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Abstract

We describe a novel formulation of the range
recovery problem, based on computation of the
differential variation in image intensities with
respect to changes in camera position. The
method uses a single stationary camera and a
pair of calibrated optical attenuation masks to
directly measure this differential quantity. The
subsequent computation of the range image is
simple and should be suitable for real-time im-
plementation. We have constructed and tested
a prototype range camera based on these prin-
ciples.

Introduction

Visual images are formed via the projection
of light from the three-dimensional world onto
a two-dimensional sensor. In an idealized pin-
hole camera, all points lying on a ray passing
through the pinhole will be imaged onto the
same image position. Thus, information about
the distance to objects in the scene (i.e., range)
is lost. Range information can be recovered
by measuring the change in appearance of the
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world resulting from a change in viewing posi-
tion. Traditionally, this is accomplished via si-
multaneous measurements with two cameras
(binocular stereo), or via a sequence of mea-
surements collected over time from a moving
camera (structure from motion).

The recovery of range in these approaches
frequently relies on an assumption of bright-
ness constancy, which states that the brightness
of the image of a point in the world is constant
when viewed from different positions [4]. Con-
sider the formulation of this assumption in one
dimension (the extension to two dimensions is
straightforward). Let f(x; v) describe the in-
tensity function measured through a pinhole
camera system. The variable v corresponds to
the pinhole position (along the direction per-
pendicular to the optical axis). The variable x
parameterizes the position on the sensor. This
configuration is illustrated in Figure 1. Accord-
ing to the assumption, the intensity function
f(x; v) is of the form:

f(x; v) = I
�
x� vd

Z

�
; (1)

where I(x) = f(x; v) jv=0, d is the distance be-
tween the pinhole and the sensor and Z is the
range (distance from the pinhole to a point in
the world). Note that this assumption will typ-
ically be violated near occlusion boundaries,
where points visible from one viewpoint are in-
visible from another.

Several complications arise in these ap-
proaches. The degree to which the bright-
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Figure 1: Geometry for a binocular stereo
system with pinhole cameras. The variable
V parameterizes the position of the camera
pinholes. According to the brightness con-
stancy constraint, the intensity of a point in
the world, as recorded by the two pinhole
cameras, should be the same (i.e. f(x; 0) =

f(x� vd
Z
; v)).

ness constancy assumption holds will, in gen-
eral, decrease with increasing camera displace-
ment. This is due to larger occluded im-
age regions, and increased effects of the non-
Lambertianity of surface reflectances. Viola-
tions of the brightness constancy assumption
lead to difficulties in matching corresponding
points in the images (the so-called “correspon-
dence problem”). Furthermore, a two-camera
stereo system (or a single moving camera) re-
quires careful calibration of relative positions,
orientations, and intrinsic parameters of the
camera(s).

These problems are partially alleviated in
techniques utilizing a single stationary camera.
A number of these techniques are based on es-
timation of blur or relative blur from two or
more images (e.g., [6, 9, 11, 12, 8]). Adelson
and Wang [1] describes an unusual method in
which a lenticular array is placed over the sen-
sor, effectively allowing the camera to capture
visual images from several viewpoints in a sin-
gle exposure. Dowski and Cathey[2] and Jones
and Lamb [5] each describe range imaging sys-
tems that use an optical attenuation mask in
front of the lens. By observing local spectral

information in a single image, they are able to
estimate range. Both techniques rely on power
spectral assumptions about the scene.

In this paper, we propose a single-camera
method which avoids some of the computa-
tional and technical difficulties of the single-
camera approaches discussed above. In partic-
ular, we propose a “direct” differential method
for range estimation which computes the im-
age derivative with respect to viewing position
using a single stationary camera and an opti-
cal attenuation mask. This approach avoids
the correspondence problem, makes no spec-
tral assumptions about the scene, is relatively
straightforward to calibrate, and is computa-
tionally efficient. Based on these principles we
have constructed and tested a prototype range
camera. The construction of this camera, as
well as some results are presented here.

Direct Viewpoint Derivatives

For the purpose of recovering range, we are
interested in computing the change in the ap-
pearance of the world with respect to change in
viewing position. It is thus natural to consider
differential measurement techniques. Taking
partial derivatives of the intensity function
f(x; v) (Equation (1)) with respect to the image
and viewing positions, and evaluating at v = 0
gives:

Ix(x) � @f(x;v)
@x jv=0

= I 0(x); (2)

and

Iv(x) � @f(x;v)
@v jv=0

= � d
Z I

0(x); (3)

where I 0(�) indicates the derivative of I(�) with
respect to its argument. Combining these two
expressions gives:

Iv(x) = � d
Z Ix(x): (4)
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Clearly, an estimate of the range, Z , can be
computed using this equation. Note that in the
case of differential binocular stereo (e.g., [7]),
the derivative with respect to viewing position,
Iv , is replaced by a difference, Iv1 � Iv2 . A
similar relationship is used in computing struc-
ture from motion (for known camera motion),
where Iv is typically replaced by differences
of consecutive images. We now show a di-
rect method for measurement of this derivative
through the use of an optical attenuation mask.

Consider a world consisting of a sin-
gle uniform intensity point light source and
a standard lens-based imaging system with
a variable-opacity optical attenuation mask,
M(u), placed directly in front of the lens (left
side of Figure 2). The light striking the lens is
attenuated by the value of the mask function
at that particular spatial location. 1 With such
a configuration, the image of the point source
will be a scaled and dilated version of the mask
function:

I(x) = 1
�M( x� ): (5)

The scale factor, �, is a monotonic function of
the distance to the point source, Z , and may be
derived from the imaging geometry:

� = 1� d
f + d

Z ; (6)

where d is the distance between lens and sen-
sor, and f is the focal length of the lens.

In the system shown on the left side of Fig-
ure 2, the effective viewpoint may be altered
by translating the mask, while leaving the lens
and sensor stationary. The generalized inten-
sity function, for a mask centered at position v
is written as:

f(x; v) = 1
� M( x� � v); (7)

assuming that the non-zero portion of the mask
does not extend past the edge of the lens.

1For our purposes, we assume that the values of such
a mask function are real numbers in the range [0,1].

The differential change in the image (with re-
spect to a change in the mask position) may be
computed by taking the derivative of this equa-
tion with respect to the mask position, v, eval-
uated at v = 0:

Iv(x) � @
@v f(x; v)jv=0

= � 1
�M

0( x� ); (8)

where M 0(�) is the derivative of the mask func-
tion M(�) with respect to its argument. The
derivative with respect to viewing position,
Iv(x), may thus be computed directly by imaging
with the optical attenuation mask M 0(u)! 2

Finally, notice that the spatial derivative of
the first image, I(x), is closely related to the im-
age Iv(x):

Ix(x) � @
@x f(x; v)jv=0

= 1
�2M

0( x� )

= � 1
� Iv(x): (9)

From this relationship, the scaling parameter
� may be computed as the ratio of the spa-
tial derivative of the image formed through the
mask M(u), and the image formed through the
derivative of that mask, M 0(u). This compu-
tation is illustrated in Figure 2. The distance
to the point source can subsequently be com-
puted from � using the monotonic relationship
given in Equation (6). Note that the result-
ing equation for estimating range is identical
to that of Equation (4) when d = f (i.e., when
the camera is focused at infinity).

Range Estimation

Equation (9) embodies the fundamental rela-
tionship used for the direct differential compu-
tation of range of a single point light source. A
more realistic world consisting of a collection
of many such uniform intensity point sources

2In practice,M 0(u) cannot be directly used as an atten-
uation mask, since it contains negative values. This issue
is addressed later in the paper.
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Figure 2: Direct differential range estima-
tion for a single uniform intensity point
source. Images of a point light source are
formed using two different optical attenua-
tion masks, M(u) and its derivative, M 0(u).
In each case, the image formed is a scaled
and dilated copy of the mask function (by
an amount �, monotonically related to the
depth, Z). Computing the spatial (image)
derivative of the image formed under mask
M(u) produces an image that is identical
to the image formed under the derivative
mask, M 0(u), except for a scale factor �.
Thus, � may be estimated as the ratio of the
two images. Range is computed from � us-
ing the relationship given in Equation (6).

imaged through an optical attenuation mask
will produce an image consisting of a super-
position of scaled and dilated versions of the
masks. In particular, we can write an expres-
sion for the image by summing the images of
the visible points, p, in the world:

f(x; v) =

Z
dxp

1
�p
M
�
x�xp
�p

� v
�
L(xp); (10)

where the integral is performed over the vari-
able xp, the position in the sensor of a point p
projected through the center of the lens. The in-
tensity of the world point p is denoted asL(xp),

and �p is monotonically related to the distance
to p (as in Equation (6)). Note again that we
must assume that each point produces a uni-
form light intensity across the mask.

Again, consider the derivatives of f(x; v)
with respect to viewing position, v, and image
position, x:

@
@v
f(x; v) = @

@v

Z
dxp

1

�p
M

�
x�xp

�p
� v

�
L(xp)

= �

Z
dxp

1

�p
M

0

�
x�xp
�p

� v

�
L(xp)(11)

and

@
@x
f(x; v) = @

@x

Z
dxp

1

�p
M

�
x�xp
�p

� v

�
L(xp)

=

Z
dxp

1

�2
p

M
0

�
x�xp
�p

� v

�
L(xp); (12)

As in the previous section, the following two
partial derivative images are defined:

Iv(x) � @
@v
f(x; v) jv=0

= �

Z
dxp

1

�p
M 0

�
x�xp
�p

�
L(xp); (13)

and

Ix(x) � @
@x
f(x; v) jv=0

=

Z
dxp

1

�2
p

M 0

�
x�xp
�p

�
L(xp): (14)

Equations (13) and (14) differ only in a mul-
tiplicative term of 1

�p
. Unfortunately, solving

for �p is nontrivial, since it is embedded in the
integrand and depends on the integration vari-
able. Consider, however, the special case where
all points in the world lie on a frontal-parallel
plane relative to the sensor. 3 Under this con-
dition, the scaling parameter �p is the same for
all points xp and Equations (13) and (14) can be
written as:

Iv(x) = � 1
�

Z
dxp M

0

�
x�xp
�

�
L(xp) (15)

Ix(x) = 1
�2

Z
dxp M

0

�
x�xp
�

�
L(xp): (16)

3In actuality, this assumption need only be made
locally.
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The scaling parameter, �, a function of the dis-
tance to the points in the world (Equation (6))
can then be computed as the ratio:

Iv(x) = ��Ix(x): (17)

In order to deal with singularities (i.e., Ix =
0), a least-squares estimator can be used for �
(as in [7]). Specifically, we minimize the follow-
ing error function:

E(�) =
X
P

(Iv(x) + �Ix(x))
2; (18)

where the summation is performed over a
small patch in the image, P . Taking the deriva-
tive with respect to �, setting equal to zero and
solving for � yields the minimal solution:

� = �

P
P
Iv(x)Ix(x)P
P
Ix(x)2

: (19)

The algorithm easily extends to a three-
dimensional world: we need only con-
sider two-dimensional masks M(u;w), and
the horizontal partial derivative Mu(u;w) =
@M(u;w)=@u. For a more robust implemen-
tation, the vertical partial derivative mask
@M(u;w)=@w may also be included. The least-
squares error function becomes:

E(�) =
X
P

(Iu + �Ix)
2 + (Iw + �Iy)

2: (20)

Solving for the minimizing � gives:

� = �

P
P (IuIx + IwIy)P

P (I
2
x + I2y )

: (21)

Optical Mask Design

Thus far, the only restriction placed on the
optical masks, M(u;w) and Mu(u;w), is that
the second be the derivative of the first. Il-
lustrated in Figure 3 is an example of such
a matched pair of masks based on a two-
dimensional Gaussian. Typically, the function

Figure 3: Gaussian optical masks. Il-
lustrated along the top row is a two-
dimensional Gaussian mask, M(u;w) (left),
and its partial spatial derivative, Mu(u;w)

(right). Illustrated along the bottom row are
a pair of non-negative masks, M1(u;w) and
M2(u;w), computed from the Gaussian and
its derivative masks using Equations (22)
and (23).

Mu(u;w) will have negative values (as in the
case of the Gaussian) and thus is not feasible
for use as an optical attenuation mask. Fur-
thermore, a positive constant cannot simply be
added to Mu(u;w), since this will destroy the
required derivative relationship between the
two masks.

Due to the linearity of the imaging process,
however, we can use masks that are linear com-
binations of the masks Mu(u;w) and M(u;w).
In particular, a scalar multiple of M(u;w) can
be added to Mu(u;w) in order to form a mask
function that is entirely positive. The new
mask, M1(u;w), shown in Figure 3, is given by:

M1(u;w) = �M(u;w) + Mu(u;w); (22)

where �,  are scaling constants chosen to force
the function M1(u;w) to fill the range [0; 1]. A
second symmetrical mask can be formed by
subtracting Mu(u;w) from M(u;w):

M2(u;w) = �M(u;w) � Mu(u;w): (23)

Note that M2(u;w) is equal to M1(u;w) rotated
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180 degrees about its center, and that

M(u;w) = M1(u;w)+M2(u;w)
2� (24)

Mu(u;w) = M1(u;w)�M2(u;w)
2 : (25)

Again, by linearity of the imaging process,
the images that would have been obtained
with the masks M(u;w) and Mu(u;w) can
be recovered from images obtained with two
masks M1(u;w) and M2(u;w). In particular,
let I1(u;w) be the image obtained through the
mask M1(u;w), and I2(u;w) the image ob-
tained through the mask M2(u;w). Then:

I(u;w) = I1(u;w)+I2(u;w)
2� (26)

Iv(u;w) = I1(u;w)�I2(u;w)
2 ; (27)

where I(u;w) and Iv(u;w) are the desired
quantities for estimating the range image using
Equation (19).

Results

In addition to a series of simulations (re-
sults not shown here) we have constructed
a prototype camera for validating the di-
rect differential approach to range estimation.
The camera consists of an optical attenuation
mask (a liquid crystal spatial light modulator,
LC SLM) sandwiched between a pair planar-
convex lenses, and placed in front of an off-the-
shelf SONY XC-77 CCD camera. The essential
component of this system is the LC SLM pur-
chased from CRL Smectic Technology (Middle-
sex, UK). This device is a fully programmable,
fast-switching, twisted nematic liquid crystal
display. This device has a display area of 28.48
mm (W) � 20.16 mm (H); the spatial resolu-
tion is 640 � 480, with 4 possible grayscale
values. The LC-SLM was calibrated to cor-
rect for any non-linearities: light transmittance
for each grayscale was measured using a pho-
tometer. This calibration information was in-
corporated into a standard stochastic error dif-
fusion dithering algorithm (e.g., [3]) in order to

Figure 4: Illustrated are 1-D slices of the im-
age of “point light source” taken through a
pair of Gaussian-based masks (top). Also
shown are 1-D slices of the images I and Iv
(bottom: solid curve), and the their fit to a
Gaussian and its derivative (dashed curve).

render the optical masks with reasonable ac-
curacy. The CCD sensor was also calibrated
and found to be nearly linear. The display
is controlled through a PC VGA video inter-
face. The LC SLM refreshes its display at 30
Hz; when synchronized with the frame grab-
ber, the required images (I(x; y) and Iv(x; y))
taken through the pair of masks may be ac-
quired at 15 Hz.

In our first set of experiments with this range
camera, a pinhole, at a distance of 20 cm, back-
lit by a desk lamp was imaged through a re-
duction tube. Illustrated in Figure 4 are 1-D
slices of the images, I1 and I2, taken through a
pair of Gaussian-based masks. Also shown in
this figure are 1-D slices of the images I and Iv
computed by the taking the appropriate com-
binations of I1 and I2 (Equations (26) and (27)).
Note that the resulting images are reasonably
well fit to a Gaussian and its derivative (dashed
line).

In our next set of experiments, a simple tar-
get consisting of a frontal-parallel planar tex-
tured pattern (random white noise) was im-
aged through a pair of Gaussian-based masks
(see Figure 3). An estimate of depth was com-
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Figure 5: Range images. Illustrated are
the recovered range images for a frontal-
parallel planar target at a distance of 11
and 17 cm from the camera. The computed
range maps have a mean of 11.3 and 17.16
cm, with a standard deviation of 0.47 and
0.59 cm, respectively.

puted according to Equations (19) and (6). Il-
lustrated in Figure 5 are the recovered range
images for the target placed at a distance of
11cm and 17cm from the camera. For these
targets, the mean estimate of range was 11.3
and 17.16 cm, with a standard deviation of 0.47
and 0.59 cm, respectively. In these results, the
images were pre-processed to remove regions
with low spatial derivative (this amounted to
approximately 50% of the data), the resulting
“holes” were filled with a simple bilinear inter-
polation scheme.

Discussion

An optical attenuation mask placed in front
of a lens-based imaging system produces an
image which is a superposition of scaled and
dilated copies of the mask function. The
derivative of this image is related by a scale fac-
tor to a second image created with the deriva-

tive of the first mask. The scale factor is mono-
tonically related to range. This simple ob-
servation has lead us to a direct differential
method for estimating range from a single sta-
tionary camera. In particular, the derivative
with respect to viewing position is computed
directly: it is simply the image formed under
the derivative mask. Based on these princi-
ples, we have constructed and tested a proto-
type range camera. We are able to acquire the
necessary pair of images at 15 Hz through the
use of a fast-switching LC SLM as an optical at-
tenuation mask. Since the subsequent process-
ing of the images is simple and fast, this tech-
nique should be amenable to a real-time imple-
mentation.

Two assumptions have been made in our so-
lution to this problem. Both of these assump-
tions are made (although often not explicitly)
in nearly every structure from stereo or motion
algorithm. The first assumption is that the light
emanating from each point in the scene is con-
stant across the lens (i.e., the brightness con-
stancy assumption). Note that this assumption
will typically be violated at occlusion bound-
aries, because the light emanating from a par-
tially occluded point will hit only a portion of
the lens. One potential solution to this problem
is to expand the function describing the light
emanating from a point in a Taylor series. The
coefficients of these terms may be estimated by
collecting additional measurements (i.e., im-
ages) with higher-order derivative masks.

The second assumption is that of locally
frontal-parallel surface orientation. This as-
sumption was necessary in order to solve for�p
given the two image measurements described
by Equations (13) and (14). Solving without
this assumption is a nonlinear optimization
problem (since the �p appears inside the argu-
ment of M(�)), which should be amenable to an
iterative solution.

There are still several mask design issues
that need to be resolved. First, our example
of Gaussian-based masks was somewhat arbi-
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trary. A pair of masks should be designed from
a set of optimality constraints based on deriva-
tive accuracy, effective baseline, light transmit-
tance, etc. Once an optimal function is deter-
mined, the construction of the actual optical
masks must be calibrated to include nonlinear-
ities in the printing process (e.g., halftoning),
and the effects of the intrinsic point spread
function of the camera. In particular, the im-
age of a point light source recorded by the cam-
era with mask Mu(u; v) must be equal to the
spatial derivative of the image recorded with
mask M(u; v). Finally, noise in the image mea-
surements, I1(u;w) and I2(u;w), will be ampli-
fied by the computations in Equation (26) and
Equation (27): small values of � or  are thus
undesirable.

As with most ranging techniques, accuracy
behaves according to the rules of triangulation.
In particular, errors will be proportional to the
square of the range, and inversely proportional
to both the focal length and baseline. 4 We have
verified these relationships via simple simula-
tions. As in many other range-imaging sys-
tems, the accuracy may be improved with the
use of structured illumination.

A counterintuitive aspect of our technique
is that it relies on the defocus of the image.
In particular, a perfectly focused image corre-
sponds to � = 0, leading to a singularity in
Equation (9). In practice, this may be alleviated
by focusing the camera at infinity (i.e., d = f ),
thus ensuring that points at distances within
the operating range of the algorithm will be
sufficiently blurred.

And finally, an interesting variant of the
technique arises when considering a Gaussian
mask, and its derivative with respect to �:

G(u;w) = 1
�2 e

�(u2+w2)=2�2 ; (28)

G�(u;w) = @
@�G(u;w)

= � 2
�3 e

�(u2+w2)=2�2

4Effective baseline in our system depends on the mask
function, and is proportional to the lens diameter.

+ (u2+w2)
�5 e�(u2+w2)=2�2 : (29)

Let I(x; y) and I�(x; y) be the images obtained
through the masks G(u;w) and G�(u;w), re-
spectively. Using the same techniques as in
the previous section, it can be shown that these
two images obey the following constraint:

I�(x; y) = �2� [Ixx(x; y) + Iyy(x; y)] ;

= �2�r2I(x; y); (30)

where Ixx(x; y) and Iyy(x; y) correspond to the
horizontal and vertical second partial deriva-
tives of I(x; y), and r2 is the Laplace opera-
tor. As before, � is inversely proportional to
range, and is given by Equation (6). This for-
mulation provides a differential algorithm for
range-from-defocus. Unlike previous formula-
tions (e.g., [9]), this solution avoids the artifacts
arising from the computation of local Fourier
transforms.
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