girls as heads. Then the number of boys in a family is the number of tails before the first heads.

Let X be the number of boys in a (randomly-chosen) family. If $X = k$ the sequence of children in the family from oldest to youngest is $BBB\ldots BG$ with the first k children being boys. The probability of this sequence is $(1/2)^k \cdot (1/2)$. So X follows a geometric($1/2$) distribution.

Note: The assumptions of equal probability and independence are simplifications of reality. The data on http://www.in-gender.com/XYU/Odds/Gender_Odds.aspx seems reliable. Though it looks to me like they read more into the data than is warranted –never trust an analysis that does not include error bars.

Think: What is the ratio of boys to girls on the island?

3.5 Uniform Distribution

The uniform distribution models any situation where all the outcomes are equally likely.

$$X \sim \text{uniform}(N).$$
X takes values 1, 2, 3, \ldots, N, each with probability \(1/N\). We have already seen this distribution many times when modeling to fair coins \((N = 2)\), dice \((N = 6)\), birthdays \((N = 365)\), and poker hands \((N = \binom{52}{5})\).

3.6 Discrete Distributions Applet

The applet at \url{http://ocw.mit.edu/ans7870/18/18.05/s14/applets/probDistrib.html} gives a dynamic view of some discrete distributions. The graphs will change smoothly as you move the various sliders. Try playing with the different distributions and parameters.

This applet is carefully color-coded. Two things with the same color represent the same or closely related notions. By understanding the color-coding and other details of the applet, you will acquire a stronger intuition for the distributions shown.

3.7 Other Distributions

There are a million other named distributions arising is various contexts. We don’t expect you to memorize them (we certainly have not!), but you should be comfortable using a resource like Wikipedia to look up a pmf. For example, take a look at the info box at the top right of \url{http://en.wikipedia.org/wiki/Hypergeometric_distribution}. The info box lists many (surely unfamiliar) properties in addition to the pmf.

4 Arithmetic with Random Variables

We can do arithmetic with random variables. For example, we can add subtract, multiply or square them.

Example 10. Toss a fair coin \(n\) times. Let \(X_j\) be 1 if the \(j\)th toss is heads and 0 if it’s tails. So, \(X_j\) is a Bernoulli(1/2) random variable. Let \(X\) be the total number of heads in the \(n\) tosses. Assuming the tosses are independence we know \(X \sim \text{binomial}(n, 1/2)\). We can also write

\[
X = X_1 + X_2 + X_3 + \ldots + X_n.
\]

(This is because the terms in the sum on the right are all either 0 or 1. So, the sum is exactly the number of \(X_j\) that are 1, i.e. the number of heads.)

Think: Suppose \(X\) and \(Y\) are independent and \(X \sim \text{binomial}(n, 1/2)\) and \(Y \sim \text{binomial}(m, 1/2)\). What kind of distribution does \(X + Y\) follow? (Answer: binomial\((n + m, 1/2)\). Why?)

Example 11. Suppose \(X\) and \(Y\) are independent random variables with the following tables.

<table>
<thead>
<tr>
<th>(X) value</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf (p_X(x)):</td>
<td>1/10</td>
<td>2/10</td>
<td>3/10</td>
<td>4/10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Y) value</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf (p_Y(y)):</td>
<td>1/15</td>
<td>2/15</td>
<td>3/15</td>
<td>4/15</td>
<td>5/15</td>
</tr>
</tbody>
</table>

Check that the total probability for each random variable is 1. Make a table for the random variable \(X + Y\).
answer: The first thing to do is make a two-dimensional table for the product sample space consisting of pairs \((x, y)\), where \(x\) is a possible value of \(X\) and \(y\) one of \(Y\). To help do the computation, the probabilities for the \(X\) values are put in the far right column and those for \(Y\) are in the bottom row. Because \(X\) and \(Y\) are independent the probability for \((x, y)\) pair is just the product of the individual probabilities.

<table>
<thead>
<tr>
<th>Y values</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(\frac{1}{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{150})</td>
<td>(\frac{2}{150})</td>
<td>(\frac{3}{150})</td>
<td>(\frac{4}{150})</td>
<td>(\frac{5}{150})</td>
<td>1/10</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{2}{150})</td>
<td>(\frac{4}{150})</td>
<td>(\frac{6}{150})</td>
<td>(\frac{8}{150})</td>
<td>(\frac{10}{150})</td>
<td>2/10</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{3}{150})</td>
<td>(\frac{6}{150})</td>
<td>(\frac{9}{150})</td>
<td>(\frac{12}{150})</td>
<td>(\frac{15}{150})</td>
<td>3/10</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{4}{150})</td>
<td>(\frac{8}{150})</td>
<td>(\frac{12}{150})</td>
<td>(\frac{16}{150})</td>
<td>(\frac{20}{150})</td>
<td>4/10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(X) values</th>
<th>(\frac{1}{15})</th>
<th>(\frac{2}{15})</th>
<th>(\frac{3}{15})</th>
<th>(\frac{4}{15})</th>
<th>(\frac{5}{15})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/150</td>
<td>2/150</td>
<td>3/150</td>
<td>4/150</td>
<td>5/150</td>
</tr>
<tr>
<td>2</td>
<td>2/150</td>
<td>4/150</td>
<td>6/150</td>
<td>8/150</td>
<td>10/150</td>
</tr>
<tr>
<td>3</td>
<td>3/150</td>
<td>6/150</td>
<td>9/150</td>
<td>12/150</td>
<td>15/150</td>
</tr>
<tr>
<td>4</td>
<td>4/150</td>
<td>8/150</td>
<td>12/150</td>
<td>16/150</td>
<td>20/150</td>
</tr>
</tbody>
</table>

The diagonal stripes show sets of squares where \(X + Y\) is the same. All we have to do to compute the probability table for \(X + Y\) is sum the probabilities for each stripe.

<table>
<thead>
<tr>
<th>(X + Y) values</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf</td>
<td>(\frac{1}{150})</td>
<td>(\frac{4}{150})</td>
<td>(\frac{10}{150})</td>
<td>(\frac{20}{150})</td>
<td>(\frac{30}{150})</td>
<td>(\frac{34}{150})</td>
<td>(\frac{31}{150})</td>
<td>(\frac{20}{150})</td>
</tr>
</tbody>
</table>
1 Expected Value

In the R reading questions for this lecture, you simulated the average value of rolling a die many times. You should have gotten a value close to the exact answer of 3.5. To motivate the formal definition of the average, or *expected value*, we first consider some examples.

Example 1. Suppose we have a six-sided die marked with five 3's and one 6. (This was the red one from our non-transitive dice.) What would you *expect* the average of 6000 rolls to be?

answer: If we knew the value of each roll, we could compute the average by summing the 6000 values and dividing by 6000. Without knowing the values, we can compute the *expected* average as follows.

Since there are five 3’s and one six we expect roughly 5/6 of the rolls will give 3 and 1/6 will give 6. Assuming this to be exactly true, we have the following table of values and counts:

<table>
<thead>
<tr>
<th>value</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>expected counts</td>
<td>5000</td>
<td>1000</td>
</tr>
</tbody>
</table>

The average of these 6000 values is then

\[
\frac{5000 \cdot 3 + 1000 \cdot 6}{6000} = \frac{5}{6} \cdot 3 + \frac{1}{6} \cdot 6 = 3.5
\]

We consider this the expected average in the sense that we ‘expect’ each of the possible values to occur with the given frequencies.

Example 2. We roll two dice. You win $1000 if the sum is 2 and lose $100 otherwise. How much do you expect to win on average per trial?

answer: The probability of a 2 is 1/36. If you play \(N\) times, you can ’expect’ \(N/36\) of the trials to give a 2 and \(35N/36\) of the trials to give something else. Thus your total expected winnings are

\[
1000 \cdot \frac{N}{36} - 100 \cdot \frac{35N}{36}.
\]

To get the expected average per trial we divide the total by \(N\):

\[
\text{expected average} = 1000 \cdot \frac{1}{36} - 100 \cdot \frac{35}{36} = -69.44.
\]

Think: Would you be willing to play this game one time? Multiple times?

Notice that in both examples the sum for the expected average consists of terms which are a value of the random variable times its probability. This leads to the following definition.

Definition: Suppose \(X\) is a discrete random variable that takes values \(x_1, x_2, \ldots, x_n\) with probabilities \(p(x_1), p(x_2), \ldots, p(x_n)\). The *expected value* of \(X\) is denoted \(E(X)\) and defined
by
\[E(X) = \sum_{j=1}^{n} p(x_j)x_j = p(x_1)x_1 + p(x_2)x_2 + \ldots + p(x_n)x_n. \]

Notes:

1. The expected value is also called the mean or average of \(X \) and often denoted by \(\mu \) (“mu”).

2. As seen in the above examples, the expected value need not be a possible value of the random variable. Rather it is a weighted average of the possible values.

3. Expected value is a summary statistic, providing a measure of the location or central tendency of a random variable.

4. If all the values are equally probable then the expected value is just the usual average of the values.

Example 3. Find \(E(X) \) for the random variable \(X \) with table:

| values of \(X \): 1 | 3 | 5 pmf: 1/6 | 1/6 | 2/3 |

answer: \(E(X) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 3 + \frac{2}{3} \cdot 5 = \frac{24}{6} = 4 \)

Example 4. Let \(X \) be a Bernoulli(\(p \)) random variable. Find \(E(X) \).

answer: \(X \) takes values 1 and 0 with probabilities \(p \) and \(1 - p \), so

\[E(X) = p \cdot 1 + (1 - p) \cdot 0 = p. \]

Note: This is an important example. Be sure to remember that the expected value of a Bernoulli(\(p \)) random variable is \(p \).

Think: What is the expected value of the sum of two dice?

1.1 Mean and center or mass

You may have wondered why we use the name ‘probability mass function’. Here’s the reason: if we place an object of mass \(p(x_j) \) at position \(x_j \) for each \(j \), then \(E(X) \) is the position of the center of mass. Let’s recall the latter notion via an example.

Example 5. Suppose we have two masses along the \(x \)-axis, mass \(m_1 = 500 \) at position \(x_1 = 3 \) and mass \(m_2 = 100 \) at position \(x_2 = 6 \). Where is the center of mass?

answer: Intuitively we know that the center of mass is closer to the larger mass.
From physics we know the center of mass is
\[
\bar{x} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} = \frac{500 \cdot 3 + 100 \cdot 6}{600} = 3.5.
\]

We call this formula a ‘weighted’ average of the \(x_1\) and \(x_2\). Here \(x_1\) is weighted more heavily because it has more mass.

Now look at the definition of expected value \(E(X)\). It is a weighted average of the values of \(X\) with the weights being probabilities \(p(x_i)\) rather than masses! We might say that “The expected value is the point at which the distribution would balance”. Note the similarity between the physics example and Example 1.

1.2 Properties of \(E(X)\)

When we add, scale or shift random variables the expected values do the same.

1. If \(X\) and \(Y\) are random variables on a sample space \(\Omega\) then
\[
E(X + Y) = E(X) + E(Y)
\]

2. If \(a\) and \(b\) are constants then \(E(aX + b) = aE(X) + b\).

We will think of \(aX + b\) as scaling \(X\) by \(a\) and shifting it by \(b\).

Before proving these properties, let’s consider a few examples.

Example 6. Roll two dice and let \(X\) be the sum. Find \(E(X)\).

Answer: Let \(X_1\) be the value on the first die and let \(X_2\) be the value on the second die. Since \(X = X_1 + X_2\) we have \(E(X) = E(X_1) + E(X_2)\). Earlier we computed that \(E(X_1) = E(X_2) = 3.5\), therefore \(E(X) = 7\).

Example 7. Let \(X \sim \text{binomial}(n, p)\). Find \(E(X)\).

Answer: Recall that \(X\) models the number of successes in \(n\) Bernoulli\((p)\) random variables, which we’ll call \(X_1, \ldots, X_n\). The key fact here is that
\[
X = \sum_{j=1}^{n} X_j.
\]

This is true because each \(X_j\) is either 0 or 1, so the sum just counts the number that are 1, i.e. the number of successes —exactly like \(X\).

Now we can use property (1) to make the calculation simple.

\[
X = \sum_{j=1}^{n} X_j \Rightarrow E(X) = \sum_{j} E(X_j) = \sum_{j} p = \left\lfloor np \right\rfloor
\]

We could have computed \(E(X)\) directly as
\[
E(X) = \sum_{k=0}^{n} kp(k) = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}.
\]
It is possible to show that the sum of this series is indeed \(np \). We think you’ll agree that the method using property (1) much easier.

Example 8. (The mean does not always exist.)
Suppose \(X \) has an infinite number of values according to the following table

\[
\begin{array}{cccc}
\text{values } x: & 2 & 2^2 & 2^3 & \ldots & 2^k & \ldots \\
\text{pmf } p(x): & 1/2 & 1/2^2 & 1/2^3 & \ldots & 1/2^k & \ldots \\
\end{array}
\]

Thus the mean is

\[
E(X) = \sum_{k=1}^{\infty} 2^k \frac{1}{2^k} = \sum_{k=1}^{\infty} 1 = \infty.
\]

1.3 Proofs of the properties of \(E(X) \)

The proof of property (1) is simple, but there is some subtlety in even understanding what it means to add two random variables. Recall that the value of random variable is a number determined by the outcome of an experiment. To add \(X \) and \(Y \) means to add the values of \(X \) and \(Y \) for the same outcome. In table form this looks like:

<table>
<thead>
<tr>
<th>outcome (\omega):</th>
<th>(\omega_1)</th>
<th>(\omega_2)</th>
<th>(\omega_3)</th>
<th>\ldots</th>
<th>(\omega_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>value of (X):</td>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
<td>\ldots</td>
<td>(x_n)</td>
</tr>
<tr>
<td>value of (Y):</td>
<td>(y_1)</td>
<td>(y_2)</td>
<td>(y_3)</td>
<td>\ldots</td>
<td>(y_n)</td>
</tr>
<tr>
<td>value of (X + Y):</td>
<td>(x_1 + y_1)</td>
<td>(x_2 + y_2)</td>
<td>(x_3 + y_3)</td>
<td>\ldots</td>
<td>(x_n + y_n)</td>
</tr>
<tr>
<td>prob. (P(\omega)):</td>
<td>(P(\omega_1))</td>
<td>(P(\omega_2))</td>
<td>(P(\omega_3))</td>
<td>\ldots</td>
<td>(P(\omega_n))</td>
</tr>
</tbody>
</table>

The proof of (1) follows immediately:

\[
E(X + Y) = \sum (x_i + y_i)P(\omega_i) = \sum x_iP(\omega_i) + \sum y_iP(\omega_i) = E(X) + E(Y).
\]

The proof of property (2) only takes a line.

\[
E(aX + b) = \sum p(x_i)(ax_i + b) = a \sum p(x_i)x_i + b \sum p(x_i) = aE(X) + b.
\]

The \(b \) term in the last expression follows because \(\sum p(x_i) = 1 \).

Example 9. Mean of a geometric distribution

Let \(X \sim \text{geo}(p) \). Recall this means \(X \) takes values \(k = 0, 1, 2, \ldots \) with probabilities \(p(k) = (1 - p)^k p \). (\(X \) models the number of tails before the first heads in a sequence of Bernoulli trials.) The mean is given by

\[
E(X) = \frac{1 - p}{p}.
\]

To see this requires a clever trick. We hope you are able to follow the logic. We won’t ask you to come up with something like this on your own. Here’s the trick.

To compute \(E(X) \) we have to sum the power series

\[
E(X) = \sum_{k=0}^{\infty} k(1 - p)^k p.
\]
Here is the trick. We know the sum of the geometric series: \[\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}. \]

Differentiate both sides: \[\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}. \]

Multiply by \(x \): \[\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}. \]

Replace \(x \) by \(1-p \): \[\sum_{k=0}^{\infty} k(1-p)^k = \frac{1-p}{p^2}. \]

Multiply by \(p \): \[\sum_{k=0}^{\infty} k(1-p)^kp = \frac{1-p}{p}. \]

This last expression is the mean.

\[E(X) = \frac{1-p}{p}. \]

Example 10. Flip a fair coin until you get heads for the first time. What is the expected number of times you flipped tails?

Answer: The number of tails before the first head is modeled by \(X \sim \text{geo}(1/2) \). From the previous example \(E(X) = \frac{1/2}{1/2} = 1 \). This is a surprisingly small number.

Example 11. Michael Jordan, the greatest basketball player ever, made 80\% of his free throws. In a game what is the expected number he would make before his first miss?

Answer: Here is an example where we want the number of successes before the first failure. Using the neutral language of heads and tails: success is tails (probability \(1-p \)) and failure is heads (probability = \(p \)). Therefore \(p = .2 \) and the number of tails (made free throws) before the first heads (missed free throw) is modeled by a \(X \sim \text{geo}(.2) \). We saw in Example 9 that this is

\[E(X) = \frac{1-p}{p} = \frac{.8}{.2} = 4. \]

Functions of a Random Variable *(the change of variables formula)*

If \(X \) is a discrete random variable taking values \(x_1, x_2, \ldots \) and \(h \) is a function the \(h(X) \) is a new random variable. Its expected value is

\[E(h(X)) = \sum_j h(x_j)p(x_j). \]

We illustrate this with several examples.

Example 12. Let \(X \) be the value of a roll of one die and let \(Y = X^2 \). Find \(E(Y) \).

Answer: Since this is a discrete random variable we can make a table.

<table>
<thead>
<tr>
<th>(Y)</th>
<th>1/6</th>
<th>1/6</th>
<th>1/6</th>
<th>1/6</th>
<th>1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>prob</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Notice the probability for each \(Y \) value is the same as that of the corresponding \(X \) value. So,

\[E(Y) = E(X^2) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + \ldots + 6^2 \cdot \frac{1}{6} = 15.167. \]
Example 13. Roll two dice and let X be the sum. Suppose the payoff function is given by $Y = X^2 - 6X + 1$. Is this a good bet?

answer: We have $E(Y) = \sum_{j=2}^{12} (j^2 - 6j + 1)p(j)$, where $p(j) = P(X = j)$.

We show the table, but really we’ll use R to do the calculation.

<table>
<thead>
<tr>
<th>X</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-7</td>
<td>-8</td>
<td>-7</td>
<td>-4</td>
<td>1</td>
<td>8</td>
<td>17</td>
<td>28</td>
<td>41</td>
<td>56</td>
<td>73</td>
</tr>
</tbody>
</table>

Here’s the R code I used to compute $E(Y) = 13.833$.

```r
x = 2:12
y = x^2 - 6*x + 1
p = c(1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1)/36
ave = sum(p*y)
```

It gave $ave = 13.833$.

To answer the question above: since the expected payoff is positive it looks like a bet worth taking.

(In this example, note that $P(Y = -7) = P(X = 2) + P(X = 4)$ because both $X = 2$ and $X = 4$ give $Y = -7$.)

Quiz: If $Y = h(X)$ does $E(Y) = h(E(X))$? **answer:** NO!!! This is not true in general!

Think: Is it true in the previous example?

Quiz: If $Y = 3X + 77$ does $E(Y) = 3E(X) + 77$? **answer:** Yes. By property (2), scaling and shifting does behave like this.
18.05 Introduction to Probability and Statistics
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
1 Learning Goals

1. Be able to compute the variance and standard deviation of a random variable.
2. Understand that standard deviation is a measure of scale or spread.
3. Be able to compute variance using the properties of scaling and linearity.

2 Spread

The expected value (mean) of a random variable is a measure of ‘location’ or ‘central tendency’. If you had to summarize a random variable with a single number, the mean would be a good choice. Still, the mean leaves out a good deal of information. For example, the random variables X and Y below both have mean 0, but their probability mass is spread out about the mean quite differently.

<table>
<thead>
<tr>
<th>values X</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf $p(x)$</td>
<td>1/10</td>
<td>2/10</td>
<td>4/10</td>
<td>2/10</td>
<td>1/10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>values Y</th>
<th>-3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf $p(y)$</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

It’s probably a little easier to see the different spreads in plots of the pmf. We use bars instead of dots to give a better sense of the mass.

In the next section, we will learn how to quantify this spread.

3 Variance and standard deviation

Taking the mean as the ‘center’ of a random variable’s probability distribution, the variance is a measure of how much the probability mass is spread out around this center. We’ll start with the formal definition of variance and then unpack its meaning.

Definition: If X is a random variable with mean $E(X) = \mu$, then the variance of X is defined by

$$\text{Var}(X) = E((X - \mu)^2).$$
The standard deviation σ of X is defined by

$$\sigma = \sqrt{\text{Var}(X)}.$$

If the relevant random variable is clear from context, then the variance and standard deviation are often denoted by σ^2 and σ (‘sigma’), just as the mean is μ (‘mu’).

What does this mean? First, let’s rewrite the definition explicitly as a sum. If X takes values x_1, x_2, \ldots, x_n with pmf $p(x_i)$ then

$$\text{Var}(X) = E((X - \mu)^2) = \sum_{i=1}^{n} p(x_i)(x_i - \mu)^2.$$

In words, the formula for $\text{Var}(X)$ says to take a weighted average of the squared distance to the mean. By squaring, we make sure we are averaging only non-negative values, so that the spread to the right of the mean won’t cancel that to the left. By using expectation, we are weighting high probability values more than low probability values. (See Example 2 below.)

Note on units:
1. σ has the same units as X.
2. $\text{Var}(X)$ has the same units as the square of X. So if X is in meters, then $\text{Var}(X)$ is in meters squared.

Because σ and X have the same units, the standard deviation is a natural measure of spread.

We’ll work some examples to make the notion of variance clear.

Example 1. Compute the mean, variance and standard deviation of the random variable X with the following table of values and probabilities

<table>
<thead>
<tr>
<th>value x</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf $p(x)$</td>
<td>1/4</td>
<td>1/4</td>
<td>1/2</td>
</tr>
</tbody>
</table>

answer: First we compute $E(X) = 7/2$. Then we extend the table:

<table>
<thead>
<tr>
<th>value x</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(x)$</td>
<td>1/4</td>
<td>1/4</td>
<td>1/2</td>
</tr>
<tr>
<td>$(X - 7/2)^2$</td>
<td>25/4</td>
<td>1/4</td>
<td>9/4</td>
</tr>
</tbody>
</table>

So $\text{Var}(X) = \frac{25}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{4} + \frac{9}{4} \cdot \frac{1}{2} = \frac{11}{4} \Rightarrow \sigma = \sqrt{\frac{11}{4}}$.

Example 2. For each random variable X, Y, Z, and W plot the pmf and compute the mean and variance.

i) | value x | 1 | 2 | 3 | 4 | 5 |
 | pmf $p(x)$ | 1/5 | 1/5 | 1/5 | 1/5 | 1/5 |

ii) | value y | 1 | 2 | 3 | 4 | 5 |
 | pmf $p(y)$ | 1/10| 2/10| 4/10| 2/10| 1/10 |

iii) | value z | 1 | 2 | 3 | 4 | 5 |
 | pmf $p(z)$ | 5/10| 0 | 0 | 0 | 5/10 |

iv) | value w | 1 | 2 | 3 | 4 | 5 |
 | pmf $p(w)$ | 0 | 0 | 1 | 0 | 0 |
answer: Each random variable has the same mean 3, but the probability is spread out differently. In the plots below, we order the pmf’s from largest to smallest variance: Z, X, Y, W.

Next we’ll verify our visual intuition by computing the variance of each of the variables. All of them have mean $\mu = 3$. Since the variance is defined as an expected value, we can compute it using the tables.

i) value x | 1 | 2 | 3 | 4 | 5 \\
pmf $p(x)$ | 1/5 | 1/5 | 1/5 | 1/5 | 1/5 \\
$(X - \mu)^2$ | 4 | 1 | 0 | 1 | 4 \\
$\text{Var}(X) = E((X - \mu)^2) = \frac{4}{5} + \frac{1}{5} + \frac{0}{5} + \frac{1}{5} + \frac{4}{5} = 2$

ii) value y | 1 | 2 | 3 | 4 | 5 \\
pmf $p(y)$ | 1/10 | 2/10 | 4/10 | 2/10 | 1/10 \\
$(Y - \mu)^2$ | 4 | 1 | 0 | 1 | 4 \\
$\text{Var}(Y) = E((Y - \mu)^2) = \frac{4}{10} + \frac{2}{10} + \frac{0}{10} + \frac{2}{10} + \frac{4}{10} = 1.2$

iii) value z | 1 | 2 | 3 | 4 | 5 \\
pmf $p(z)$ | 5/10 | 0 | 0 | 0 | 5/10 \\
$(Z - \mu)^2$ | 4 | 1 | 0 | 1 | 4 \\
$\text{Var}(Z) = E((Z - \mu)^2) = \frac{20}{10} + \frac{20}{10} = 4$

iv) value w | 1 | 2 | 3 | 4 | 5 \\
pmf $p(w)$ | 0 | 0 | 1 | 0 | 0 \\
$(W - \mu)^2$ | 4 | 1 | 0 | 1 | 4 \\
$\text{Var}(W) = 0$ Note that W doesn’t vary, so it has variance 0!
3.1 The variance of a Bernoulli(p) random variable.

Bernoulli random variables are fundamental, so we should know their variance.
If $X \sim \text{Bernoulli}(p)$ then

$$\text{Var}(X) = p(1 - p).$$

Proof: We know that $E(X) = p$. We compute $\text{Var}(X)$ using a table.

<table>
<thead>
<tr>
<th>X</th>
<th>$p(x)$</th>
<th>$(X - \mu)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1 - p$</td>
<td>$(0 - p)^2$</td>
</tr>
<tr>
<td>1</td>
<td>p</td>
<td>$(1 - p)^2$</td>
</tr>
</tbody>
</table>

As with all things Bernoulli, you should remember this formula.

Think: For what value of p does Bernoulli(p) have the highest variance? Try to answer this by plotting the PMF for various p.

3.2 Properties of Variance

The three most useful properties for computing variance are:

1. If X and Y are *independent* then $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$.
2. For constants a and b, $\text{Var}(aX + b) = a^2 \text{Var}(X)$.
3. $\text{Var}(X) = E(X^2) - E(X)^2$.

For Property 1, note carefully the requirement that X and Y are *independent*. We will return to the proof of Property 1 next week.

Property 3 gives a formula for $\text{Var}(X)$ that is often easier to use in hand calculations. The computer is happy to use the definition. We’ll prove Properties 2 and 3 after some examples.

Example 3. Suppose X and Y are independent and $\text{Var}(X) = 3$ and $\text{Var}(Y) = 5$. Find:

(i) $\text{Var}(X + Y)$,
(ii) $\text{Var}(3X + 4)$,
(iii) $\text{Var}(X + X)$,
(iv) $\text{Var}(X + 3Y)$.

answer: To compute these variances we make use of Properties 1 and 2.

(i) Since X and Y are *independent*, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) = 8$.

(ii) Using Property 2, $\text{Var}(3X + 4) = 9 \cdot \text{Var}(X) = 27$.

(iii) Don’t be fooled! Property 1 fails since X is certainly not independent of itself. We can use Property 2: $\text{Var}(X + X) = \text{Var}(2X) = 4 \cdot \text{Var}(X) = 12$. (Note: if we mistakenly used Property 1, we would the wrong answer of 6.)

(iv) We use both Properties 1 and 2.

$$\text{Var}(X + 3Y) = \text{Var}(X) + \text{Var}(3Y) = 3 + 9 \cdot 5 = 48.$$

Example 4. Use Property 3 to compute the variance of $X \sim \text{Bernoulli}(p)$.

\[\text{Var}(X) = E(X^2) - [E(X)]^2 = p(1 - p) + p^2 - p^2 = p(1 - p). \]
answer: From the table

\[
\begin{array}{c|cc}
X & 0 & 1 \\
p(x) & 1-p & p \\
X^2 & 0 & 1 \\
\end{array}
\]

we have \(E(X^2) = p\). So Property 3 gives

\[
\text{Var}(X) = E(X^2) - E(X)^2 = p - p^2 = p(1 - p).
\]

This agrees with our earlier calculation.

Example 5. Redo Example 1 using Property 3.

answer: From the table

\[
\begin{array}{c|ccc}
X & 1 & 3 & 5 \\
p(x) & 1/4 & 1/4 & 1/2 \\
X^2 & 1 & 9 & 2 \\
\end{array}
\]

we have \(E(X) = 7/2\) and

\[
E(X^2) = 1^2 \cdot \frac{1}{4} + 3^2 \cdot \frac{1}{4} + 5^2 \cdot \frac{1}{2} = \frac{60}{4} = 15.
\]

So \(\text{Var}(X) = 15 - (7/2)^2 = 11/4\) –as before in Example 1.

3.3 Variance of binomial(n,p)

Suppose \(X \sim \text{binomial}(n,p)\). Since \(X\) is the sum of independent Bernoulli(p) variables and each Bernoulli variable has variance \(p(1-p)\) we have

\[X \sim \text{binomial}(n,p) \Rightarrow \text{Var}(X) = np(1-p).\]

3.4 Proof of Properties 2 and 3

Proof of Property 2: This follows from the properties of \(E(X)\) and some algebra.

Let \(\mu = E(X)\). Then \(E(aX + b) = a\mu + b\) and

\[
\text{Var}(aX+b) = E((aX+b-(a\mu+b))^2) = E((aX-a\mu)^2) = E(a^2(X-\mu)^2) = a^2E((X-\mu)^2) = a^2\text{Var}(X).
\]

Proof of Property 3: We use the properties of \(E(X)\) and a bit of algebra. Remember that \(\mu\) is a constant and that \(E(X) = \mu\).

\[
E((X-\mu)^2) = E(X^2 - 2\mu X + \mu^2)
\]

\[
= E(X^2) - 2\mu E(X) + \mu^2
\]

\[
= E(X^2) - 2\mu^2 + \mu^2
\]

\[
= E(X^2) - \mu^2
\]

\[
= E(X^2) - E(X)^2. \quad \text{QED}
\]
4 Tables of Distributions and Properties

<table>
<thead>
<tr>
<th>Distribution</th>
<th>range X</th>
<th>pmf $p(x)$</th>
<th>mean $E(X)$</th>
<th>variance $\text{Var}(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli(p)</td>
<td>0, 1</td>
<td>$p(0) = 1 - p$, $p(1) = p$</td>
<td>p</td>
<td>$p(1 - p)$</td>
</tr>
<tr>
<td>Binomial(n, p)</td>
<td>0, 1, ..., n</td>
<td>$p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$</td>
<td>np</td>
<td>$np(1 - p)$</td>
</tr>
<tr>
<td>Uniform(n)</td>
<td>1, 2, ..., n</td>
<td>$p(k) = \frac{1}{n}$</td>
<td>$\frac{n+1}{2}$</td>
<td>$\frac{n^2 - 1}{12}$</td>
</tr>
<tr>
<td>Geometric(p)</td>
<td>0, 1, 2, ...</td>
<td>$p(k) = p(1 - p)^k$</td>
<td>$\frac{1 - p}{p}$</td>
<td>$\frac{1 - p}{p^2}$</td>
</tr>
</tbody>
</table>

Let X be a discrete random variable with range x_1, x_2, \ldots and pmf $p(x_j)$.

<table>
<thead>
<tr>
<th>Expected Value:</th>
<th>Variance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms:</td>
<td>mean, average</td>
</tr>
<tr>
<td>Notation:</td>
<td>$E(X)$, μ</td>
</tr>
<tr>
<td>$\text{Var}(X)$, σ^2</td>
<td></td>
</tr>
<tr>
<td>Definition:</td>
<td>$E(X) = \sum p(x_j) x_j$</td>
</tr>
<tr>
<td>Scale and shift:</td>
<td>$E(aX + b) = aE(X) + b$</td>
</tr>
<tr>
<td>Linearity:</td>
<td>(for any X, Y)</td>
</tr>
<tr>
<td>$E(X + Y) = E(X) + E(Y)$</td>
<td>$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$</td>
</tr>
<tr>
<td>Functions of X:</td>
<td>$E(h(X)) = \sum p(x_j) h(x_j)$</td>
</tr>
<tr>
<td>Alternative formula:</td>
<td>$E(X) = \sum p(x_j) x_j$</td>
</tr>
</tbody>
</table>