A Parallel Algorithm
for Computing
Minimum Spanning Trees

PCS-TR91-166

Donald B. Johnson
Panagiotis Metaxas
A Parallel Algorithm for Computing Minimum Spanning Trees

Donald B. Johnson* Panagiotis Metaxas†
Dartmouth College‡

Abstract

We present an algorithm that computes a minimum spanning tree (MST) of an undirected weighted graph $G = (V, E)$ of $n = |V|$ vertices and $m = |E|$ edges on an EREW PRAM in $O(\log^{3/2} n)$ time using $n + m$ processors. This represents a substantial improvement in the running time over the previous results for this problem using at the same time the weakest of the PRAM models. It also implies the existence of algorithms having the same complexity bounds for the EREW PRAM, for connectivity, ear decomposition, biconnectivity, strong orientation, st-numbering and Euler tours problems.

1 Introduction

We present a new parallel algorithm for computing the minimum spanning tree (MST) of a graph in the EREW PRAM model of parallel computation, the weakest of the PRAM models. This algorithm is faster by a factor of $\sqrt{\log |V|}$ than any deterministic algorithm previously known for any model that does not make use of concurrent writing. The algorithm uses the growth-control scheduling of the connectivity algorithm described in [JM91], and it also makes use of an observation by [GGS89]. A major innovation is our discovery that necessary information about components can be extracted without ever explicitly shrinking the components. Component shrinking is a feature of every other parallel MST and connectivity algorithm known to us.

Even though the connectivity algorithm of [JM91] improved the running time of several other graph-theoretic problems it seemed that there was no obvious way to create a MST algorithm from the connectivity algorithm having comparable complexity with the latter. The difficulty, of course, is that the selection of minimum weight edges from edge-lists seems to require either a powerful concurrent-write model of computation or some other minimization process, which thereby takes time logarithmic in the length of the list. Thus, a new approach was needed to achieve an $o(\log^2 |V|)$ running time for this problem. As we will explain, we maintain a subset of edges that contains all the edges that must be considered in any one phase of the algorithm in order to control the number of candidates that must be tested. Maintaining this subset is essential to the bound on the running time.

Our results. We present an algorithm that computes a minimum spanning tree (MST) of an undirected weighted graph $G = (V, E)$ of $n = |V|$ vertices and $m = |E|$ edges on an EREW PRAM in $O(\log^{3/2} n)$ time using $n + m$
processors. (If G is not connected, then our algorithm finds a minimum spanning tree for each connected component.) This represents a substantial improvement in the running time over the previous results for this problem using at the same time the weakest of the PRAM models. It also implies the existence of a connectivity algorithm with the same complexity bounds for the EREW PRAM, therefore improving on previous work [JM91]. Furthermore, we note that the number of processors used can be reduced by a factor of $O(\sqrt{\log n})$, provided that there exists an implementable integer-sorting subroutine which runs in $O(\log n)$ time using \sqrt{n} EREW PRAM processors. In this paper, we have not only succeeded in solving a problem more difficult than the connectivity problem (implying a new, simpler solution to the connectivity and related problems as well), but also have done so using the weakest of the PRAM models. We note that among the problems having running times depending on the connectivity algorithm are ear decomposition [MR86], biconnectivity [TV85], strong orientation [Vis85], st-numbering [MSV86] and Euler tours [AV84].

Computing the MST of a weighted graph has attracted much attention in both the sequential and parallel settings. The best known sequential algorithm runs in time $O(n^2)$ for dense graphs [Pri57], and in time $O(m \log_2 \log_2 \log_2 n)$ for sparse graphs [GGS89], where $d = \max(m/n, 2)$. For a presentation of several sequential MST algorithms, see [Tar83, Chapter 6].

In parallel models, the previous results for the MST problem were $O(\log^2 n)$ using $n^2/\log^2 n$ CREW PRAM [HCST9, CLC82] or n^2 EREW PRAM processors [NM82], and $O(\log n)$ time using $n + m$ PRIORITY CRCW PRAM processors [AS87], or $(n + m) \log \log \log n/\log n$ STRONG CRCW PRAM processors [CV86] using very elaborate techniques. Other parallel algorithms are reported in [KRS90, KR84, Ben80, SJ81].

The model. We briefly describe here the model of parallel computation we use. A PRAM (Parallel Random Access Machine) employs p processors, each one able to perform the usual computation of a sequential machine using some fixed amount of local memory. The processors communicate through a shared global memory to which all are connected. Depending on the way the access of the processors to the global memory is handled, PRAMs are classified as EREW, CREW and CRCW. (In the model names, E stands for “exclusive” and C for “concurrent”.) If we don’t allow any conflicts in the reading from and writing to the shared memory, the model is called an EREW PRAM, the weakest of the three models. If we allow only concurrent reading, we have a CREW PRAM. Finally, in the CRCW PRAM, simultaneous writing is permitted and we have to address the question of which of the attempting writing processors will write. In the PRIORITY CRCW PRAM model, the processor having the largest priority (id number) wins, while in the STRONG model the processor holding the minimum (or equivalently the maximum) of all the values attempted to be written wins.

One can simulate an algorithm designed for the PRIORITY CRCW model on a EREW PRAM, with a slowdown in time logarithmic in the number of processors used by the former machine [Eck77, Vis83].

2 Outline of the Algorithm

2.1 Preliminaries

We give here some definitions, and we discuss the complexity of an algorithm that we use as a subroutine. The minimum spanning tree (MST) problem is defined as follows: Given a connected undirected graph $G = (V, E)$ each of whose edges has a real-valued weight, find a spanning tree of the graph whose total edge weight is minimum. A pseudotree $P = (C, D)$ is a maximal connected directed graph with $n = |C|$ vertices and $n = |D|$ arcs, for which each vertex has outdegree one. Every pseudotree has exactly one simple directed cycle. We call the number of arcs in the cycle of a pseudotree P its circumference, $\text{circ}(P)$. A rooted tree is a pseudotree whose cycle is a loop on some vertex r called the root. A rooted star R with root r, is a rooted tree all of whose arcs point to r.

Given n elements in a linked list representation, the list ranking problem is to find, for each
element, its rank in the list (i.e. its distance from the end of the list). The list ranking problem, which appears very often in parallel computation and will be used by our algorithm as well, can be solved optimally in \(O(\log n)\) time using \(n/\log n\) EREW PRAM processors [CV88, AM91].

Given a connected subgraph \(G_i = (V_i, E_i) \subseteq G = (V, E)\), we define an internal edge to be an edge \((v, w) \in E_i\) such that \(v, w \in V_i\). Similarly, we define an outgoing edge to be an edge \((v, w) \in E - E_i\) such that one of its endpoints belong to \(V_i\) and the other belongs to \(V - V_i\). Let \(G_j = (V_j, E_j)\) be another subgraph of \(G\) with \(G_i \neq G_j\). Distinct edges \((v, w), (x, y) \in E - (E_i \cup E_j)\) having one endpoint in \(V_i\) and the other in \(V_j\) are called multiple.

Let \(G = (V, E)\) be a connected weighted graph on \(n = |V|\) vertices and \(m = |E|\) edges, and let \(\text{weight} : E \rightarrow R\) be a function which gives the weights of the \(m\) edges. We assume that the vertices of the graph are given in an array representation, and let \(\text{id}(v)\) be the index of vertex \(v\) in the array. Each vertex \(v\) has a linked list \(L(v)\) of edges \((v, w)\) incident to vertex \(v\) and two pointers \textit{first} and \textit{last} pointing to the beginning and the end of \(L(v)\). For implementation purposes we will assume that the last edge in every edge-list is a dummy one. There are two copies for each edge, \((v, w)\) and \((w, v)\), which are connected via a pair of \textit{twin} pointers. Finally, pointer \(\text{next}(v, w)\) points to the next edge in \((v, w)\)'s edge list.

2.2 Description

The algorithm is divided into phases and maintains a minimum spanning forest of the graph. We will call each of the trees in the forest a component. Later on, when each component has grown in size by including sets of vertices organized as rooted trees, the root will represent the component. In the beginning, we can think of each vertex as the root of the (trivial) component to which it belongs.

During each phase, each component \(C\) grows in size by executing the following two steps:

First, \(C\) finds the minimum-weight outgoing edge \((v, w)\) which is connected to any of the vertices \(v \in C\) and leads to vertex \(w \in C'\) of some

Figure 1: (a) The input graph \(G\). Each vertex represents a component. (b) The hooking step: Each components has picked the minimum-weight outgoing edge. Dotted are those edges that were not picked by any vertex. An arc points from a vertex to its mate. Three pseudotrees are shown in this figure. Note that each pseudotree contains a cycle of circumference two.
other component C'. This is called the hooking step (Figure 1). When executed simultaneously by all components, the hooking step creates clusters of components formed as pseudotrees with circumference two. These pseudotrees will easily become rooted trees.

Each cluster produced by hooking is then processed into a new component C organized as a rooted tree with root r and one edge list $L(C)$. We call the completion of the creation of a new component merging (Figure 2). To merge the new component, a root r is chosen from the two-cycle of the new component, and the edge list of r is augmented by all the other edge lists of the constituent components that hooked to form the new one. We use the EREW edge-plugging scheme we have reported elsewhere [JM91, Met91] to perform the augmentation of r’s edge-list in constant time and without memory access conflicts. Finally, housekeeping is performed on the merged edge list to remove internal and multiple edges.

One can easily prove that repeating the sequence of the hooking and merging steps for a long enough period of time results in computation of a MST of the graph.

Before we continue with the technical details, let us make an important observation. All previous algorithms for connectivity and MST, during the hooking step, create trees or pseudotrees and then reduce them to explicit rooted stars by some kind of pointer jumping. Given that, in general, the in-degree of each node of the tree is not bounded by a constant, the reducing process generates read conflicts. In our algorithm we will avoid these conflicts, because we will never explicitly create these structures. Instead, for each new component C we will create a linked list $E(C)$, representing a depth first search traversal of the component’s tree. Then, we will use this linked list to gather the information about the component. Doing so completely obviates the need to shrink components.

We define as critical size the quantity $B = 2\sqrt{\log n}$. Therefore $\log B = \sqrt{\log n}$. As we mentioned, the algorithm is divided in phases. The purpose of each phase i is to promote components...
to phase \(i + 1\), i.e. to grow the size of each component, if possible, to at least \(B^{i+1}\). Therefore, at most \(\lfloor \sqrt{\log n} \rfloor\) phases are needed. We require that each component \(C\) entering a phase \(i\) has an edge-list \(L(C)\).

In light of the above discussion, if we are able to assure that, after each phase, all components that were large enough to be promoted have really been promoted, then the MST algorithm is simply composed of the following loop:

Procedure Main

```plaintext
for \(\lfloor \sqrt{\log n} \rfloor\) times do
  execute procedure phase

We will give the description of procedure phase in Section 2.4.
```

2.3 The B-list

The running time of our algorithm depends on the following observation. Since the purpose of each phase is to grow the size of a component by a factor of \(B\), then during any phase, components need not keep track of all the edges in their edge list. In particular, assuming that \(L(C)\) contains no internal and no multiple edges, components need to keep track of only the “best” (i.e. least weight) \(B\) edges of their edge-list \(L(C)\). (A similar observation was made also in [GGS89] for their related merging components problem.) The components will do so by placing these \(B\) edges into a new list, called B-list(\(C\)). During a phase, some of the edges in B-list(\(C\)) will be used for hooking, and some will be found to be internal, i.e. connecting vertices inside the same component. Note that, if during a phase some component finds that all the edges in its B-list are either used or internal, then the component can determine that it is promoted.

In order to be able to use the B-lists of the vertices, we must initialize our data structures appropriately.

Procedure Initialization

1. Form \(n\) trivial trees, one per vertex (component) \(v\).

2. For each component \(v \in V\), form its linked list \(L(v)\) and its B-list(\(v\)).

To compute B-list(\(v\)) for each \(v\) in parallel, we may use a selection algorithm [Col88a, Vis87, CY85]. Using the algorithm by Cole [Col88a], we can select the \(B + 1\)-st least weight element in time \(O(\log n)\) using almost \(n/\log n\) EREW PRAM processors.

2.4 Description of a Phase

As we have said, the algorithm is composed of \(\sqrt{\log n}\) phases. Each phase will operate in \(O(\log n)\) time on the components, and will promote them to the next phase. It will also do some housekeeping to prepare the data structures for the next phase.

Each phase \(i\) is divided into \(O(\sqrt{\log n})\) stages. During each stage \(j\), components will hook and merge achieving a minimum size of \(B^i \cdot 2^j\) vertices. Subsection 2.5 examines the operations performed during a stage in more detail.

A high-level description of a phase follows.

Procedure phase(\(i\))

1. For each component \(C\), set \(\text{counter}_C(0) \leftarrow 1\). The variable \(\text{counter}_C(j)\) will be used to record the lower bound of the size of the component \(C\) during the stages \(j\) of the phase. Whenever \(\text{counter}_C(j) \geq B\) for some stage \(j\), the component has been promoted and need not take part in the remaining stages of the phase.

2. Run procedure stage(\(j\)) for \(\lfloor \sqrt{\log n} \rfloor + 1\) times. Each stage takes time \(O(\sqrt{\log n})\); therefore this step takes time \(O(\log n)\). We will show that at the end of this step we have computed a minimum spanning forest of promoted components.

3. Finish up the work that was unfinished by the stages. The description of the stages will clarify the need for this step. In brief, if some component that formed during the stages was too large and had not enough time to clean up its data structures, it will
do so in this step. Now, components are implicit rooted stars, that is, for each vertex \(x \), \(p(x) \) is the root of the component.

4. Rename edges \((x,y)\) as \((p(x),p(y))\), where \(p(x) \) (or \(p(y) \)) is the root of \(x \)'s \(y \)'s component. Internal edges in the components' edge list are easily identified, since they have identical endpoints, and are given weight of \(+\infty\).

5. Edges are sorted according to their endpoints. We can use Cole's Mergesort algorithm [Col88b] for this purpose, which sorts \(m \) elements in \(O(\log m) \) time using \(m \) EREW PRAM processors. We remark that actually an integer-sorting algorithm suffices. On the sorted list, multiple edges end up in a sequence. Then, using list-ranking we find for each sequence of multiple \((x,y)\) edges, the one with minimum weight. This edge is recorded as \textit{useful} while the remaining ones are given weight of \(+\infty\).

6. Internal and multiple edges are removed from the edge-lists by \(O(\log n) \) pointer jumping steps.

7. Each component \(C \) forms its B-list\((C)\) to enter the next phase \(i + 1 \) as follows: We determine the \(B + 1 \)-st element \(b \) in \(L(C) \). Then, edges smaller than \(b \) are copied into a new list, B-list\((C)\).

We discuss now the implementation of procedure \textit{phase} in the EREW PRAM model. Each step runs in \(O(\log m) \) parallel time. Step 1 requires \(m/\sqrt{\log m} \) processors, step 4 needs \(m \) processors, and the remaining steps use \(m/\log m \) processors. Assuming that there exists an integer sorting algorithm that runs in logarithmic time using \(O(m/\log m) \) processors, the whole algorithm will have these complexity bounds. In fact, the algorithms given in [KRS90] and in [She91, HS90] are within the desired bounds. However, due to space requirements (the former) and to unrealistic machine assumptions (the latter), these algorithms are not considered practical.

\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{fig3.png}
\caption{Run of a Stage. (See also the next figure.) The implicit pseudotree with circumference two of some components (depicted here as cycles) that hooked together at the beginning of a stage forming component \(C \). The vertex \(v \) that will become the root of \(C \) is shown shaded.}
\end{figure}

2.5 Description of a Stage

As we have said, each component \(C \) entering a phase holds B-list\((C)\), a linked list of its \(B \) lowest-weight, outgoing and non-multiple (useful) edges. The idea behind the component's B-list is that it contains just enough edges to promote the component to the next phase. This is true in the beginning of the first stage of a phase. During the execution of stage \(s \), assuming that some component \(C \) has collected since the beginning of the phase a number of components \(k \geq \text{counter}_C(s) \geq 2^s \), \(C \) needs to keep track of only \(B - k \) lowest-weight non-internal, non-multiple edges. We will prove that this condition will be preserved through each stage. Lemma 2 shows that we can select correctly the edges in this group and, in fact, the \(B - k \) lowest-weight outgoing edges to promoted components appear in \(C \)'s B-list.

Each stage proceeds as follows (Figures 3 and 4):
Procedure Stage(j)

1. The root v of each active component finds the best edge, say (v, w), in its B-list, and moves it to the front of the list. We call this step the hooking step, since we can think implicitly of v hooking to the component of which w is a member, by creating a pointer $p(v) = w$ (Figure 3).

2. Components that hooked in the previous step perform edge-plugging in two parts. Let (v, w) be the hooking edge. In the first step components having $id(v) > id(w)$ will perform the edge-plugging. In the second part, components having $id(v) < id(w)$ will perform the edge-plugging iff

 $$\text{next(twin(first(B(v))))} \neq \text{first(B(v))}$$

In other words, after these two steps, all but the roots of components have plugged their edges into the root's B-list (Figure 4). In the implicit graph, this results in creating a forest of minimum spanning trees (instead of pseudotrees).

Note that the B-list of some vertex x may not get plugged anywhere, because the edge that x was to get plugged into was not included in the B-list of its parent. This will not affect the computation of the B-list of the resulting component during this phase; it will only underestimate the size of a component C, so the component may be larger than $\text{counter}_C(s)$. We note that any plugging that is prevented by this condition is deferred until the end of the phase, so it is not lost. (Step 3 of procedure phase will take care of that.)

3. Using the B-lists, we try to enumerate components of trees into $\text{counter}_{r(C)}(s)$, where $r(C)$ is the root of C, spending only $2\lceil\log B\rceil + 1$ time as follows (this and the next step): First we make a copy of each next pointer into a new pointer ptr. Then the copy of the edge used for hooking by component C_i is assigned value $\text{counter}_{C_i}(s - 1)$, the remaining edges are
assigned value 0. Using pointer jumping on \(ptr \) for \(2[\log B] + 1 \) steps over the 0-edges, we can compact each B-list, if the new component contains up to \(B - 2^p \) edges. The compacted list \(E(C) \), where \(C \) is the name of the new component, represents a depth first search traversal of the implicit tree.

4. We run list ranking on the \(E(C) \)'s, and we determine promotion of component \(C \) as follows:

(a) If list ranking in some list did not terminate after \(2[\log B] + 1 \) pointer jumping steps (i.e. the first pointer did not reach the last or if the shortcutting edges encountered a 0-edge), then there were more than \(B^2 \) edges in the \(B \)-list(\(C \)). Since each component started the phase with up to \(B \) edges, there are at least \(B \) components in the new component \(C \), and therefore \(C \) is promoted.

(b) If the list ranking procedure terminated with rank in \(\text{counter}_C(s) \) greater or equal to \(B \), the component is promoted.

(c) If list-ranking terminated with rank less than \(B \), the component may not be promoted, and it has fewer than \(B^2 \) edges in its \(B \)-list. In the remaining part of this phase, only these components will take part. We call these components, \(\text{active} \). The remaining components (those recognized as promoted and those that could not plug their edges) will be given enough time at the end of the phase to finish up their pointer jumping (cf. step 3 of procedure phase).

5. Rename edges according to their new endpoints.

6. Identify and remove internal and multiple edges of active components by sorting each active component's \(B \)-list according to the edge's endpoints, then using pointer jumping for \(2[\log B] + 1 \) steps. Any sequence with up to \(B^2 \) internal and multiple edges are removed.

7. For each active component's \(B \)-list containing more than \(B \) edges we select the \(B - \text{counter}_C(s) \) least weight edges.

This is the end of a stage. Each step takes \(O(\log B) = O(\sqrt{\log n}) \) time. Stages in the first phase use \(O(nB / \log B) = O(n/\sqrt{\log n}) \) EREW processors, while in the remaining phases require only \(O(n/\sqrt{\log n}) \) processors.

3 Complexity of the algorithm

We state without proof the main theorem and two lemmas that are useful in proving correctness and the complexity bounds.

Theorem 1 Algorithm \(\text{MST} \) correctly computes the minimum spanning tree of a graph \(G = (V, E) \) in \(O(\log^{3/2} |V|) \) parallel time using \(|V| + |E| \) EREW PRAM processors.

Correctness comes from the following

Lemma 1 Let us assume that, during the hooking step of stage \(s \), some component \(C \) picks edge \((v, w)\) for hooking. Then weight \((v, w)\) is the \(\min \{ \text{weight}(x, y) | x \in C, y \in C', C \neq C' \} \)

The proof of this lemma is based on the fact that within a stage \(s \) any component \(C \) with \(|C| \geq k\), with \(k = \text{counter}_r(C)(s) \), will be always able to select the \(B - k \) least-weight outgoing to active components' edges (assuming that there are that many outgoing edges left in the component).

Lemma 2 The edges held in the \(B \)-list of the root of unpromoted component \(C \) which is active during stage \(s \) are the least-weight outgoing edges of the whole component.

Sketch of proof: If all components that hooked together during the stage started the phase with less than \(B \) edges, the lemma holds, since the selection of the least-weight outgoing edges was done on the whole set of edges. If there was at least one component which started the phase
with B edges, then the root of the component in which it participates holds at least $B-k$ outgoing edges. We can prove that every outgoing edge in the component is dominated by some edge in the B-list(C).

Finally, the running time comes from the following

Lemma 3 If, at the end of stage s of phase i, some active component C has vertex size less than $B^s \cdot 2^s$, then there is a stage $s+1$ in the current phase during which C will hook.

As we have discussed, we also have the following corollary:

Corollary 1 There are algorithms solving the connectivity, biconnectivity, ear decomposition, Euler tours, strong orientation and st-numbering problems of a graph $G = (V,E)$ in $O(\log^{3/2}|V|)$ parallel time using $|V| + |E|$ EREW PRAM processors.

References

[JM91] D.B. Johnson and P. Metaxas. Connected components in $O(\log^{3/2} n)$ parallel time for the CREW PRAM. In

