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Abstract. A digitally altered photograph, often leaving no visual clues of having been tampered with, can
be indistinguishable from an authentic photograph. As a result, photographs no longer hold the unique
stature as a de�nitive recording of events. We describe several statistical techniques for detecting tracesof
digital tampering in the absenceof any digital watermark or signature. In particular , we quantify statistical
correlations that result from speci�c forms of digital tampering, and devise detection schemesto reveal these
correlations.

1 Introduction

The advent of low-cost and high-r esolution digital cameras,and sophisticated photo-editing softwar e, has
made it remarkably easyto manipulate and alter digital images. In addition, digital forgeries,often leaving no
visual clues of having been tampered with, can be indistinguishable from authentic photographs. And while
the technology to manipulate digital media is developing at break-neckspeeds,the technology to contend with
its rami�cations is lagging behind.

Digital watermarking has been proposed as a means by which an image can be authenticated (see,for ex-
ample, [12,3] for general surveys). Within this broad area,severalauthentication schemeshave beenproposed:
embedded signatures [10,24,25,18,2], erasablefragile watermarks [11,9], semi-fragile watermarks [16,23,28,
15], robust tell-tale watermarks [27,14,28], and self-embedding watermarks [8]. All of theseapproacheswork
by either inserting at the time of recording an imperceptible digital code (a watermark) into the image, or
extracting at the time of recording a digital code (a signature) from the image and re-inserting it into the im-
age.With the assumption that tampering will alter a watermark, an image can be authenticated by verifying
that the extracted watermark is the same as that which was inserted. The major drawback of this approach
is that a watermark must be inserted at precisely the time of recording, which would limit this approach to
specially equipped digital cameras.This method also relies on the assumption that the watermark cannot be
easily removed and reinserted — it is not yet clear whether this is a reasonableassumption (e.g.,[4]).

In contrast to these approaches,we describe a classof statistical techniques for detecting traces of digital
tampering in the absenceof any watermark or signature. Theseapproacheswork on the assumption that al-
though digital forgeries may leaveno visual clues of having beentampered with, they may, nevertheless,alter
the underlying statistics of an image. Consider, for example, the creation of a digital forgery that shows a pair
of famous movie stars, rumor ed to have a romantic relationship, walking hand-in-hand. Such a photograph
could be createdby splicing together individual imagesof eachmovie star and overlaying the digitally created
composite onto a sunsetbeach.In order to createa convincing match, it is often necessaryto (1) re-size,rotate,
or stretch portions of the images; (2) apply luminance non-linearities (e.g., gamma correction) to portions of
the image in order to adjust for brightness dif ferences;(3) add small amounts of noise to conceal evidence of
tampering; and (4) re-savethe �nal image (typically with lossy compression such as JPEG).Although these
manipulations are often imperceptible to the human eye, they may intr oduce speci�c correlations into the im-
age,which when detected can be used as evidence of digital tampering. In this paper, we quantify statistical
correlations that result from each of these speci�c forms of digital tampering, and devise detection schemes
to reveal the correlations. The effectiveness of these techniques is shown on a number of simple synthetic
examples and on perceptually credible forgeries.
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2 Re-sampling

Consider the scenarioin which a digital forgery is createdby splicing together two, or more, individual images.
In order to createa convincing match, it is often necessaryto re-size,rotate, or stretch the images,or portions of
them. Thesemanipulations require re-sampling an image onto a new sampling lattice using some form of in-
terpolation. Although, the re-sampling of an image is often imperceptible, speci�c correlations are intr oduced
in the re-sampled image. When detected, thesecorrelations represent evidence of tampering. We describe the
form of thesecorrelations, and proposean algorithm for detecting them in any portion of an image.

For purposes of exposition we will �rst describe how and where re-sampling intr oducescorrelations in 1-D
signals, and how to detect these correlations. The relatively straight-forwar d generalization to 2-D images is
then presented.

2.1 Re-sampling Signals

Consider a 1-D discretely-sampled signal x[t] with m samples. The number of samples in this signal can be
increasedor decreasedby a factor p=qto n samples in threesteps[21]:

1. up-sample: create a new signal xu [t] with pm samples, where xu [pt] = x[t], t = 1; 2; :::; m, and xu [t] = 0
otherwise.

2. interpolate: convolve xu [t] with a low-pass �lter: x i [t] = xu [t] ? h[t].
3. down-sample: create a new signal xd[t] with n samples, where xd[t] = x i [qt], t = 1; 2; :::; n. Denote the

re-sampled signal asy[t] � xd[t].

Dif ferent types of re-sampling algorithms (e.g., linear, cubic) dif fer in the form of the interpolation �lter h[t]
in step 2. Since all three steps in the re-sampling of a signal are linear, this processcan be described with a
single linear equation. Denoting the original and re-sampled signals in vector form, x and y , respectively, re-
sampling takes the form: y = Ap=qx ; where the n � m matrix Ap=q embodies the entire re-sampling process.
For example, the matrices for up-sampling by a factor of 4=3 and 2=1 using linear interpolation have the form:
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: (1)

Depending on the re-sampling rate, the re-sampling processwill intr oduce correlations of varying degrees
between neighboring samples. For example, consider the up-sampling of a signal by a factor of two using
linear interpolation. Here, the odd samplesof the re-sampled signal y take on the values of the original signal
x , i.e., y2i � 1 = x i , i = 1; : : : ; m. The even samples,on the other hand, are the averageof adjacent neighbors of
the original signal: y2i = 0:5x i + 0:5x i +1 , where i = 1; : : : ; m � 1. Note that since eachsample of the original
signal can be found in the re-sampled signal, i.e., x i = y2i � 1 and x i +1 = y2i +1 , the above relationship can
be expressedin terms of the re-sampled samples only: y2i = 0:5y2i � 1 + 0:5y2i +1 . That is, across the entire re-
sampled signal, each even sample is precisely the same linear combination of its adjacent two neighbors. In
this simple case,at least,a re-sampled signal could be detected (in the absenceof noise) by noticing that every
other sample is perfectly correlated to its neighbors. To be useful in a general forensic setting we need, at a
minimum, for thesetypes of correlations to be presentregardless of the re-sampling rate.

Consider now re-sampling a signal by an arbitrary amount p=q. In this casewe �rst ask, when is the i th

sample of a re-sampled signal equal to a linear combination of its 2N neighbors, that is:

yi
?
=

NX

k = � N

� k yi + k ; (2)



where � k are scalar weights (and � 0 = 0). Re-ordering terms, and re-writing the above constraint in terms of
the re-sampling matrix yields:

yi �
NX

k = � N

� k yi + k = 0 ) (a i � x ) �
NX

k = � N

� k (a i + k � x ) = 0 )

 

a i �
NX

k = � N

� k a i + k

!

� x = 0; (3)

where a i is the i th row of the re-sampling matrix Ap=q, and x is the original signal. We seenow that the i th

sample of a re-sampled signal is equal to a linear combination of its neighbors when the i th row of the re-
sampling matrix, a i , is equal to a linear combination of its neighboring rows,

P N
k = � N � k a i + k . For example,

in the caseof up-sampling by a factor of two (A2=1 in Equation (1)), the even rows are a linear combination
of the two adjacent odd rows. Note also that if the i th sample is a linear combination of its neighbors then
the (i � kp)th sample (k an integer) will be the samecombination of its neighbors, that is, the correlations are
periodic. It is, of course,possible for the constraint of Equation (3) to be satis�ed when the dif ference on the
left-hand side of the equation is orthogonal to the original signal x . While this may occur on occasion, these
correlations are unlikely to be periodic.

2.2 Detecting Re-sampling

Given a signal that has been re-sampled by a known amount and interpolation method, it is possible to �nd
a set of periodic samples that are correlated in the sameway to their neighbors. For example, consider the re-
sampling matrix, A4=3, of Equation (1). Here, basedon the periodicity of the re-sampling matrix, we seethat,
for example, the 3r d, 7th , 11th , etc. samples of the re-sampled signal will have the same correlations to their
neighbors. The speci�c form of the correlations can be determined by �nding the neighborhood size, N , and
the setof weights, � , that satisfy: a i =

P N
k = � N � k a i + k , Equation (3), where a i is the i th row of the re-sampling

matrix and i = 3; 7; 11, etc. If, on the other-hand, we know the speci�c form of the correlations, � , then it is
straight-forwar d to determine which samplessatisfy yi =

P N
k = � N � k yi + k , Equation (3).

In practice, of course,neither the re-sampling amount nor the speci�c form of the correlations are typically
known. In order to determine if a signal hasbeenre-sampled, we employ the expectation/maximization algo-
rithm (EM) [5] to simultaneously estimate a set of periodic samples that are correlated to their neighbors, and
the speci�c form of thesecorrelations. We begin by assuming that eachsample belongs to one of two models.
The �rst model, M 1, correspondsto thosesamplesthat are correlated to their neighbors, and the secondmodel,
M 2, corresponds to those samplesthat are not (i.e., an outlier model). The EM algorithm is a two-step iterative
algorithm: (1) in the E-step the probability that eachsample belongs to eachmodel is estimated; and (2) in the
M-step the speci�c form of the correlations between samples is estimated. More speci�cally , in the E-step, the
probability of eachsample, yi , belonging to model M 1 is given by Bayes' rule:

Prf yi 2 M 1 j yi g =
Prf yi j yi 2 M 1gPrf yi 2 M 1g

Prf yi j yi 2 M 1gPrf yi 2 M 1g + Prf yi j yi 2 M 2gPrf yi 2 M 2g
; (4)

where equal priors are assumed,i.e., Prf yi 2 M 1g = Prf yi 2 M 1g = 1=2. We also assumethat:

Prf yi j yi 2 M 1g =
1
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and that Prf yi j yi 2 M 2g is uniformly distributed over the range of possible values of the signal y . The
variance, � , of the above Gaussian distribution is estimated in the M-step. Note that the E-step requires an
estimate of � , which on the �rst iteration is chosenrandomly . In the M-step, a new estimate of � is computed
using weighted least-squares,that is, minimizing the following quadratic error function:

E(� ) =
X

i

w(i )

 

yi �
NX

k = � N

� k yi + k

! 2

; (6)
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Fig. 1: A signal with 32 samples (top) and this signal re-sampled by a factor of 4/3 (bottom). Eachsample is anno-
tated with its probability of being correlated to its neighbors. Note that for the up-sampled signal theseprobabilities
are periodic, while for the original signal they are not.

where the weights w(i ) � Prf yi 2 M 1 j yi g, Equation (4), and � 0 = 0. This error function is minimized by
computing the gradient with respectto � , setting the result equal to zero, and solving for � , yielding:

� = (Y T W Y) � 1Y T W y; (7)

where the i th row of the matrix Y is given by:
�
yi : : : yN + i � 1 yN + i +1 : : : y2N + i

�
, and W is a diagonal weighting

matrix with w(i ) along the diagonal. The E-step and M-step are iteratively executed until a stable estimate of
� is achieved.

Shown in Fig. 1 are the results of running EM on an original and re-sampled (by a factor of 4=3) signal.
Shown on the top is the original signal where eachsample is annotated with its probability of being correlated
to its neighbors (the �rst and last two samples are not annotated due to border effects — a neighborhood size
of �ve (N = 2) was used in this example). Similarly , shown on the bottom is the re-sampled signal and the
corresponding probabilities. In the latter case,the periodic pattern is obvious, where only every 4th sample
has probability 1, as would be expected by an up-sampling by a factor of 4/3, Equation (1). As expected, no
periodic pattern is present in the original signal.

The periodic pattern intr oduced by re-sampling depends, of course,on the re-sampling rate. As a result, it
is possible to not only uncover tracesof re-sampling, but to also estimate the amount of re-sampling. It is not
possible, however, to uniquely determine the speci�c amount of re-sampling as there are re-sampling param-
eters that yield similar periodic patterns. 1 There is also a range of re-sampling rates that will not intr oduce
periodic correlations. For example,consider down-sampling by a factor of two (for simplicity , consider the case
where there is no interpolation, i.e., yi = x2i ). In this case,the rows of the re-sampling matrix are orthogonal to
one another, and asa result no row can be written asa linear combination of its neighboring rows. In general,
the detectability of any re-sampling can be estimated by generating the re-sampling matrix and determining if
neighboring rows are linearly dependent.

2.3 Re-sampling Images

In the previous sectionswe showed that for 1-D signals re-sampling intr oduces periodic correlations and that
thesecorrelations can be detected using the EM algorithm. The extension to 2-D images is relatively straight-
forwar d. As with 1-D signals, the up-sampling or down-sampling of an image is still linear and involves the
same three steps: up-sampling, interpolation, and down-sampling — these steps are simply carried out on a
2-D lattice. Again, aswith 1-D signals, the re-sampling of an image intr oduces periodic correlations. Consider,
for example, the simple caseof up-sampling by a factor of two using linear interpolation. In the re-sampled
image, the pixels in odd rows and even columns will be the averageof their two closesthorizontal neighbors,
while the pixels in even rows and odd columns will be the averageof their two closestvertical neighbors. That
is, the correlations are, as with the 1-D signals, periodic. And in the same way that EM was used to uncover
periodic correlations in 1-D signals, the sameapproach can be used with 2-D images.

1 In general, two re-sampling rates p1=q1 and p2=q2 will generatesimilar periodic patterns if either f p1=q1g = f p2=q2g, or
f p1=q1g = 1 � f p2=q2g, where f�g denotes the fractional part of a number.
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Fig. 2: Shown in the top row is an unadulterated image, and shown below are images re-sampled with dif ferent
parameters. Shown in the middle column are the estimated probability maps that embody the spatial correlations
in the image. The magnitude of the Fourier transforms of thesemaps are shown in the right-most column. Note that
only the re-sampled images yield periodic maps.



forgery original

probability map (p) jF (p)j

Fig. 3: Shown along the top row is a forgery and the original image. The forgery consists of removing a stool and
splicing in a new �oor taken from another image (not shown here) of the sameroom. Shown below is the estimated
probability map (p) of the forgery, and the magnitude of the Fourier transform of a region in the new �oor (left)
and on the original �oor (right). The periodic pattern (spikes in jF (p)j) in the new �oor suggestthat this region was
re-sampled.

2.4 Results

For the results presentedhere, we built a databaseof 200grayscale images in TIFF format. Theseimages were
512 � 512 pixels in size. Each of these images were cropped from a smaller set of twenty-�ve 1200� 1600
images taken with a Nikon Coolpix 950 camera (the camera was set to capture and store in uncompressed
TIFF format). Using bi-cubic interpolation these images were up-sampled, down-sampled, rotated, or af�ne
transformed by varying amounts. Although we will presentresults for grayscaleimages, the generalization to
color images is straight-forwar d — eachcolor channel would be independently subjectedto the sameanalysis
as that described below.

For the original and re-sampled images, the EM algorithm described in Section 2.2 was used to estimate
probability maps that embody the correlation between each pixel and its neighbors. The neighborhood size
was �xed throughout to be 5 � 5. Shown in Fig. 2 are several examples of the periodic patterns that emerged
due to re-sampling. In the top row of the �gur e are (from left to right) the original unadulterated image, the
estimated probability map and the magnitude of the central portion of the Fourier transform of this map (for
display purposes, each Fourier transform was independently auto-scaled to �ll the full intensity range and



high-pass �lter ed to remove the lowest frequencies).Shown below this row are images uniformly re-sampled
(using bi-cubic interpolation) with dif ferent parameters. For the re-sampled images, note the periodic nature
of their probability maps and the corresponding localized peaks in their Fourier transforms.

Shown in Fig. 3 is an example of our detection algorithm applied to an image where only a portion of the
image was re-sampled. That is, the forged image contains a region that was re-sampled (up-sampled, rotated,
and non-linearly distorted). Shown are the original photograph, the forgery, and the estimated probability
map. Note that the re-sampled region is clearly detected - while the periodic pattern is not particularly visible
in the spatial domain at the reduced scale, the well localized peaks in the Fourier domain clearly reveal its
presence(for display purposes, the Fourier transform was auto-scaled to �ll the full intensity range and high-
pass�lter ed to remove the lowest frequencies).

It may seem,at �rst glance,that the detection of re-sampling correlations will besensitive to simple counter-
attacks — for example, small amounts additive noise. We have found, however, that due to the global nature
of the EM estimation, the correlations can be detected even in the presenceof additive noise and luminance
non-linearities (e.g.,gamma correction). A full exploration of the robustnessis beyond the scopeof this paper.

3 Double JPEGCompression

Tampering with a digital image requires the use of a photo-editing softwar e such asAdobe PhotoShop. In the
making of digital forgeries an image is loaded into the editing softwar e, some manipulations are performed,
and the image is re-saved.Sincemost imagesare stored in JPEGformat (e.g.,a majority of digital camerasstore
images dir ectly in JPEGformat), it is likely that both the original and forged images are stored in this format.
Notice that in this scenario the forged image is double JPEGcompressed.Double JPEGcompression intr o-
duces speci�c artifacts not present in singly compressedimages (this observation has also beennoted in [17]).
Note that evidence of double JPEGcompression, however, does not necessarily prove malicious tampering.
For example, it is possible for a user to simply re-savea high quality JPEGimage with a lower quality . The
authenticity of a double JPEGcompressedimage should, however, be called into question. We start by giving
a short description of the JPEGcompression algorithm and then quantify the artifacts intr oduced by double
compression.

3.1 JPEGCompression

JPEGis a standardized image compression procedure proposed by a committee with the same name JPEG
(Joint Photographic Experts Committee). To be generally applicable, the JPEGstandard [1] speci�ed two com-
pression schemes:a losslesspredictive schemeand a lossy schemebased on the Discrete Cosine Transform
(DCT). The most popular lossy compression technique is known as the baseline method and encompassesa
subsetof the DCT-basedmodes of operation. The encoding of an image involves threebasicsteps[26]:

1. Discrete Cosine Transform (DCT): An image is divided into 8 � 8 blocks in raster scanorder (left to right,
top to bottom), shifted from unsigned to signed integers (e.g.,from [0; 255]to [� 128; 127]), and eachblock's
DCT computed.

2. Quantization: The DCT coef�cients obtained in the previous step are uniformly quantized, i.e., divided by
a quantization step and rounded off to the nearest integer. Sincequantization is a non-invertible operation
this step representsthe main sourceof information loss.

3. Entropy Encoding: This step involves losslessentropy compression that transforms the quantized DCT
coef�cients into a stream of compresseddata. The most frequently used procedure is Huf fman coding,
although arithmetic coding is also supported.

The decoding of a compresseddata stream involves the inverse of the previous three steps, taken in reverse
order: entropy decoding, de-quantization, and inverse DCT.
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Fig. 4: Shown along the top row are histograms of single quantized signals with steps 2 (left) and 3 (right). Shown
in the bottom row are histograms of double quantized signals with steps3 followed by 2 (left), and 2 followed by 3
(right). Note the periodic artifacts in the histograms of double quantized signals.

3.2 Double Quantization

Consider the example of a generic discrete 1-D signal x[t]. Quantization is a point-wise operation that is de-
scribed by a one-parameter family of functions: 2

qa(u) =
j u

a

k
; (8)

where a is the quantization step (a strictly positive integer), and u denotes a value in the range of x[t]. De-
quantization brings the quantized values back to their original range:q� 1

a (u) = au. Note that the function qa(u)
is not invertible, and that de-quantization is not the inverse function of quantization. Double quantization is a
point-wise operation described by a two-parameter family of functions:

qab(u) =
� j u

b

k b
a

�
; (9)

where a and b are the quantization steps (strictly positive integers). Notice that double quantization can be
represented as a sequenceof three steps: quantization with step b, followed by de-quantization with step b,
followed by quantization with step a.

Consider an example where the samples of x[t] are normally distributed in the range [0; 127]. To illustrate
the nature of the double quantization artifacts, we quantize the signal x[t] in four dif ferent ways, and show
the resulting histograms, Fig. 4. Shown along the top row of this �gur e are the histograms of the samesignal
quantized with steps2 and 3. Shown in the bottom row are the histograms of the samesignal double quantized
with steps 3 followed by 2, and 2 followed by 3. When the step size decreases(bottom left) some bins in the
histogram are empty. This is not surprising since the �rst quantization placesthe samplesof the original signal
into 42 bins, while the second quantization re-distributes them into 64 bins. When the step size increases
(bottom right) some bins contain more samples than their neighboring bins. This also is to be expected since
the even bins receivesamplesfrom four original histogram bins, while the odd bins receivesamplesfrom only
two. In both casesof double quantization, note the periodicity of the artifacts intr oduced into the histograms.

To better understand why the double quantization of a signal intr oduces periodic artifacts, we will analyze
the dependence between the histograms of single and double quantized signals. Consider �rst the caseof a
single quantized signal denoted by xa [t] = qa(x[t]), and denote the histograms of the original and quantized
signals by H (u) and H a(v). Since qa(�) is a many-to-one function, several values from the range of x[t] will
map onto the samevalue in the range of xa [t], i.e., several bins from H contribute to a bin in H a . For example,
let v denote a value in the range of xa [t], then the values in the range of x[t] that map to it are in the range
[av; av + (a � 1)]. Therefore, the relationship between H (u) and H a(v) is given by: H a(v) =

P a� 1
k =0 H (av + k).

Note that there are exactly a bins in the original histogram that contribute to eachbin in the histogram of the
quantized signal. Consider next the caseof a double quantized signal denoted by xab[t] = qab(x[t]), and let
its histogram be denoted by H ab(v). In contrast to the single quantization case,the number of bins of H that

2 For the purpose of illustration and in order to make the analysis easierwe will use the �oor function in the quantization
function. Similar results can be shown if integer rounding is used instead.



contribute to a bin of H ab will depend on the double quantized bin value. Let v be a value in the range of xab[t].
Denote umin and umax as the smallest and largest values of u in the range of x[t] that map to v, that is, they
satisfy the following:

� j u
b

k b
a

�
= v: (10)

Using the following property of the �oor function:

bzc = m ) m � z < m + 1; (11)

where z is an arbitrary real number and m an integer, Equation (10) implies:

v �
j u

b

k b
a

< v + 1 ,
a
b

v �
j u

b

k
<

a
b

(v + 1): (12)

Sincebu=bc is an integer , Equation (12) can be rewritten using the ceiling function to include only integers:
l a

b
v
m

�
j u

b

k
�

l a
b

(v + 1)
m

� 1: (13)

From Equation (13) it can be seenthat umin must satisfy:
j umin

b

k
=

l a
b

v
m

) umin =
l a

b
v
m

b; (14)

while umax must satisfy:
j umax

b

k
=

l a
b

(v + 1)
m

� 1 ) umax =
�l a

b
(v + 1)

m
� 1

�
b+ (b� 1) =

l a
b

(v + 1)
m

b� 1: (15)

Sincedouble quantization is a monotonically increasing function, it follows that all the values between umin

and umax will map to v through double quantization. The relationship between the original and double quan-
tized histogram then takes the form:

H ab(v) =
u maxX

u= u min

H (u): (16)

Note that the number of original histogram bins, n(v), contributing to bin v in the double quantized histogram
depends on v, and from Equations (14) and (15),can be expressedas:

n(v) = umax � umin + 1 = b
�l a

b
(v + 1)

m
�

l a
b

v
m�

: (17)

Note that n(v) is a periodic function with period b, i.e., n(v) = n(v + b). This periodicity is the reasonperiodic
artifacts appear in histograms of double quantized signals.

From Equation (17), the double quantization artifacts shown in Fig. 4 can now be explained. Consider �rst
the caseof double quantization using stepsb = 3 followed by a = 2, (bottom-left panel in Fig. 4). The number
of original histogram bins contributing to double quantized histogram bins of the form (3k + 2) (k integer) is
given by:

n(3k + 2) = 3
��

2
3

(3k + 3)
�

�
�

2
3

(3k + 2)
��

= 3
�

2k + 2 � 2k �
�

4
3

��
= 0: (18)

This is consistent with the observation that every (3k+ 2)nd (k integer) bin of the double quantized histogram is
empty. In the secondexample of double quantization in Fig. 4, b = 2 and a = 3, it can be shown that n(2k) = 4
and n(2k + 1) = 2 (k integer). Again, this is consistent with the periodic artifacts shown in the bottom-right
panel of Fig. 4.

There are caseswhen the histogram of a double quantized signal does not contain periodic artifacts. For
example, if in Equation (17) a=bis an integer then n(v) = a. Note that the sameresult is obtained if the signal
were single quantized with step a. In this case,single and double quantization of a signal yields the same
histogram, therefore it is impossible to distinguish between the two. Notice also in Equation (16) that the
histogram of the double quantized signal, H ab, depends on the values of the histogram of the original signal
H . It is conceivablethat histograms of original signals may contain naturally occuring artifacts that could mask
thoseintr oduced by double quantization. While this may happen on occasion,such artifacts do not occur often.



3.3 Results

Given an image in JPEGformat, our task is to detect if the image hasbeendouble compressed.To this end, the
histograms of the DCT coef�cients are computed. If thesehistograms contain periodic patterns, then the image
is very likely to have been double compressed.Shown in Fig. 5 are the DCT coef�cients and their histograms
for an image that has been single JPEGcompressedwith qualities 75 (Fig. 5(a)) and 85 (Fig. 5(c)), and double
JPEGcompressedwith qualities 85 followed by 75 (Fig. 5(b)), and 75 followed by 85 (Fig. 5(d)). The DCT
coef�cients are shown as images (auto-scaled to �ll the full intensity range) where eachpixel corresponds to a
8 � 8 block of the JPEGcompressedimage, and its intensity representsthe coef�cient value. Thesecoef�cients
correspond to DCT frequencies(1; 1) (the DC component) and (2; 2). Note the presenceof periodic artifacts
in the histograms of the DCT coef�cients of the double compressedimages (Fig. 5(b) and 5(d)). Note also that
thesetypes of artifacts are not presentin single compressedimages (Fig. 5(a)and 5(c)).Theseperiodic artifacts
are particularly visible in the Fourier domain asstrong peaks in the mid and high frequencies,Fig. 5(e).

The periodic patterns intr oduced by double JPEGcompression depend on the quality parameters. As a
result, it is possible to detect not only if an image has been double compressed,but also the compression
qualities that have been used. The second parameter can be found from the quantization table stored in the
JPEG�le. The �rst parameter canbeinferr ed from the location of the frequency peaksin the Fourier transforms
of the DCT coef�cient histograms.

4 Luminance Non-linearities

In order to enhance the perceptual quality of digital images, imaging devices often intr oduce some form of
luminance non-linearity . The parameters of this non-linearity are usually dynamically chosenand depend on
the cameraand scenedynamics — theseparameters are,however, typically held constant within an image. The
presenceof several distinct non-linearities in an image is a sign of possible tampering. For example, imagine a
scenariowhere two imagesare spliced together. If the images were taken with dif ferent camerasor in dif ferent
lightning conditions, then it is likely that dif ferent non-linearities are present in the composite image. It is also
possible that local non-linearities are applied in the composite image in order to createa convincing luminance
match.

We have previously proposed a technique to estimate parametric models of geometric and luminance non-
linearities from digital images [6,7]. This technique exploits the fact that a non-linear transformation intr o-
ducesspeci�c correlations in the Fourier domain. Thesecorrelations can be detectedand estimated using tools
from polyspectral analysis. This sametechnique can be employed to detect if an image contains multiple non-
linearities. We describe below how luminance non-linearities intr oduce speci�c correlations, and how these
correlations can be estimated.

4.1 Non-linearities and Correlations

Pointwise non-linear transformations intr oduce speci�c correlations in the frequency domain. To understand
the form of thesecorrelations, consider a one-dimensional discrete signal composed of a sum of two sinusoids
with dif ferent phasesand amplitudes: x[t] = a1 cos(! 1t + � 1) + a2 cos(! 2t + � 2). Consider also a generic non-
linear function g(�) and its Taylor series expansion where the various scalar constants and terms of degree
higher than two are ignored: g(u) � u + u:2. The non-linearly transformed signal takes the form:

g(x[t]) = � 0:5(a2
1 + a2

2) + a1 cos(! 1t + � 1) + a2 cos(! 2t + � 2) + 0:5a2
1 cos(2! 1t + 2� 1) +

0:5a2
2 cos(2! 2t + 2� 2) + a1a2 cos(( ! 1 + ! 2)t + (� 1 + � 2)) + a1a2 cos(( ! 1 � ! 2)t + (� 1 � � 2)) : (19)

Note that the non-linear transform intr oduced several new harmonics at frequencies2! 1, 2! 2, ! 1 + ! 2, and
! 1 � ! 2. Note also that the phasesof these new harmonics are correlated to the phasesof the original ones.
For example, the phaseof harmonic (! 1 + ! 2) is equal to the sum of the phasesof ! 1 and ! 2, and the phaseof
harmonic 2! 1 is the double of the phase of harmonic ! 1. Thesetype of correlations generalize to any type of
underlying signal and pointwise non-linearity .

Thesephase correlations can be detected and estimated using tools from polyspectral analysis. Let X (! )
denote the Fourier transform of x[t]: X (! ) =

P 1
t = �1 x[t]e� it! . The power spectrum is a commonly employed
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Fig. 5: Shown in the top four panels are DCT coef�cients for two frequencies((1; 1) and (2; 2)), and their histograms
for single and double compressedJPEGimages: (a) single JPEGcompressionwith quality 75, (b) double JPEGcom-
pressionwith quality 85 followed by 75, (c) single JPEGcompressionwith quality 85, (d) double JPEGcompression
with quality 75 followed by 85. Shown in panel (e) are the Fourier transforms of three zero-meaned histograms.
Note the periodic artifacts intr oduced by double quantization (panels 2; 3) re�ected by the high frequency peaks in
the Fourier transforms.



tool to estimate secondorder correlations: P(! ) = Ef X (! )X � (! )g, where Ef�g is the expectedvalue operator,
and � denotes the complex conjugate.However the power spectrum is blind to higher-order correlations of the
kind intr oduced by pointwise non-linearities. Thesecorrelations can be detected and estimated using higher-
order spectra(see[20] for a thorough review). For example, the bispectrum can be employed to estimate thir d-
order correlations: B(! 1; ! 2) = Ef X (! 1)X (! 2)X � (! 1 + ! 2)g.

It can be seenintuitively that the bispectrum revealscorrelations between harmonically related frequencies,
such as [! 1; ! 1; 2! 1], [! 2; ! 2; 2! 2], [! 1; ! 2; ! 1 + ! 2], and [! 1; ! 2; ! 1 � ! 2]. Under the assumption that the signal
is ergodic, the bispectrum can be estimated as follows: divide x[t] into N (possibly overlapping) segments,
compute the Fourier transform of each segment k: X k (! ), compute an average estimate of the bispectrum
using the Fourier transform of individual segments B̂ (! 1; ! 2) = 1=N

P N
k =1 X k (! 1)X k (! 2)X �

k (! 1 + ! 2). The
bispectrum has the undesired property that its value at bi-fr equency (! 1; ! 2) depends on P(! 1), P (! 2), and
P(! 1 + ! 2). For analysis purposes, it is useful to work with normalized quantities. To this end, we employ the
bicoherence[13] (a normalized bispectrum), de�ned as:

b(! 1; ! 2) =
jB (! 1; ! 2)j

(Efj X (! 1)X (! 2)j2gEfj X (! 1 + ! 2)j2g)1=2
: (20)

Note that the bicoherenceis a real valued quantity , unlike the bispectrum. It is fairly straightforwar d to show
using the Schwartz inequality 3 that the bicoherence is guaranteed to take values in [0; 1]. Just like the bispec-
trum, the bicoherencecan be estimated as:

b̂(! 1; ! 2) =
1
K j

P
k X k (! 1)X k (! 2)X �

k (! 1 + ! 2)j
��

1
K

P
k jX k (! 1)X k (! 2)j2

� �
1
K

P
k jX k (! 1 + ! 2)j2

�� 1=2
: (21)

This estimator will be used to measure thir d-order correlations.

4.2 Detecting Multiple Non-linearities

For simplicity , we assume that pointwise luminance non-linearities can be modeled with a one parameter
family of functions of the form: g(u) = u , where u denotes the intensity of a pixel normalized in the interval
[0; 1]. We have previously shown that higher order correlations intr oduced by a non-linear transformation are
proportional to the value of the parameter  [6]. The following technique is used to blindly estimating the
value of  :

1. sample a range of inverse gamma values 1= ,
2. for each1= in the selectedrange, apply the inverse function g� 1(u) = u1= to the signal, and compute the

mean bicoherence
P �

! 1 ;! 2 = � � b̂(! 1; ! 2) .
3. selectthe inverse value 1= that minimizes the mean bicoherence.

Blindly estimating the value of  from a gamma corrected image requirescomputing the bicoherenceof a 2-D
signal, a four -dimensional quantity . In order to avoid computational and memory requirements, the analysis
will be restricted to horizontal and vertical scan lines of an image. This is reasonablesince luminance non-
linearities are usually pointwise transformations, and the type of correlations intr oduced in 1-D are similar to
those in 2-D. The technique to estimate  from an image is basedon the one used for 1-D signals, asdescribed
above.

Shown in the top portion of Fig. 6 is a natural image (1200� 1600pixels in size) and the sameimage whose
upper half has been gamma corrected with  = 1:8. The bottom portion shows the estimated gamma values
from horizontal scan lines of the unadulterated image (black dots) and the gamma corrected image (white
dots). Notice that the values of the gamma estimatesfrom scanlines that span the upper half of the tampered
image are generally inconsistent with the lower half.

3 Given two vectors � and � , the Schwartz inequality states:k � kk � k � j � � � j, where k � k denotes vector norm, and �
denotesscalar product.
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Fig. 6: Top panel: a natural image (left), and the sameimage whose top portion was gamma corrected with  = 1:8
(right). The images are 1200 � 1600 pixels in size. Bottom panel: Estimated gamma values from horizontal scan
lines, where the black dots correspond to estimates from the unadulterated image, and the white dots correspond
to estimatesfrom the image whose upper half hasbeengamma corrected.Eachdata point corresponds to a running
averageover 60 scanlines.

5 Signal to Noise Ratio

Digital images have an inherent amount of noise intr oduced either by the imaging processor digital com-
pression.The amount of noise is typically uniform across the entire image. If two images with dif ferent noise
levels are spliced together, or if small amounts of noise are locally added to conceal tracesof tampering, then
variations in the signal to noise ratio (SNR)acrossthe image can be used asevidence of tampering. Measuring
the SNR is non-trivial in the absenceof the original signal. Severalblind SNR estimators have, however, been
proposed [22]. We �rst describeone such estimator, M 2M 4 [19], and then show its effectivenessin locally mea-
suring noise variance (so as to be invariant to the underlying signal strength, we analyze the noise variance
instead of the ratio of signal to noise variances).

We begin by assuming an additive noise model: y[t] = x[t] + w[t], where x[t] is the uncorrupted signal with
variance S and w[t] is the noise with variance N . Denote the secondand forth moments of the corrupted signal
as M 2 = E

�
y2 [t]

	
and M 4 = E

�
y4 [t]

	
, where Ef �g is the expected value operator. Assuming that the signal

and noise are independent and zero-mean, it can be shown [22] that:

M 2 = S + N and M 4 = kx S2 + 6SN + kw N 2; (22)

where kx = E
�

x4[t]
	

=(E
�

x2[t]
	

)2 and kw = E
�

w4[t]
	

=(E
�

w2[t]
	

)2 are the kurtoses of the original signal and
noise. Solving Equation (22) for S and N yields:

S =
M 2(kw � 3) �

p
(9 � kx kw )M 2

2 + M 4(kx + kw � 6)
kx + ky � 6

and N = M 2 � S: (23)
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Fig. 7: Shown on the top row is an original image and this image with noise added locally to the car. Shown on the
bottom row are the locally estimated noise variances (on the samelog scale).

Note that this estimator assumesa known kurtosis for the original signal and the noise, kx and kw . In general
these quantities may not be known. In the results presented below, we assumethat they are known. In the
futur e, the kurtosis of the original signal can be estimated from a region of an image that is believed to be
authentic, and the kurtosis of the noise can be estimated by, for example, assuming Gaussian noise (kw = 3),
or modeling the noise statistics of JPEGcompression.

Shown in the top row of Fig. 7 is an original image, and this image with additive white Gaussiannoise with
SNRsof 30dB (N=0:08 � 10� 3) and 10dB (N=7:62 � 10� 3) added locally to only the car. Shown in the bottom
row of this �gur e are the estimated noise variances from overlapping (by 32pixels) 64� 64blocks. The average
estimated noise variances, for the blocks overlapping the car, are 0:25� 10� 3 and 7:20� 10� 3. Notice that the
estimator is easily able to detect dif ferent noise levels in the image.

6 Discussion

We have described a set of statistical tools for detecting traces of digital tampering in the absenceof any
digital watermark or signature.Wehave quanti�ed the natureof statistical correlations that result from speci�c
forms of digital tampering, and have devised detection schemesto reveal thesecorrelations. We are currently
developing other tools that, in the samespirit of those presentedhere, reveal statistical correlations that result
from a variety of dif ferent manipulations that are typically necessaryto create a convincing digital forgery.
We are also analyzing the sensitivity and robustnessto counter-attack of eachof the schemesoutlined in this
paper.

There is little doubt that counter-measureswill bedeveloped to foil eachof the detection schemesoutlined in
this paper. Our hope, however, is that as more authentication tools are developed it will becomeincreasingly
more dif �cult to create convincing digital forgeries. In addition, as the suite of detection tools expands we
believe that it will becomeincreasingly harder to simultaneously foil eachof the detection schemes.
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