
In: IEEE Workshop on Statistical Analysis in Computer Vision (in conjunction with CVPR),2003

Higher -order Wavelet Statistics and their Application to Digital Forensics
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Abstract

We describea statistical model for natural images that
is built upon a multi-scale wavelet decomposition.
The model consists of �rst- and higher-order statis-
tics that capture certain statistical regularities of nat-
ural images. We show how this model can be useful
in several digital forensic applications, speci�cally in
detecting various types of digital tampering.

1. Introduction
The spaceof possible images is enormous - there are
256N 2

possible 8-bit grayscale images of size N � N
pixels (with as few as N = 10 pixels, there are a
whopping 1:3� 10154 possible images). And yet, natu-
ral photographic images occupy only a relatively tiny
portion of this space[7, 15, 4, 21]. One might expect,
therefore, for natural images to exhibit statistical regu-
larities that distinguish them from the seaof all possi-
ble images. Popular examples of statistical models in-
clude thosebasedon power spectra[18, 7,21],Markov
random �elds [11, 3, 10], or wavelets [17, 22].

The decomposition of images using basis functions
that are localized in spatial position, orientation, and
scale(e.g.,wavelets) have proven extremely useful in
image compression,image coding, noise removal, and
texture synthesis. One reason is that such decompo-
sitions exhibit statistical regularities that can be ex-
ploited. In this paper we describe a statistical model
for natural images that is built upon a multi-scale
wavelet-like decomposition. The model consists of
�rst- and higher-order statistics that capture the reg-
ularities that are inherent to natural images. We then
show how this model dif ferentiates between natural
and un-natural images,and how it can be used in sev-
eral digital forensicapplications, speci�cally in detect-
ing various types of digital tampering.

2. Image Statistics
The image decomposition employed here is basedon
separablequadratur e mirr or �lters (QMFs) [24, 25, 23].
As illustrated in Figure 1, this decomposition splits the
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Figure 1: An idealized multi-scale and orientation
decomposition of frequency space.Shown, from top
to bottom, arelevels 0,1,and 2,and from left to right,
are the lowpass, vertical, horizontal, and diagonal
subbands.

frequency spaceinto multiple scalesand orientations.
This is accomplished by applying separable lowpass
and highpass �lters along the image axesgenerating
a lowpass, vertical, horizontal, and diagonal subband.
Subsequentscalesare created by recursively �ltering
the lowpass subband. The vertical, horizontal, and di-
agonal subbands at scale i = 1; :::; n are denoted as
Vi (x; y), H i (x; y), and D i (x; y), respectively. Shown in
Figure 2, for example, is a three-level decomposition
of a “disc” image.

Given this image decomposition, the statistical
model is composed of the mean, variance, skewness
and kurtosis of the subband coef�cients at eachorien-
tation and at scalesi = 1; :::; n� 1. Thesestatisticschar-
acterize the basic coef�cient distributions. As shown
in Figure 2,however, thesestatisticsdo not capture the
strong correlations that exist acrossspace,orientation,
and scale. For example, if a large (small) coef�cient
is found at the �nest scale this coef�cient's “par ent”
and “grandpar ent” at the coarserscalestend alsoto be
large (small). In order to capture someof thesehigher-
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Figure 2: Shown are the absolute values of the sub-
band coef�cients at three scalesand three orienta-
tions for a “disc” image. The residual lowpass sub-
band is shown in the upper-left corner.

order statistical correlations, we collect a secondsetof
statistics that are based on the errors in a linear pre-
dictor of coef�cient magnitude.

As described in [2], the subband coef�cients are
correlated to their spatial, orientation and scaleneigh-
bors. For purposes of illustration, consider �rst a ver-
tical band, Vi (x; y), at scale i . A linear predictor for
the magnitude of these coef�cients in a subset of all
possible neighbors 1 is given by:

jVi (x; y)j = w1jVi (x � 1; y)j + w2jVi (x + 1; y)j

+ w3jVi (x; y � 1)j + w4jVi (x; y + 1)j

+ w5jVi +1 (x=2; y=2)j + w6 jD i (x; y)j

+ w7jD i +1 (x=2; y=2)j; (1)

where j � j denotesabsolute value and wk are the scalar
weighting values. This linear relationship is expressed
more compactly in matrix form as:

~V = Q~w; (2)

where the column vector ~w = (w1 : : : w7)T ,
the vector ~V contains the coef�cient magnitudes of
Vi (x; y) strung out into a column vector, and the
columns of the matrix Q contain the neighboring co-
ef�cient magnitudes as speci�ed in Equation (1) also
strung out into column vectors. The coef�cients are

1 The particular choiceof spatial, orientation and scaleneighbors
was motivated by the observations of [2] and modi�ed to include
non-casual neighbors.

determined by minimizing the quadratic error func-
tion:

E( ~w) = k ~V � Q~w k2; (3)

where k � k is the vector two-norm. This error function
is minimized by dif ferentiating with respectto ~w:

dE( ~w)
d~w

= 2QT (~V � Q~w); (4)

setting the result equal to zero, and solving for ~w to
yield:

~w = (QT Q) � 1QT ~V : (5)

Given the large number of constraints (one per image
pixel) in only seven unknowns, it is generally safe to
assumethat the 7 � 7 matrix QT Q will be invertible.

Once the coef�cients of the linear predictor are es-
timated, the log error between the actual coef�cients
and the predicted coef�cients is computed as:

~E = log2(~V) � log2(jQ~wj); (6)

where the log is computed point-wise on each vector
component. It is from this error that additional statis-
tics are collected, namely the mean, variance, skew-
ness,and kurtosis. This processis repeated for each
vertical subband at scales i = 1; :::; n � 1, where at
eachscalea new linear predictor is estimated. A simi-
lar processis repeatedfor the horizontal and diagonal
subbands. The linear predictor for the horizontal sub-
bands is of the form:

jH i (x; y)j = w1jH i (x � 1; y)j + w2jH i (x + 1; y)j

+ w3jH i (x; y � 1)j + w4jH i (x; y + 1)j

+ w5jH i +1 (x=2; y=2)j + w6Dj i (x; y)j

+ w7jD i +1 (x=2; y=2)j; (7)

and for the diagonal subbands:

jD i (x; y)j = w1jD i (x � 1; y)j + w2jD i (x + 1; y)j

+ w3jD i (x; y � 1)j + w4jD i (x; y + 1)j

+ w5jD i +1 (x=2; y=2)j + w6 jH i (x; y)j

+ w7jVi (x; y)j: (8)

The same error metric, Equation (6), and error statis-
tics computed for the vertical subbands,are computed
for the horizontal and diagonal bands, for a total of
12(n � 1) error statistics. Combining these statistics
with the 12(n � 1) coef�cient statistics yields a total of
24(n � 1) statistics that form a feature vector of “natu-
ral images”.
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Figure 3: Natural and un-natural images. From top
to bottom are: natural, noise, fractal, and disc im-
ages. Statistics from 1000natural images and 100 of
eachtype of un-natural image are collected, seeFig-
ure 4.
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Figure 4: Statistics for natural (� ), and unnatural
(gray) images projected onto a 3-D linear subspace.
The gray symbols correspond to the noise (� ), frac-
tal (

�

), and disc (� ) images, seeFigure 3.

2.1. Natural vs. Un-Natural
Shown in the top portion of Figure 3 are four im-
agestaken from a databaseof natural images 2. These
images span decades of digital and traditional pho-
tography and consist of a broad range of indoor and
outdoor scenes. Statistics from 1000 images are col-
lected as follows. Each 8-bit per channel RGB image
is cropped to a central 640 � 480 pixel area. Each
image is then converted from RGB to gray-scale 3

(gray = 0:299R + 0:587G + 0:114B).A four -level, three-
orientation QMF pyramid is constructed for each im-
age, from which a 72-length feature vector of coef�-
cient and error statistics is collected, Section 2. To re-
duce sensitivity to noise in the linear predictor, only
coef�cient magnitudes greater than 1:0 are consid-
ered.

The same set of statistics are collected from “un-
natural” images, samples of which are also shown in
Figure 3 - from top to bottom are: (1) noise images
which are scrambled versions of the “natural” images
shown in the same �gur e; (2) fractal images with a
1=! p power spectrum and random phase (p 2 [1; 2]);
and (3) disc images consisting of overlapping anti-
aliased discs of variable size radii. These un-natural
images were chosento be consistent with various sta-

2 Images were downloaded from: philip.greenspun.com
and reproduced here with permission from Philip Greeenspun.

3 Images are converted from RGB to grayscale to simplify the
analysis. There is no doubt that there are strong statistical corre-
lations between the color channels and we plan to explore thesein
futur e work.
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tistical properties of natural images. The noise images
retain the intensity distribution of the natural images;
the fractal images have roughly the sameFourier en-
ergy; and the disc imageshave similar phasestatistics.

Shown in Figure 4 is the projection of 1000natural
and 300un-natural 72-D feature vectors onto a three-
dimensional linear subspace.This lower -dimensional
space is the result of projecting the original 72-D
vectors onto the top three principle components, as
computed from a principle component analysis (Ap-
pendix A) - thesetop threecomponentscapture75% of
the total variance. Even in this reduced space,there is
a clear separation between the natural and un-natural
images,suggesting that this statistical model captures
certain aspectsof natural images.

3. Digital Forensics
In our current digital age, it is startling to seethe ease
with which digital media can and is being manipu-
lated to alter our senseof reality. Whether it be a Hol-
lywood studio, a national news organization, or an
average computer user, the images and sounds that
are being created can no longer be unquestionably be-
lieved. The courts, in particular , are wholly unpr e-
pared to contend with the sophisticated digital tech-
nology that allows even the most novice of users to
alter our senseof reality.

We have employed the statistical model outlined
above for use in digital forensics. Our overall goal is
the development of computational techniques for de-
termining whether a digital audio signal, image, or
video has been tampered with from the time of its
recording. In contrast to digital watermarking or sig-
natures,the basic approach taken here is to character-
ize the statistics of natural images, build models for
various types of tampering, and then construct clas-
si�cation schemes for detecting deviations from the
expected statistics. Below we describe three such ap-
plications: (1) detecting hidden messages(steganog-
raphy); (2) dif ferentiating between computer graphic
and natural images;and (3) detecting re-broadcastat-
tacks against biometric identi�cation systems.

3.1. Steganography
Information hiding techniques (steganography) have
recently received quite a bit of attention (see [14, 1,
12, 19] for general reviews). Applications of this tech-
nology include unobtrusive military and intelligence
communication and covert criminal communication.

With digital images as carriers, detecting the pres-
enceof hidden messagesposessigni�cant challenges
to the legal community . Although the presence of

cover message

steg=cover+message jcover - stegj

Figure 5: Shown is a cover image and a steg image
containing an embedded message. Also shown is
the the 64 � 64 message(at scale),and the absolute
value of the dif ference between the cover and steg
image (renormalized into the range [0,255] for dis-
play purposes).

embedded messagesis, by design, imperceptible to
the human eye, it may neverthelessdisturb the statis-
tics of an image. Previous approaches to detecting
such deviations [13, 26, 20] typically examine �rst-
order statistical distributions of intensity or transform
coef�cients (e.g., discrete cosine transform, DCT). In
contrast, we employ the higher-order statistical mod-
els described above for the purposes of detecting the
presenceof a hidden messagewithin a digital image
(seealso [9] for related work on higher-order DCT im-
agestatistics).

Shown in Figure 5 is a 640� 480cover and 64� 64
messageimage, and the result of embedding the mes-
sageinto the cover image. In this example, the mean
of the absolute value of the dif ference between the
cover and steg image is 6:2 intensity values with a
standard deviation of 6:3. For display purposes the
dif ference image is renormalized into the same inten-
sity range as the cover image, [0; 255].

4



Given an image we would like to determine if it
contains a hidden message. To do so, we �rst collect
statistics from images with and without hidden mes-
sages.For purposes of illustration, messagesare em-
bedded using Jsteg4 into the same 1000natural im-
agesused in the previous section. A messageconsists
of a 64 � 64 pixel region of a random image chosen
from the sameimage database.The sametransforma-
tion, decomposition, and collection of statistics as de-
scribed in Section2.1is performed on the 1000natural
images and 1000images with embedded messages.A
Fisher linear discriminant (FLD) [8, 5] is then trained
on 750of the natural and 750of the steg images, and
then tested on the remaining 250natural and 250steg
images (Appendix B). In the training stage, the FLD
correctly classi�es 99:5% of the natural and 98:3% of
the steg images - a threshold was selectedso as to af-
ford a less than 0:5% false positive rate. In the test-
ing stage, 98:9% of the natural and 97:6% of the steg
images are correctly classi�ed. Thesevalues are aver-
aged over 100random training/testing splits.

The statistical model captures certain aspects of
natural images that are suf�ciently speci�c so as to
easily detect images that contain hidden messages
that are themselves imperceptible to the human eye.
In addition to these results, we have shown in previ-
ous work that both a Fisher linear discriminant and
a support vector machine are effective in discriminat-
ing between natural and steg images across a range
of dif ferent image formats and embedding programs
(see[6, 16] for more details).

3.2. Computer Graphics or Photograph?

In 1996 the Child Pornography Prevention Act was
passed which, in part, prohibited any image that ap-
pearsto be or conveysthe impressionof someone un-
der 18 engaged in sexually explicit conduct. This law
made illegal computer generated pictur es that only
appear to show minors involved in sexual activity . In
2002, the United StatesSupreme Court struck down
this law in their 6-3 ruling in Ashcroft v. FreeSpeech
Coalition - the court said language in the 1996 child
pornography law was unconstitutionally vague and
far-reaching.

This ruling makes it considerably more dif �cult for
law enforcement agenciesto prosecutechild pornog-
raphy crimes, since it is always possible to claim that
any image is computer generated. To this end, it
would be helpful to be able to distinguish between
natural and computer generated images. Given that

4 Jsteg V4, by Derek Upham, is available at
www.nic.funet.fi/pub/crypt/steganography

Figure 6: Computer graphic images5 .

current computer graphics softwar e can often cre-
ate images that look to the human eye like a pho-
tograph, this classi�cation poses considerable chal-
lenges. Shown in Figure 6 are four images 5 from a
databaseof 500computer graphic images. Theseim-
ageswere generated from a number of dif ferent soft-
ware packages:3D Studio Max, Maya, SoftImage 3D,
Lightwave 3D, Imagine, and Alias PowerAnimation.

Given an image we would like to determine if it is
computer graphic (CG) or natural. To do so, we �rst
collect statistics from natural and computer graphic
images. The same transformation, decomposition,
and collection of statistics as described in Section 2.1
is performed on the same 1000natural images from
previous sectionsand 500CG images. A Fisher linear
discriminant (FLD) is trained on 750of the natural and
350of the CG images, and then tested on the remain-
ing 250 natural and 150CG images (Appendix B). In
the training stage,the FLD correctly classi�es 99:5% of
the natural and 36:9% of the CG images - a threshold
was selectedsoasto afford a lessthan 0:5% false posi-
tive rate. In the testing stage,98:7% of the natural and
35:4% of the CG images are correctly classi�ed. These
values are averagedover 100random training/testing
splits.

The statistical model of natural images is suf�-
ciently speci�c so that slightly more than one-third
of computer graphic images can be reliably distin-
guished from their natural counterparts.

3.3. Live or Re-Broadcast?
With biometric identi�cation systems (e.g., face, iris,
or voice) becoming more popular and effective, these

5 Graphic images are credited to Asier H. Lavi ña (top) and Frank
Vitale (bottom) and reproduced here with their permission.
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Figure 7: Shown is the original image (left) and
the image after being printed and re-scanned(right).
The mean of the absolute value of the dif ferencebe-
tween these images is 19 with a standard deviation
of 17:5 (on a scaleof [0; 255]).

systems have started to become vulnerable to attack.
A simple and effective attack on, for example, a face
recognition system would be to place in front of the
cameraa photograph of an individual. As in the pre-
vious two sectionswe detect such an attack by quan-
tifying the perturbations in the image statistics caused
by, in this case,the re-broadcasting of an image.

We collect statistics from natural images and the
same images after having been printed on a laser
printer and re-scannedwith a �at-bed scanner(print-
ing and scanning are done at 72 dpi), Figure 7. The
same transformation, decomposition, and collection
of statistics asdescribed in Section2.1is performed on
the 1000natural images and 200re-broadcast images.
A Fisher linear discriminant (FLD) is then trained on
750 of the natural and 150 of the re-broadcast im-
ages, and then tested on the remaining 250 natural
and 50re-broadcastimages(Appendix B). In the train-
ing stage,the FLD correctly classi�es 99:5% of the nat-
ural and 100% of the re-broadcast images - a thresh-
old was selectedso as to afford a less than 0:5% false
positive rate. In the testing stage, 99:5% of the natu-
ral and 99:8% of the re-broadcast images are correctly
classi�ed. Thesevalues are averagedover 100random
training/testing splits.

It is not surprising that the dithering that results
from printing signi�cantly disturbs the image statis-
tics. There is little doubt, however, that detecting a
re-broadcastimage will becomeincreasingly moredif-
�cult with higher-quality printers.

3.4. Summary
We have shown in the previous three sections that
the proposed statistical model of Section2 is effective

steg

natural

graphics

re-broadcast

Figure 8: Results from a four -way classi�er of 1000
natural, 1000steg,500graphic, and 200re-broadcast
images. The bounding ellipse are rendered so as to
capture 1:5 times the standard deviation of the data
projected onto eachof the principle axis (individual
data points are not shown).

in distinguishing natural images from images with
hidden messages,computer graphic images, and re-
broadcast images. This classi�cation was performed
using a linear classi�er (FLD) where eachclassof im-
ages was treated separately. Shown in Figure 8 are
results from a four -class FLD, where all four classes
of images were simultaneously classi�ed. The bound-
ing ellipsoids are rendered so as to capture 1:5 times
the standard deviation of the data projected onto each
of the principle axis (for clarity, the individual data
points are not shown). Note how the four clusters are
reasonably well separated, suggesting that the statis-
tical disturbance between these classesof images are
distinct. This type of separation should prove to be
particularly valuable in a digital forensic setting.

We next wonder ed what aspects of the statistical
model are essential for distinguishing natural from
un-natural images. For example, would classi�cation
accuracy be as good with only the coef�cient statis-
tics, or are the higher-order error statistics the critical
component? To this end, we re-trained each FLD of
Sections3.1-3.3using either only the coef�cient statis-
tics or only the error statistics. With only the coef�-
cient statistics: (1) 99:5% of the natural and 97:0% of
the stegimagesarecorrectly classi�ed; (2) 99:5%of the
natural and 6:0% of the computer graphic images are
correctly classi�ed; and (3) 99:5% of the natural and
99:8% of the re-broadcast images are correctly classi-
�ed. On the other hand, with only the higher-order
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error statistics: (1) 99:5% of the natural and only 7:5%
of the steg images are correctly classi�ed; (2) 99:5%
of the natural and 16:2% of the computer graphic im-
agesare correctly classi�ed; and (3) 99.5%of the natu-
ral and 38:8% of the re-broadcast images are correctly
classi�ed. It seemsthen that in some casesthe coef�-
cient statistics are suf�cient for classi�cation (steg, re-
broadcast), and in others (computer graphics), both
coef�cient and error statistics are needed. Further
study is needed to determine if certain spatial scales
or orientations are more in�uential than others.

4. Discussion
We have presented a statistical model for natural
images consisting of �rst- and higher-order wavelet
statistics. This model seemsto capture certain statis-
tical regularities of natural images. We have shown
how this model can be useful in several digital foren-
sic applications. From the point of view of digital
forensics, the classi�cation techniques outlined here
will almost certainly bene�t from a more �exible clas-
si�er , for example, a non-linear support vector ma-
chine. The statistical model is, of course,vulnerable to
counter-attack. It may be possible, for example, to al-
ter an image so that its �rst- and higher-order statistics
areconsistentwith thoseof natural images. The devel-
opment of such counter-measureswill in turn lead to
better models, and so on.
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Appendix A - PCA
Denote column vectors ~x i 2 R n , i = 1; :::; N as the
original feature vectors. The overall mean is:

~� =
1
N

NX

i =1

~x i (9)

The zero-meaned data is packed into a n � N matrix:

M = ( ~x1 � ~� ~x2 � ~� : : : ~xN � ~� ) (10)

If the dimensionality n of ~x i is smaller than the num-
ber of data points N , as in our case, then the n � n
(scaled)covariance matrix is computed as:

C = M M t (11)

The principle components are the eigenvectors ~ej of
the covariance matrix (i.e., C~ej = � j ~ej ), where the
eigenvalue, � j is proportional to the variance of the
original data along the j th eigenvector. The dimen-
sionality of each ~x i is reduced from n to p by pro-
jecting (via an inner product) each ~x i onto the top p
eigenvalue-eigenvectors. The resulting p-dimensional
vector is the reduced-dimension representation.

Appendix B - FLD
For simplicity a two-class FLD is described - the ex-
tension to multiple classesis straight-forwar d. Denote
column vectors ~x i , i = 1; :::; Nx and ~yj , j = 1; :::; Ny

as training exemplars from each of two classes. The
within-class meansare de�ned as:

~� x =
1

Nx

N xX

i =1

~x i ; and ~� y =
1

Ny

N yX

j =1

~yj : (12)

The between-classmean is de�ned as:

~� =
1

Nx + Ny

0

@
N xX

i =1

~x i +
N yX

j =1

~yj

1

A : (13)

The within-class scatter matrix is de�ned as:

Sw = M x M T
x + M y M T

y ; (14)

where, the i th column of matrix M x contains the zero-
meaned i th exemplar given by ~x i � ~� x . Similarly ,
the j th column of matrix M y contains ~yj � ~� y . The
between-classscatter matrix is de�ned as:

Sb = Nx (~� x � ~� )(~� x � ~� )T

+ Ny (~� y � ~� )(~� y � ~� )T : (15)

Let ~e be the maximal generalized eigenvalue-
eigenvector of Sb and Sw (i.e., Sb~e = �S w ~e). The train-
ing exemplars ~x i and ~yj are projected onto the one-
dimensional linear subspace de�ned by ~e (i.e., ~xT

i ~e
and ~yT

j ~e). This projection simultaneously reduces the
within-class scatterwhile increasingthe between-class
scatter. Once the FLD projection axis is determined
from the training set, a novel exemplar, ~z, from the
testing set is classi�ed by �rst projecting onto the
same subspace,~zT ~e. In the simplest case, the class
to which this exemplar belongs is determined via a
simple threshold. In the case of a two-class FLD,
we are guaranteed to be able to project onto a one-
dimensional subspace(i.e., there will be at most one
non-zero eigenvalue). In the caseof a N -classFLD, the
projection may be onto ashigh asa N � 1-dimensional
subspace.
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