
Approximability of the Unsplittable Flow Problem on Trees∗

Chrisil Arackaparambil Amit Chakrabarti Chien-Chung Huang

Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
{cja, ac, villars}@cs.dartmouth.edu

Dartmouth Computer Science Technical Report TR2009-642

Abstract
We consider the approximability of the Unsplittable Flow Problem (UFP) on tree graphs, and

give a deterministic quasi-polynomial time approximation scheme for the problem when the number
of leaves in the tree graph is at most poly-logarithmic in n (the number of demands), and when
all edge capacities and resource requirements are suitably bounded. Our algorithm generalizes a
recent technique that obtained the first such approximation scheme for line graphs. Our results show
that the problem is not APX-hard for such graphs unless NP ⊆ DTIME(2polylog(n)). Further, a
reduction from the Demand Matching Problem shows that UFP is APX-hard when the number of
leaves is Ω(nε) for any constant ε > 0.

Together, the two results give a nearly tight characterization of the approximability of the prob-
lem on tree graphs in terms of the number of leaves, and show the structure of the graph that results
in hardness of approximation.

1 Introduction

In the Unsplittable Flow Problem (UFP) we are given as input a graph G = (V,E) with edge capacities
{ce}e∈E and a set of n demands (numbered 1, . . . , n), the ith demand being specified by a 4-tuple
(si, ti, ρi, wi) giving its source si ∈ V , its sink ti ∈ V , its resource requirement ρi, and its profit wi.
A feasible solution is a subset S ⊆ {1, . . . , n} of the demands, along with routes from source to sink
for each of the demands in S, so that, when they are routed simultaneously, no capacity constraint is
violated. All of the resource requirement ρi of a demand i ∈ S must be routed through the unique path
chosen for it in the feasible solution. The objective now is to find a feasible solution S that maximizes
the total profit w(S) =

∑
i∈S wi. We assume that each ce and ρi is an integer in [1, L], where L is some

appropriate bound, and that each wi is an arbitrary integer.
This problem has a wide variety of applications including resource allocation, (throughput-maximizing)

job scheduling, routing in networks, etc., to name a few. Many special cases of UFP are important and
well-studied combinatorial optimization problems in their own right, with the Edge Disjoint Paths Prob-
lem being a major highlight: we refer the reader to the papers of Azar and Regev [AR01] and Chekuri,
Mydlarz and Shepherd [CMS03], and the references therein, for details. Unfortunately, this means that
UFP is a rather hard problem: even the very special case of a single-edge graph is NP-hard (equivalent
to the Knapsack Problem). Of course, there are “degrees” of hardness, as measured by the best possible
approximation factors obtainable in polynomial (or near-polynomial) time. Our goal in this work is to
study the effect of the underlying graph structure on the approximability of a UFP instance.

It is intuitively clear that a more complex graph makes UFP a harder problem. The following table
gives the supporting evidence, summarizing a number of results from previous work.
∗Work supported in part by NSF grant EIA-98-02068.

1

Graph class Approximability result Hardness of approximation

General, directed O(
√
|E|) [BS00, AR01] Ω(|E|1/2−ε), unless P = NP [GKR+03]

Undirected Same as above

Ω(log1/2−ε |E|) with no-bottleneck
unless NP ⊆ ZPTIME(2polylog(n)) [ACKZ05]

Ω(|E|1−ε) without no-bottleneck
unless P = NP [AR01]

Trees O(1) [CMS03] Ω(1 + ε), unless P = NP [GVY97]
with no-bottleneck

Stars Same as above Ω(1 + ε), unless P = NP [SV02]

Lines and cycles Quasi-PTAS [BCES05] NP-hard
O(log n) [BFKS09]

Single edge FPTAS [IK75] NP-hard

Table 1: Selected Highlights of Past Work on UFP

In this work, we seek to sharpen the boundary between graphs on which UFP is APX-hard and those
on which it admits a quasi-polynomial time approximation scheme (QPTAS). (Note that the existence
of a QPTAS implies that the problem is not APX-hard unless NP ⊆ DTIME(2polylog(n)).) Our results
are.

Theorem 1. There is a quasi-polynomial time approximation scheme for UFP on trees, provided the
number of leaves is bounded by polylog(n) and all capacities and resource requirements are integers
bounded by 2polylog(n), where n is the number of demands.

Theorem 2. UFP is APX-hard on trees with at least Ω(nε) leaves, for any constant ε > 0, where n is
the number of demands.

We remark that Theorem 1 does not require the so-called “no-bottleneck assumption,” that the maxi-
mum demand is no more than the minimum capacity. A number of algorithms for UFP developed in past
research do require this assumption. Also, Theorem 2 depends on instances that violate this assumption.

Our Techniques: The main idea behind our algorithm is to generalize the ideas of Bansal et al. [BCES05],
who recently obtained the first quasi-PTAS for UFP on line graphs. Their algorithm (called LINE-UFP-
RECURSIVE), like ours, does not require a no-bottleneck assumption. It first divides the line graph
into two halves at the combinatorial mid-point, “guesses” which of the demands crossing the mid-point
should be selected, and then recursively solves the residual problem on each half. The guessing is done
by first separating the demands crossing the mid-point into those that are “large” and those that are
“small”. The large demands in an optimal solution cannot be too many, so the algorithm performs an
exhaustive search for the optimal subset. On the other hand, the capacity usage “profile” of the optimal
subset of small demands can be approximated by a combinatorially simpler profile, and then a high-
profit subset of the small demands can be packed into this profile by an algorithm called PILE-PACK

that solves a linear program and rounds its solution. This profile approximation hinges on a simple, yet
crucial, fact: there is a single edge e in the graph whose capacity is used by all of the demands that cross
the mid-point. Following Bansal et al., we say that those demands form a pile at e.

2

The approximation by a simpler profile and the rounding result in a loss of an ε fraction of the
optimal profit. The profile is guessed such that it never exceeds the capacity consumed in the optimal
solution so that the recursive applications of the algorithm on the two halves have available at least the
capacity required by the optimal.

Our algorithm first determines a number of segments in the graph. A segment is a maximal line
subgraph that does not contain a non-leaf vertex of degree > 2 in the original graph. The main idea is
that the LINE-UFP-RECURSIVE algorithm can be used on segments of a graph and further, demands that
span multiple segments can be approximated “in parallel” by a suitable generalization of the techniques
of Bansal et al. We first partition the demands into zones. We have a zone for each segment, which
contains demands whose both end-points lie in that segment. We also have a zone for each pair of
segments, which contains demands with an end-point in each segment. For each zone of the second type,
we identify “large” and “small” demands. Then, we exhaustively search amongst the large demands and
approximate the small demands in each zone in parallel, obtaining a (1 + ε)-approximation. Demands
in distinct intra-segment zones do not interact, so these can be handled by the LINE-UFP-RECURSIVE

algorithm. On the other hand, demands in any one inter-segment zone form a pile at some suitable edge
in the graph, so the approximating profile technique can be used.

The APX-hardness result is straightforward. Shepherd and Vetta [SV02] showed that the Demand
Matching Problem (see Section 4 for a definition) is APX-hard. We give a simple reduction from this
problem to UFP on a tree with Ω(nε) leaves, for any ε > 0, thus showing that UFP is APX-hard
on such trees. The connection between the two problems was already observed in [SV02]; the main
new observation here is that the number of leaves can be made small as a function of n, the number of
demands.

2 Preliminaries

We first discard all demands i with profit wi < (δ/n)wmax, losing at most a δ fraction of the profit. We
also scale the profits, resource requirements and capacities, so that ρmax = wmin = 1. This gives us the
bound wmax ≤ n/δ, thereby ensuring that 1 ≤ wi/ρi ≤ Ln/δ for each demand i. We partition the set of
demands into profit density classes: class-q contains demands i with 2q−1 ≤ wi/ρi < 2q. Accordingly,
the previous bounds give us that there are at most Q := 1 + blg maxi{wi/ρi}c ≤ polylog(n) such
classes, provided L ≤ 2polylog(n). We can also discard vertices in the graph of degree ≤ 2 that are
neither source nor sink. When a vertex of degree 2 is deleted, the two incident edges should be merged
with a capacity equal to the minimum of the two edge capacities. After this preprocessing, the number
of vertices of degree ≤ 2 is at most 2n. We impose a total order on all edges in E. The load of a
subset S′ of demands on an edge ei is defined as load(S′, ei) :=

∑
j∈S′,ei∈sj−tjpath ρj . A profile is a

|E|-dimensional vector indexed by the edge order. For example, the edge capacities c form a profile.
Another example is resource profile (or simply profile): given a subset of demands S′, its resource
requirement is prof(S′) := (load(S′, e1),load(S′, e2), · · · ,load(S′, e|E|)). We use operators such as
“≤” and “+” on profiles in the standard coordinate-wise manner. For example, we can express the
feasibility of S′ by writing prof(S′) ≤ c.

Another important tool used in [BCES05] is the δ-restricted profile (also δ-RP). It is defined as
follows.

Definition 1. Let G be a line subgraph of G consisting of consecutive vertices v1, v2, · · · , vk. Further-
more, let e be an edge in G connecting vu−1 and vu, and h and δ be positive reals with h ≤ ce, δ < 1
and 1/δ an integer. Let x1, · · · , x1/δ and y1, · · · , y1/δ be sequences of integers with 1 ≤ x1 ≤ x2 ≤

3

· · · ≤ x1/δ ≤ u− 1 and u ≤ y1/δ ≤ · · · ≤ y2 ≤ y1 ≤ k. Then the profile (l1, · · · , lk), where

li =

0, for i ≤ x1 and i > y1

jδh, for xj < i ≤ xj+1 and yj+1 < i ≤ yj
h, for x1/δ < i ≤ y1/δ,

is said to be a δ-restricted profile on G with peak e and height h, parameterized by the xj’s and yj’s.

On a line graph with m edges, given peak e and height h, a δ-restricted profile is completely deter-
mined by the choices of x1, . . . , x1/δ and y1, . . . , y1/δ. Accordingly, there may be at most m2/δ distinct
profiles.

Definition 2 (Segment of a graph). A segment of graph G is a maximal line subgraph G′ of G such that
the non-leaf vertices of G′ do not have degree > 2 in the original graph G.

3 A Quasi-PTAS for the UFP

In this section we prove Theorem 1 by giving a Quasi-PTAS for UFP on trees with an appropriately
bounded number of leaves. We first describe the algorithm using pseudocode, and then give proofs of its
running time and correctness. We use PILE-PACK to denote the polynomial time approximation routine
from Bansal et al. [BCES05]: this routine packs a high-profit subset of “small” demands that form a pile
at an edge e into a given δ-restricted profile with peak e.

For the sake of clarity the algorithm is divided into three subroutines. TREE-UFP is the main routine
that performs some preprocessing and then calls the subroutine ACROSS-SEGMENT-PHASE, which in
turn makes a call to the subroutine GUESS. TREE-UFP first computes the segments Gi, 1 ≤ i ≤ r of
the input graph G (Line 1) and intra-segment zone of demands Dii with source and sink in segment
Gi (Line 2). It then determines minimal line graphs Gij containing a pair of segments for each pair
(Gi, Gj), i < j (Line 4). Line 5 computes inter-segment zone Dij containing demands having an
endpoint in each segment of the pair. Finally Line 6 identifies the edge e∗ij on which demands inDij form
a pile. These steps are easily implemented using Breadth First Search. ACROSS-SEGMENT-PHASE is
the recursive subroutine that, in parallel finds an approximate selection of the demands in inter-segment
zones. For each (i, j) the call to GUESS returns the set X of guesses for the demands from Dij to be
selected in the solution. ACROSS-SEGMENT-PHASE when called by TREE-UFP with the arguments i = r
and j = r − 1 recurses on every possible combination of i, j for 1 ≤ j < i ≤ r (a total of

(
r
2

)
possible

combinations) for each set of guessed demands in X . The set of demands returned by the recursive

Input: tree G = (V,E), edge capacities {ce : e ∈ E}, demand set D
Output: a subset of D that can be feasibly routed giving profit ≥ (1−O(δ))·OPT

find the segment-graphs (G1, G2, . . . , Gr) of graph G1

for i=1 to r do find demands Dii = {k ∈ D : sk, tk ∈ V (Gi)}2

for 1 ≤ i < j ≤ r do3

find the minimal line graph Gij including the segments Gi and Gj4

find demands5

Dij = {k ∈ D : |{sk, tk} ∩ (V (Gi) \ V (Gj))| = 1 and |{sk, tk} ∩ (V (Gj) \ V (Gi))| = 1}
find the edge e∗ij in Gij that is part of Gi and closest to Gj6

S ← ACROSS-SEGMENT-PHASE(r, r − 1, c)7

return S8

Algorithm 1: TREE-UFP (G, c,D)

4

if i ≤ 1 and j ≤ 1 then1

S ← ∅2

for k=1 to r do3

S′ ← LINE-UFP-RECURSIVE(Gk, c,Dkk)4

S ← S ∪ S′5

return S6

X ← GUESS(i, j, c)7

foreach (S′, c′) ∈ X do8

if j = 1 then9

S′′ ← ACROSS-SEGMENT-PHASE(i− 1, i− 2, c′)10

else11

S′′ ← ACROSS-SEGMENT-PHASE(i, j − 1, c′)12

record the solution S′ ∪ S′′13

return S, the most profitable of the recorded solutions14

Algorithm 2: ACROSS-SEGMENT-PHASE (i, j, c)

X ← ∅1

for q=1 to Q do Dijq ← {d ∈ Dij : 2q−1 ≤ wd/ρd < 2q}2

foreach (T1, T2, . . . , TQ), with Tq ⊆ Dijq and |Tq| ≤ 1/δ2 do3

T ←
⋃Q
q=1 Tq4

if T can be routed then5

route T and update c to c′, the residual capacity6

foreach (h′1, h
′
2, . . . , h

′
Q) ∈ RQ, such that ρmin divides h′q and

∑Q
q=1 h

′
q ≤ c′e∗ij do7

for q=1 to Q do Sq,small ← {d ∈ Dijq \ Tq : ρd ≤ δ2(ρmin + h′q + load(Tq, e∗ij))}8

foreach (π1, . . . , πQ) with πq a δ-RP in Gij on e∗ij with height h′q,
∑Q

q=1 πq ≤ c′ do9

for q=1 to Q do Uq ← PILE-PACK(Gij , πq, Sq,small)10

U ←
⋃Q
q=1 Uq11

route all demands in U and obtain residual capacities c′′12

X ← X ∪ {(T ∪ U, c′′)}13

return X14

Algorithm 3: GUESS(i, j, c)

call is combined with the corresponding set of guessed demands from X and the resulting solution is
recorded. The best of all the recorded solutions is finally returned. ACROSS-SEGMENT-PHASE escapes
the recursion by finally using LINE-UFP-RECURSIVE to process the demands in intra-segment zones.
The demands in different intra-segment zones do not overlap, enabling us to process them independently.
No parallel processing is required here.

The guessing strategy used in GUESS is the same as that in LINE-UFP-RECURSIVE. First the de-
mands are classified into Q ≤ polylog(n) profit density classes according to the profit density ratio
wd/ρd. Then, for each of these classes, the large demands are first selected by exhaustive search since
their number is bounded. The small demands are approximated by a δ-restricted profile that is again
chosen by searching exhaustively. The number of choices for the δ-restricted profile are limited given its

5

simple description. Finally, the available small demands are packed into the profile using the PILE-PACK

routine.
We make the crucial observation that there exists a sequence of recursive calls (a “thread of parallel

execution”) in which the load of the selected demands does not exceed the optimal at each step in the
sequence. So we will have sufficient capacity available on each edge in successive recursive calls in this
thread. We are therefore able to compare our solution with the optimal and bound the profit loss due to
the δ-restricted profile and PILE-PACK.

We now move on to the proofs of the running time of the algorithm and its correctness. It is not
hard to see with a few examples that the number of leaves in a tree constrains the number of segments
possible. The following lemma gives a bound on the number of segments in terms of the number of
leaves.

Lemma 3. If n1 is the number of leaves in a tree G = (V,E) with maximum degree d > 0, then the
number of segments r in G is bounded by r ≤ 2n1 − 3.

Proof. For i ∈ [d] let ni denote the number of vertices having degree i in G. We can delete all n2

vertices of degree 2 in the graph by merging the edges adjacent to these vertices. Call the new graph
G′ = (V ′, E′). Note that the number of edges |E′| in this graph is exactly the number of segments r in
G′ (as well as in G). By the Handshaking Lemma we have that n1 +

∑d
i=3 i ·ni = 2|E′| = 2|V ′| − 2 =

2(n1+
∑d

i=3 ni)−2. By rearranging terms we get 2n1 = 2+n1+
∑d

i=3(i−2)·ni ≥ 2+|V ′| = 3+|E′|.
So r = |E′| ≤ 2n1 − 3.

Observe that in the above lemma, |E| = |E′|+ n2 ≤ 2n1 + n2 − 3. We will need this inequality in
the next proof.

Theorem 4. Algorithm TREE-UFP runs in time quasi-polynomial in n, provided that the number of
leaves is polylog(n) and that L is quasi-polynomial in n.

Proof. The preprocessing in TREE-UFP can be implemented using Breadth First Search requiring time
polynomial in n. As called by TREE-UFP, ACROSS-SEGMENT-PHASE runs

(
r
2

)
+ 1 times. The last run

calls LINE-UFP-RECURSIVE on each of the segment graphs which requires r · 2polylog(n) running time.
All other runs of ACROSS-SEGMENT-PHASE call GUESS.

To bound the running time of GUESS, note that each of the sets Tq is of size at most 1/δ2, so
that the loop of line 3 in GUESS iterates at most nQ/δ

2
times. Also, for the loop on line 7, note that

maxe∈E ce
ρmin

≤ L, so that the loop iterates at most LQ times. If ni are as in Lemma 3 then we made the
observation that that m ≤ 2n1 + n2 − 3. Also, we noted previously that n1 + n2 ≤ 2n, so that the
number of edges m ≤ 4n. Finally, we know that there are at most m2/δ choices for a δ-restricted profile
πq given edge e∗ij and height hq, so that the loop on line 9 iterates at most m2Q/δ ≤ (4n)2Q/δ times.
Thus, the running time for any iteration of GUESS is bounded by nQ/δ

2
LQ(4n)2Q/δ which is also the

branching factor (number of guesses in X). This expression is bounded by 2polylog(n) given that L is
quasi-polynomial in n.

Now, using Lemma 3, we have that r is polylog(n) since the number of leaves is polylog(n). So the
total running time of TREE-UFP is bounded by (2polylog(n))(

r
2) × r2polylog(n) which is quasi-polynomial

in n.

We now show that TREE-UFP gives us the required approximation guarantee. The proof of Lemma 5
follows the arguments of Theorem 4.2 of [BCES05], and also this theorem directly implies Lemma 6.

Lemma 5. If O denotes an optimal solution and δ is a small enough positive real such that 1/δ is an
integer then the set of guesses X produced by GUESS(i, j, c), 1 ≤ i < j ≤ r must contain a guess (S, c′)
such that,

6

1. w(S) ≥ (1− 13δ)w(O ∩Dij)

2. prof(S) ≤ prof(O ∩Dij)

provided that prof(O ∩Dij) ≤ c.

Lemma 6. If O denotes an optimal solution and δ is a small enough positive real such that 1/δ is an
integer then LINE-UFP-RECURSIVE(Gi, c,Dii) produces a set S′ such that w(S′) ≥ (1 − 13δ)w(O ∩
Dii), provided that prof(O ∩Dii) ≤ c.

Theorem 7. If O denotes an optimal solution and δ is a small enough positive real such that 1/δ is an
integer then TREE-UFP returns a feasible solution with profit at least (1− 13δ)w(O).

Proof. First, it can be seen that recursive calls to ACROSS-SEGMENT-PHASE correspond to a recursion
tree. A path from the root to a leaf in this tree denotes a sequence of recursive calls with arguments
(i, j) = (r, r−1), . . . (r, 1), (r−1, r−2) . . . (1, 1). At any vertex in a path we have |X | guesses, and this
number gives the branching factor at that vertex. The choice of a guess in X determines the next vertex
in the path. We claim that there must exist a path P from the root to a leaf vertex, where at each vertex in
the path, the guess (Sij , cij) selected is such that w(Sij) ≥ (1− 13δ)w(O ∩Dij) and also prof(Sij) ≤
prof(O ∩Dij). We can find such a path by the following inductive argument. Note that at the root, with
(i, j) = (r, r − 1), no capacity has been used, so the available capacity cij ≥ prof(O ∩Dij). Then, to
select the next vertex in the path, we consider a guess (Sij , c′ij) such that w(Sij) ≥ (1−13δ)w(O∩Dij)
and prof(Sij) ≤ prof(O∩Dij). The existence of such a guess is guaranteed by Lemma 5. Now, suppose
that we have determined such a path P partially and the next vertex to be selected has (i, j) = (i′, j′).
Since at every vertex with (i, j) ∈ P , prof(Sij) ≤ prof(O ∩ Dij), the set of demands ∪(i,j)∈PSij
accumulated along the path does not load any edge more thanO∩∪(i,j)∈PDij , the optimal restricted to
the zones of demands along the path. That is, prof(∪(i,j)∈PSij) ≤ prof(O ∩ ∪(i,j)∈PDij). This implies
that ci′j′ ≥ prof(O∩Di′j′), since the demand zones Dij form a partition of the set of demands D. Now
we again apply Lemma 5 to determine the next guess with the desired properties. This proves our claim.

Finally, by Lemma 6 we see that in the final call to ACROSS-SEGMENT-PHASE, we get a set of
demands guaranteeing a (1 − 13δ) factor of the optimal profit for zones Dii, 1 ≤ i ≤ r, using LINE-
UFP-RECURSIVE.

4 APX-Hardness of UFP on Trees

In this section, we show the hardness of approximating the UFP on trees.

Theorem 8. UFP is APX-hard on trees, when the number of leaves is Ω(nε), for any ε > 0.

Proof. We present a reduction from the demand matching problem. In an instance of the demand match-
ing problem, we are given an undirected graph G = (V,E), with capacities c(v) for vertices v ∈ V ;
moreover, each edge e ∈ E has a profit we and a demand ρe. The objective is to find a subset E′ ⊆ E so
that the total profit

∑
e∈E′ we is maximized, under the constraint that the total demand of the cho-

sen edges incident on a vertex is no more than the capacity of the vertex, that is for any v ∈ V ,∑
e∈E′∩δ(v) ρe ≤ c(v), where δ(v) denotes the edges incident to v. This problem was proved to be

APX-hard by Shepherd and Vetta [SV02].
The reduction is as follows. We create a star graph. Each vertex v in the given demand matching

problem instance translates to an edge ev in the derived instance. Such an edge has capacity cev equal to
the capacity c(v) of the vertex. For each edge e = (u, v) in the original instance, we create a demand in
the derived instance. The source and destination are the two leaf nodes which are incident to the edges
eu and ev.

7

It can be seen that a maximum profit subset of demands to be routed in the derived instance also gives
an optimal demand matching in the original instance. Note that in the derived instance, the number of
demands is |E| while the number of leaves is |V |. Given the fact that |E| ≤ |V |2, we have that the
number of leaves is Ω(n1/2), where n = |E|, the number of demands in the derived instance. To
ensure that the number of leaves is Ω(nε), we create two more leaves in the star graph and give the
two incident edges infinite capacity. Moreover, we add |V |1/ε demands whose sources and sinks are at
these two newly added leaves. After adding these “dummy” demands, we have the desired leaf/demands
proportion.

References

[ACKZ05] Matthew Andrews, Julia Chuzhoy, Sanjeev Khanna, and Lisa Zhang. Hardness of the undi-
rected edge-disjoint paths problem with congestion. In Proc. 46th Annual IEEE Symposium
on Foundations of Computer Science, pages 226–244, 2005.

[AR01] Yossi Azar and Oded Regev. Strongly polynomial algorithms for the unsplittable flow prob-
lem. In Proc. 8th Conference on Integer Programming and Combinatorial Optimization,
pages 15–29, 2001.

[BCES05] Nikhil Bansal, Amit Chakrabarti, Amir Epstein, and Baruch Schieber. A quasi-PTAS for
unsplittable flow on line graphs. In Proc. 38th Annual ACM Symposium on Theory of Com-
puting, pages 721–729, 2006.

[BFKS09] Nikhil Bansal, Zachary Friggstad, Rohit Khandekar, and Mohammad R. Salavatipour. A
logarithmic approximation for unsplittable flow on line graphs. In Proc. 19th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 702–709, 2009.

[BS00] Alok Baveja and Aravind Srinivasan. Approximation algorithms for disjoint paths and re-
lated routing and packing problems. Math. Oper. Res., 25(2):255–280, 2000.

[CMS03] Chandra Chekuri, Marcelo Mydlarz, and F. Bruce Shepherd. Multicommodity demand flow
in a tree. In Proc. 30th International Colloquium on Automata, Languages and Program-
ming, pages 410–425, 2003.

[GKR+03] Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, F. Bruce Shepherd, and
Mihalis Yannakakis. Near-optimal hardness results and approximation algorithms for edge-
disjoint paths and related problems. J. Comput. Syst. Sci., 67(3):473–496, 2003. Preliminary
version in Proc. 31st Annual ACM Symposium on the Theory of Computing, pages 19–28,
1999.

[GVY97] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation algo-
rithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

[IK75] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM, 22(4):463–468, 1975.

[SV02] F. Bruce Shepherd and Adrian Vetta. The demand matching problem. In Proc. 9th Confer-
ence on Integer Programming and Combinatorial Optimization, pages 457–474, 2002.

8

