On the Power of Multi-Objects*

Prasad Jayanti
Sanjay Khanna

Technical Report PCS-TR97-311

3/97

*Work supported by NSF grant CCR-9410421
and Dartmouth College Startup Grant
On the Power of Multi-Objects

Prasad Jayanti† Sanjay Khanna‡

Dartmouth College Computer Science
Technical Report Number PCS-TR97-311

February 28, 1997

Abstract

In the standard “single-object” model of shared-memory computing, it is assumed that a process accesses at most one shared object in each of its steps. A (more powerful) variant is the “multi-object” model in which each process may access multiple shared objects atomically in each of its steps. In this paper, we present results that relate the synchronization power of a type in the multi-object model to its synchronization power in the single-object model.

Although the types \texttt{fetchand} and \texttt{swap} have the same synchronization power in the single-object model, Afek, Merrit, and Taubenfeld showed that their synchronization powers differ in the multi-object model [AMT96]. We prove that this divergence phenomenon is exhibited \textit{only} by types at levels 1 and 2; all higher level types have the same unbounded synchronization power in the multi-object model.

This paper also identifies \textit{all} possible relationships between a type’s synchronization power in the single-object model and its synchronization power in the multi-object model.

1 Introduction

A shared-memory system consists of asynchronous processes and typed shared objects. An execution of such a system is an interleaving of the steps of individual processes. In the commonly studied model, it is assumed that a process accesses at most one shared object in each of its steps. We call this the \textit{single-object model}. A variant (and a more powerful) model is the \textit{multi-object model} in which each process may access multiple shared objects \textit{atomically} in each of its steps. Specifically, each step of a process \(P\) corresponds to the following sequence of actions, all of which occur together atomically: (i) based on its present state, \(P\) determines the number \(m\) of objects to access, the identities \(O_1, \ldots, O_m\) of (distinct)}

*Work supported by NSF grant CCR-9410421, and Dartmouth College Startup grant.

†6211 Sudikoff Lab for Computer Science, Dartmouth College, Hanover, NH 03755

‡6211 Sudikoff Lab for Computer Science, Dartmouth College, Hanover, NH 03755
objects to access, and the operations $\text{oper}_1, \ldots, \text{oper}_m$ to apply to these objects, (ii) for all $1 \leq i \leq m$, P applies oper_i on O_i and receives O_i's response res_i, and (iii) P makes a transition to a new state, where the new state depends on the responses $\text{res}_1, \ldots, \text{res}_m$ and the previous state of P. This model was studied earlier by Herlihy [Her91] and by Merritt and Taubenfeld [MT94] in the context of shared-memories that consisted only of registers, and was recently explored further by Afek, Merritt, and Taubenfeld [AMT96]. In this paper, we present results that relate the synchronization power of a type in the multi-object model to its synchronization power in the single-object model.

Let T^m denote a shared-memory consisting of infinitely many objects of type T such that in each of its steps a process may access any of at most m objects atomically. Let T^* denote a shared-memory consisting of infinitely many objects of type T such that in each of its steps a process may access any finite number of objects atomically. Since consensus is universal [Her91], the extent to which consensus is implementable in a shared-memory is a reasonable measure of the synchronization power of that shared-memory. Accordingly, as in [AMT96], we define $\text{Con}(T^m)$ as the maximum number of processes for which a consensus object can be implemented in shared-memory T^m; if there is no such maximum, $\text{Con}(T^m) = \infty$. $\text{Con}(T^*)$ is similarly defined. Notice that $\text{Con}(T^1)$, which we will simply write as $\text{Con}(T)$, denotes the synchronization power of T in the single-object model.

Afek, Merritt, and Taubenfeld observed the following “divergence phenomenon” as we shift from the single-object model to the multi-object model [AMT96]. Although the types $\text{fetch}\&\text{add}$ and swap have the same synchronization power in the single-object model ($\text{Con}(\text{fetch}\&\text{add}) = \text{Con}(\text{swap}) = 2$ [Her91]), their synchronization powers differ in the multi-object model: $\text{Con}(\text{fetch}\&\text{add}^*)$ is still 2 while $\text{Con}(\text{swap}^*)$ is ∞. Thus, the multi-object model enhances the power of swap, but not of $\text{fetch}\&\text{add}$, despite the fact that the two types have the same power in the single-object model. The same divergence phenomenon also occurs for certain types at level 1.\footnote{We refer to a type T as being at level k if $\text{Con}(T) = k$.} Specifically, consider the type trivial which supports a single operation that always returns the same response. Clearly $\text{Con}(\text{trivial}) = 1$. It is well-known that $\text{Con}(\text{register})$ is also 1 [CIL94, DDS87, LA87, Her91]. Yet, $\text{Con}(\text{trivial}^*) = 1$ and $\text{Con}(\text{register}^*) = \infty$ [Her91].

The main result of this paper is that the divergence phenomenon described above is exhibited only by types at levels 1 and 2. Specifically, we prove that if $\text{Con}(T) \geq 3$, then $\text{Con}(T^*) = \infty$. In other words, the synchronization power of all types at levels 3 or higher is enhanced to the fullest degree by the multi-object model. Thus, it is not a coincidence that the types which appeared above in the examples of the divergence phenomenon — $\text{fetch}\&\text{add}$, swap, trivial, and register — are at levels 1 or 2.

We also present the following results for types at levels 1 and 2. If $\text{Con}(T) = 1$, we show $\text{Con}(T^*) \in \{1, 2, \infty\}$. Further, we show that there are types in all of these three categories. If $\text{Con}(T) = 2$, we show $\text{Con}(T^*) \in \{2, \infty\}$. Further, there are types in both these categories, as was demonstrated in [AMT96] with $\text{fetch}\&\text{add}$ and swap.

Figure 1 summarizes all possible ways in which $\text{Con}(T)$ and $\text{Con}(T^*)$ are related. There is an “X” in the table element at row labeled i and column labeled j if and only if there
is a type T such that $Con(T) = i$ and $Con(T^*) = j$. The table also includes example types for the different possible relationships. As the table indicates, this paper presents a complete picture of how the synchronization power of a type is affected by a shift from the single-object model to the multi-object model.

2 Preliminaries

The concepts in this section are not new and our treatment is therefore informal.

2.1 Definitions of n-consensus and n-IDconsensus

An object of type n-consensus can be accessed by at most n processes. Each process may invoke propose 0 or propose 1. The sequential specification is as follows: all operations return the value first proposed.

An object of type n-IDconsensus can be accessed by at most n processes. Let $P_0, P_1, \ldots, P_{n-1}$ be the names of these processes. Process P_i may only invoke propose i. The sequential specification is as follows: all operations return the value first proposed.

Using a single n-IDconsensus object, $P_0, P_1, \ldots, P_{n-1}$ can determine a winner among them as follows: each P_i proposes i to the object; if the object’s response is j, P_i regards P_j as the winner.

As in the above, we write the type names in the typewriter font. Thus, "register" denotes a type and "register" (in non-typewriter font) denotes an object.

2.2 Direct implementation

Let X and Y be types. Informally, X^m implements Y^n if there is a wait-free simulation of shared-memory Y^n using shared-memory X^m. (Recall that X^m denotes a shared-memory consisting of infinitely many objects of type X such that in each of its steps a process may access any of at most m objects atomically.) Each operation on the (implemented) shared-
memory Y^n is simulated by executing (possibly many) operations on the shared-memory X^m.\footnote{Sometimes it is assumed that the implementation also has access to registers. We do not make such an assumption in this paper.}

Afek, Merritt, and Taubenfeld introduced the notion of “direct implementation” [AMT96]. X^m directly implements Y^n if there is an implementation of Y^n from X^m such that the linearization of every operation op on the shared-memory Y^n can always be placed at the first access to X^m during the simulation of op [AMT96].

We write $X^m \rightarrow Y^n$ to denote that X^m implements Y^n and $X^m \triangleright Y^n$ to denote that X^m directly implements Y^n.

The transitivity of \triangleright follows easily from definitions and is therefore stated below without proof.

Proposition 2.1 The relation \triangleleft is transitive: $X^m \triangleleft Y^n$ and $Y^n \triangleleft Z^p$ implies $X^m \triangleleft Z^p$.

2.3 Previous results

Here we state results from [AMT96] that will be used in this paper.

Theorem 2.1 ([AMT96]) Let X and Y be any types. $X^p \triangleleft Y^q$ implies $X^{pm} \triangleleft Y^{qm}$, for all $m > 0$.

Theorem 2.2 ([AMT96]) Let X and Y be any types. $X^p \triangleleft Y$ implies $\text{Con}(X^{pq}) \geq \text{Con}(Y^q)$, for all $p, q > 0$.

The following is a special case of a more general theorem from [AMT96].

Theorem 2.3 ([AMT96]) $\text{Cons}(3\text{-consensus}^m) \geq \sqrt{2m}$.

3 Multi-object theorem for types at level 3 or higher

In this section we prove that if $\text{Con}(T) \geq 3$, then $\text{Con}(T^*) = \infty$. This result follows from two intermediate results derived in Sections 3.2 and 3.3 and the results of Afek, Merritt, and Taubenfeld stated above. We conclude the result in Section 3.4 and, in Section 3.5, sketch an alternative proof for the same result. We begin with our notation for describing implementations of n-consensus and n-IDconsensus.
3.1 Notation for describing consensus implementations

Informally, the following two elements constitute an implementation of an \(n \)-consensus object \(O \), shared by processes \(P_0, \ldots, P_{n-1} \), in shared memory \(T^k \): (i) the objects \(O_1, O_2, \ldots, O_m \) that \(O \) is implemented from, and (ii) the access procedures \(\text{Propose}(P_i, v, O) \), for \(i \in \{0, 1, \ldots, n-1\} \) and \(v \in \{0, 1\} \). To apply a \(\text{propose} \) operation on \(O \), \(P_i \) calls and executes the access procedure \(\text{Propose}(P_i, v, O) \). The access procedure specifies how to simulate the operation on \(O \) by executing operations on \(O_1, O_2, \ldots, O_m \), accessing at most \(k \) of these objects in any one step. The return value from the access procedure is deemed to be the response of \(O \) to \(P_i \)'s operation. We refer to \(O_1, O_2, \ldots, O_m \) as base objects of \(O \). The space complexity of the implementation is \(m \), the number of base objects required in implementing \(O \).

Similarly, an implementation of an \(n \)-IDconsensus object \(O \), shared by processes \(P_0, \ldots, P_{n-1} \), in shared memory \(T^k \) is constituted by: (i) the objects \(O_1, O_2, \ldots, O_m \) that \(O \) is implemented from, and (ii) the access procedures \(\text{Propose}(P_i, i, O) \), for \(i \in \{0, 1, \ldots, n-1\} \) (recall that process \(P_i \) may only propose \(i \) on \(O \)).

3.2 Directly implementing \(n \)-consensus from \(n \)-IDconsensus

In this section, we show that \(n \)-IDconsensus directly implements \(n \)-consensus. Let \(O \) denote the \(n \)-consensus object to be implemented. Let \(P_0, \ldots, P_{n-1} \) denote the processes that share \(O \), and let \(v_i \) be the value that \(P_i \) wishes to propose to \(O \). For ease of exposition, we develop the implementation in steps. First we show a simple implementation of an \(n \)-consensus object from a single \(n \)-IDconsensus object and \(n \) registers. We then refine this implementation to eliminate the use of registers. The resulting implementation uses \(2n + 1 \) \(n \)-IDconsensus objects, but is still not a direct implementation. We then describe how to make it direct.

Here is the first implementation: each \(P_i \) first writes its proposal \(v_i \) in a register \(R_i \) and then performs IDconsensus with other processes by proposing \(i \) to an \(n \)-IDconsensus object \(W \). If \(P_k \) is the winner of this IDconsensus, then \(P_i \) returns the value in register \(R_k \) as the response of the implemented \(n \)-consensus object \(O \).

The next implementation, eliminating the use of registers, is in Figure 2. This implementation uses \(2n + 1 \) \(n \)-IDconsensus objects. The object named \(W \) serves the same purpose as before: to determine the identity of the process whose proposal is the winning proposal. The objects \(O_{i,0} \) and \(O_{i,1} \) help \(P_i \) communicate its proposal to other processes. Each \(P_i \) begins by proposing \(i \) to \(O_{i,0} \) (this corresponds to the step of writing \(v_i \) in \(R_i \) in the previous implementation). \(P_i \) then performs IDconsensus with other processes by proposing \(i \) to \(W \). Let \(\text{winner} \) be the value returned by \(W \). If \(\text{winner} = i \), then \(P_i \) is the winner and its proposal \(v_i \) is the winning proposal, so \(P_i \) returns \(v_i \) as the response of the implemented \(n \)-consensus object \(O \). Otherwise, \(P_i \) must learn \(P_{\text{winner}} \)'s proposal, which is the winning proposal. For this, \(P_i \) proposes \(i \) to \(O_{\text{winner},0} \). If \(O_{\text{winner},0} \) returns \(\text{winner} \), then the proposal of \(P_{\text{winner}} \) must be 0, so \(P_i \) returns 0; otherwise the proposal of \(P_{\text{winner}} \) must be 1, so \(P_i \) returns 1. The correctness of this implementation is obvious. We thus have:
\[\mathcal{W}, \{O_{i,0}, O_{i,1} \mid 0 \leq i \leq n - 1\} : n\text{-IDconsensus objects} \]

Procedure Propose\((P_i, v_i, O)\) \hspace{1em} /* \hspace{0.5em} v_i \in \{0, 1\} */

\[\text{winner : integer local to } P_i \]

\begin{verbatim}
begin
1. Propose\((P_i, i, O_{v_i})\)
2. winner := Propose\((P_i, i, \mathcal{W})\)
3. if winner = i then
 return \(v_i\)
else
 Propose\((P_i, i, O_{\text{winner,0}})\) returns winner
6. return 0
7. else return 1
end
\end{verbatim}

Figure 2: Implementing \(n\text{-consensus}\) from \(n\text{-IDconsensus}\)

Lemma 3.1 \(n\text{-IDconsensus} \rightarrow n\text{-consensus}\).

The above implementation is not direct: \(P_i\)'s operation on \(O\) is linearized at its access to \(\mathcal{W}\) and not at its first access to a base object. We turn it into a direct implementation simply by requiring \(P_i\) to perform lines 1 and 2 in Figure 2 simultaneously, in one atomic action. This results in a direct implementation of \(n\text{-consensus}\) from \(n\text{-IDconsensus}\). We thus have:

Lemma 3.2 \(n\text{-IDconsensus}^2 \Rightarrow n\text{-consensus}\).

3.3 The main lemma

We prove that, for all \(T\), if there is an implementation of \(3\text{-consensus}\) from \(T\), then there is a **direct** implementation, of twice the space complexity, of \(3\text{-IDconsensus}\) from \(T^2\).

Our design exploits the well-known bivalency argument due to Fischer, Lynch, and Paterson [FLP85]. Since bivalency arguments are standard, our definitions here are informal. Let \(O\), shared by \(P_0\), \(P_1\), and \(P_2\), be a 3-consensus object implemented from objects \(O_1, \ldots, O_m\) of type \(T\). Let \(v_i\) denote \(P_i\)'s proposal to \(O\). A **configuration** of \(O\) is a tuple consisting of the states of the three access procedures Propose\((P_i, v_i, O)\) \((i \in \{0, 1, 2\})\) and the states of objects \(O_1, \ldots, O_m\). A configuration \(C\) is \(v\text{-valent}\) \((\text{for } v \in \{0, 1\})\) if there is no execution from \(C\) in which \(\overline{v}\) is decided upon by some \(P_i\). In other words, once in configuration \(C\), no matter how \(P_0\), \(P_1\), and \(P_2\) are scheduled, no \(P_i\) returns \(\overline{v}\). A configuration is **monovalent** if it is either 0-valent or 1-valent. A configuration is **bivalent** if it is not.
monovalent. If \(E \) is a finite execution of the implementation starting from configuration \(C \),
\(E(C) \) denotes the configuration at the end of the execution \(E \).

Lemma 3.3 \(T \rightarrow 3\text{-}\text{consensus} \text{ implies } T^2 \text{ di, } 3\text{-IDconsensus}. \)

Proof Let \(\mathcal{I} \) be an implementation of 3-consensus from \(T \). Let \(\mathcal{O} \), shared by \(P_0 \), \(P_1 \), and
\(P_2 \), be a 3-consensus object implemented using \(\mathcal{I} \) from objects \(O_1, \ldots, O_m \), of type \(T \). Pick \(\text{val}_0, \text{val}_1, \) and \(\text{val}_2 \), the proposals of \(P_0 \), \(P_1 \), and
\(P_2 \), respectively, so that \(C_0 \), the initial configuration of \(\mathcal{O} \), is bivalent. (For instance, \(\text{val}_0 = 0 \) and \(\text{val}_1 = \text{val}_2 = 1 \) would be adequate.)

Let \(E \) be a finite execution from \(C_0 \) such that (1) \(C_{\text{crit}} = E(C_0) \) is bivalent, and (2) For
all \(P_i \), if \(P_i \) takes a step from \(C_{\text{crit}} \), the resulting configuration is monovalent. (If such \(E \) does
not exist, it is easy to see that there is an infinite execution \(E' \) in which no process decides.
Thus, some process takes infinitely many steps in \(E' \) without deciding, contradicting the
wait-freedom property of the implementation of \(\mathcal{O} \).) Let \(S_v \) be the set of \(P_i \) whose step from
\(C_{\text{crit}} \) results in a \(v \)-valent configuration. Since \(C_{\text{crit}} \) is bivalent, neither \(S_0 \) nor \(S_1 \) is empty. Furthermore, \(S_0 \cap S_1 = \emptyset \). Without loss of generality, let \(S_0 = \{ P_0 \} \) and \(S_1 = \{ P_1, P_2 \} \).
Thus, if \(P_0 \) is the first to take a step from \(C_{\text{crit}} \), then regardless of how \(P_0 \), \(P_1 \), and
\(P_2 \) are scheduled subsequently, every \(P_i \) eventually decides 0. Similarly, if either of \(P_1 \) and \(P_2 \)
is the first to take a step from \(C_{\text{crit}} \), then regardless of how \(P_0 \), \(P_1 \), and \(P_2 \) are scheduled
subsequently, every \(P_i \) eventually decides 1.

In the configuration \(C_{\text{crit}} \), let \(\sigma_0 \), \(\sigma_1 \), and \(\sigma_2 \) denote the states of the access procedures
\text{Propose}(P_0, \text{val}_0, \mathcal{O}), \text{Propose}(P_1, \text{val}_1, \mathcal{O}), \) and \text{Propose}(P_2, \text{val}_2, \mathcal{O}), respectively. Also let
\(\mu_1, \ldots, \mu_m \) denote the states of \(O_1, \ldots, O_m \), respectively, in \(C_{\text{crit}} \).

Given the above context, we are ready to describe the direct implementation of a
3-IDConsensus object \(\mathcal{A} \), shared by processes \(Q_0 \), \(Q_1 \), and \(Q_2 \), from objects \(O_1', \ldots, O_m', \)
\(O_1'', \ldots, O_m'' \) of type \(T \). Each \(Q_i \) may access up to two base objects atomically in a single
step.

The idea is to use the given implementation \(\mathcal{I} \) to build two 3-consensus objects (from
the available objects \(O_1', \ldots, O_m', O_1'', \ldots, O_m'' \), initialize both of them to \(C_{\text{crit}} \), and require
\(Q_0 \), \(Q_1 \), and \(Q_2 \) to access them in such a way that, if \(Q_i \) is the first to take a step, all of
\(Q_0 \), \(Q_1 \), and \(Q_2 \) eventually return \(i \). The details are as follows.

Using implementation \(\mathcal{I} \) and the objects \(O_1', \ldots, O_m' \), implement a 3-consensus object
\(\mathcal{O}' \) that can be shared by \(P_0' \), \(P_1' \), and \(P_2' \). Similarly, using implementation \(\mathcal{I} \) and the objects
\(O_1'', \ldots, O_m'' \), implement another 3-consensus object \(\mathcal{O}'' \) that can be shared by \(P_0'' \), \(P_1'' \), and
\(P_2'' \).

Initialize each of \(\mathcal{O}' \) and \(\mathcal{O}'' \) to \(C_{\text{crit}} \); more specifically,

1. Since \(\mathcal{O}' \) is implemented to be shared by \(P_0' \), \(P_1' \), and \(P_2' \), it supports the access procedures
\text{Propose}(P_0', \text{val}_0, \mathcal{O}'), \text{Propose}(P_1', \text{val}_1, \mathcal{O}'), \) and \text{Propose}(P_2', \text{val}_2, \mathcal{O}'). Initialize
the states of these three access procedures to \(\sigma_0 \), \(\sigma_1 \), and \(\sigma_2 \), respectively.

2. Initialize the states of objects \(O_1', \ldots, O_m' \) to \(\mu_1, \ldots, \mu_m \), respectively.
3. Since \(\mathcal{O}'' \) is implemented to be shared by \(P_0'' \), \(P_1'' \), and \(P_2'' \), it supports the access procedures \(\text{Propose}(P_0'', \text{val}_0, \mathcal{O}'') \), \(\text{Propose}(P_1'', \text{val}_1, \mathcal{O}'') \), and \(\text{Propose}(P_2'', \text{val}_2, \mathcal{O}'') \). Initialize the states of these three access procedures to \(\sigma_0 \), \(\sigma_1 \), and \(\sigma_2 \), respectively.

4. Initialize the states of objects \(\mathcal{O}_1'', \ldots, \mathcal{O}_m'' \) to \(\mu_1, \ldots, \mu_m \), respectively.

Each \(Q_i \) executes two access procedures, one of \(\mathcal{O}' \) and one of \(\mathcal{O}'' \). The exact mapping of which two access procedures \(Q_i \) executes is as follows: Process \(Q_0 \) executes \(\text{Propose}(P_0', \text{val}_0, \mathcal{O}') \) and \(\text{Propose}(P_1', \text{val}_1, \mathcal{O}'') \); \(Q_0 \) executes \(\text{Propose}(P_1, \text{val}_1, \mathcal{O}') \) and \(\text{Propose}(P_0, \text{val}_0, \mathcal{O}'') \); and \(Q_2 \) executes \(\text{Propose}(P_2', \text{val}_2, \mathcal{O}') \) and \(\text{Propose}(P_2'', \text{val}_2, \mathcal{O}'') \). Each process executes its access procedures as follows. In its first step, each process executes the first step of both of its access procedures simultaneously (this is possible because in the implementation being designed a process is allowed to access up to two objects in one step). After its first step, each process executes any one of its access procedures to completion and then executes the other access procedure to completion. Once a process executes both its access procedures to completion, it knows the decision values \(d' \) and \(d'' \) returned by the 3-consensus objects \(\mathcal{O}' \) and \(\mathcal{O}'' \), respectively.

The key observation is the following: If \(Q_i \) is the first process to take a step (among \(Q_0, Q_1, \) and \(Q_2 \)), since the first step of \(Q_i \) corresponds to the first step of both of its access procedures, the decision values of both \(\mathcal{O}' \) and \(\mathcal{O}'' \) become fixed at the end of \(Q_i \)'s first step. Furthermore, given our mapping between processes and access procedures, we have the following obvious relationships: \((d', d'') = (0, 1) \) if and only if \(Q_0 \) is the first process to take a step, \((d', d'') = (1, 0) \) if and only if \(Q_1 \) is the first process to take a step, and \((d', d'') = (1, 1) \) if and only if \(Q_2 \) is the first process to take a step. (Notice that \((d', d'') = (0, 0) \) cannot occur.) Thus, from the values \(d' \) and \(d'' \), each \(Q_j \) determines the identity of the \(Q_i \) which took the very first step and returns \(i \). This completes the proof of the lemma.

Lemma 3.4 \(T \rightarrow 3\text{-consensus} \) implies \(T^A \triangleq 3\text{-consensus} \).

Proof Suppose that \(T \rightarrow 3\text{-consensus} \). By Lemma 3.3, \(T^2 \triangleq 3\text{-IDconsensus} \). By Theorem 2.1, \(T^A \triangleq 3\text{-IDconsensus} \). This, together with Lemma 3.2 and the transitivity of \(\triangleq \) (Proposition 2.1), gives the lemma.

3.4 Multi-object theorem for types at level 3 or higher

The next lemma states that if type \(T \) objects are strong enough to implement 3-consensus objects in the standard single-access model, then they are good for implementing \(n \)-consensus objects (for any \(n \)) provided that processes can access sufficiently many of them (2\(n^2 \), to be precise) in a single step.

Lemma 3.5 \(\text{Con}(T) \geq 3 \) implies \(\text{Con}(T^{2n^2}) \geq n. \)
Proof \[\text{Con}(T) \geq 3 \]
\[\Rightarrow \quad T \rightarrow 3\text{-consensus} \]
\[\Rightarrow \quad T^4 \triangleq 3\text{-consensus} \quad \text{(by Lemma 3.4)} \]
\[\Rightarrow \quad \forall m > 0 : \text{Con}(T^{4m}) \geq \text{Con}(3\text{-consensus}^m) \quad \text{(by Theorem 2.2)} \]
\[\Rightarrow \quad \forall m > 0 : \text{Con}(T^{4m}) \geq \sqrt{2m} \quad \text{(by Theorem 2.3)} \]
\[\Rightarrow \quad \text{Con}(T^{2n^2}) \geq n \quad \text{(by letting } m = n^2/2) \]

Finally, we present the multi-object theorem for types at level 3 or higher. This theorem is immediate from the above lemma.

Theorem 3.1 \(\text{Con}(T) \geq 3 \) implies \(\text{Con}(T^*) = \infty \).

3.5 Sketch of an alternative proof

In this section, we sketch an alternative proof of Theorem 3.1. Afek, Merritt, and Taubenfeld introduced a consensus object that also supports a read operation [AMT96]. Specifically, an object of type \((f, r)\)-consensus can be accessed by \(f \) “proposer” processes and \(r \) “reader” processes. A proposer may only invoke propose \(0 \) or propose \(1 \), and a reader may only invoke read. The sequential specification is as follows: if the first operation is propose \(v \), all operations return \(v \); if the first operation is a read, operations return arbitrary responses. A result in [AMT96] states that an \(n \)-consensus object, for any \(n \), can be implemented using \((f, r)\)-consensus objects if sufficiently many of them can be accessed simultaneously. Specifically:

Theorem 3.2 ([AMT96]) \((f, r)\)-consensus\(^m \rightarrow n\)-consensus, where \(n \geq \sqrt{mrf + f^2/4 + f/2} \).

We can define the type \((f, r)\)-\text{IDconsensus} and obtain a result analogous to Theorem 3.2. Specifically, an object of type \((f, r)\)-\text{IDconsensus} can be accessed by at most \(f \) proposers, \(P_0, P_1, \ldots, P_{f-1} \), and \(r \) readers. Proposer \(P_i \) may only invoke propose \(i \), and a reader may only invoke read. The sequential specification is as follows: if the first operation is propose \(i \), all operations return \(i \); if the first operation is a read, operations return arbitrary responses. With minor modifications, the proof of Theorem 3.2 can be adapted to obtain the following result, an analog of Theorem 3.2 for \text{IDconsensus}:

\(^3\)The proof of Theorem 3.2 uses the following idea. To solve consensus, processes split themselves into two groups \(G_0 \) and \(G_1 \), processes in each \(G_i \) solve consensus recursively to obtain the consensus value \(v_i \) for the group, then the two groups compete with all processes in \(G_i \) proposing \(v_i \), and finally every process adopts the value proposed by the winning group. For this idea to work in the proof of Theorem 3.3, which deals with \text{IDconsensus} instead of consensus, it should be possible for the processes in the losing group, say \(G_1 \), to determine the winner of the winning group, namely, \(G_0 \). If registers are available, processes in each group \(G_i \) can write the winner of \(G_i \) in some register \(R(G_i) \) before competing with the other group \(G_7 \). Thus, processes in \(G_1 \), the losing group in our running example, can easily determine the winner of the winning group \(G_0 \) by reading the register \(R(G_0) \). Unfortunately, however, registers are not available — the only available objects are \((f, r)\)-\text{IDconsensus} objects. We overcome this difficulty with a trick similar to the one used in Section 3.2, where we first presented a construction that uses registers and then showed how to eliminate registers.
Theorem 3.3 \((f, r)\text{-IDconsensus}^n \rightarrow n\text{-IDconsensus}\), where \(n \geq \sqrt{mrf + f^2/4} + f/2\).

If a type implements 3-consensus, using the familiar bivalency arguments it is fairly easy to show that \(T\) directly implements \((2, 1)\text{-IDconsensus}\). Thus:

Theorem 3.4 \(T \rightarrow 3\text{-consensus implies } T \bowtie (2, 1)\text{-IDconsensus}\).

Now Theorem 3.1 can be proved as follows. Suppose that \(T \rightarrow 3\text{-consensus}\). By Theorem 3.4, \(T \bowtie (2, 1)\text{-IDconsensus}\). A result in [AMT96] states that if \(X \bowtie Y\), then \(X^m \bowtie Y^m\). Using this, we have \(T^{m^2/2} \bowtie (2, 1)\text{-IDconsensus}^{m^2/2}\). By Theorem 3.3, \((2, 1)\text{-IDconsensus}^{m^2/2} \rightarrow n\text{-IDconsensus}\). Thus, we have \(T^{m^2/2} \rightarrow n\text{-IDconsensus}\). Since \(n\text{-IDconsensus} \rightarrow n\text{-consensus}\) (by Lemma 3.1), we have \(T^{m^2/2} \rightarrow n\text{-consensus}\). Therefore, \(\text{Con}(T^*) = \infty\). Hence Theorem 3.1.

4 Multi-object theorems for types at levels 1 and 2

In this section, we relate \(\text{Con}(T)\) and \(\text{Con}(T^*)\) when \(\text{Con}(T)\) is 1 or 2. Specifically, if \(\text{Con}(T) = 1\), we show that \(\text{Con}(T^*) \in \{1, 2, \infty\}\), and exhibit types in all three of these categories. If \(\text{Con}(T) = 2\), we show that \(\text{Con}(T^*) \in \{2, \infty\}\); it was shown in [AMT96] that there are types in both these categories. The following lemma is useful in establishing some of these results.

Lemma 4.1 \(\text{Con}(T^*) \geq 3\) implies \(\text{Con}(T^*) = \infty\).

Proof \(\text{Con}(T^*) \geq 3\)
\[\Rightarrow \text{Con}(T^m) \geq 3\text{ for some } m > 0\]
\[\Rightarrow \text{Con}(T^m)^* = \infty\text{ (by Theorem 3.1)}\]
\[\Rightarrow \text{Con}(T^*) = \infty\]

Next we present the multi-object theorem for types at level 1.

Theorem 4.1

1. \(\text{Con}(T) = 1\) implies \(\text{Con}(T^*) \in \{1, 2, \infty\}\).
2. There is a type \(T\) such that \(\text{Con}(T) = 1\) and \(\text{Con}(T^*) = 1\).
3. There is a type \(T\) such that \(\text{Con}(T) = 1\) and \(\text{Con}(T^*) = 2\).
4. There is a type \(T\) such that \(\text{Con}(T) = 1\) and \(\text{Con}(T^*) = \infty\) [Her91].
Proof Part (1) follows directly from Lemma 4.1. For part (2), consider the type **trivial** which supports only a single operation that always returns the same response. Clearly, \(\text{Con(trivial)} = 1 \) and \(\text{Con(trivial*)} = 1 \). For part (4), **register** is an example of a type \(T \) for which \(\text{Con(T)} = 1 \) [CIL94, DDS87, LA87, Her91] and \(\text{Con(T*)} = \infty \) [Her91]. We prove part (3) below.

Consider the **blind-increment** type that supports **read** and **blindInc** operations. The **read** operation returns the value of the object without affecting it. The **blindInc** operation increments the value and returns **ack**.

Claim 4.1 \(\text{Con(blind-increment)} = 1 \).

Proof: This claim is well-known and is immediate from the following three facts:

(i) **blind-increment** has a (trivial) implementation from **atomic-snapshot**,\(^4\)

(ii) **atomic-snapshot** has an implementation from **register** [AAD\(^+\)93, And93], and

(iii) **register** cannot implement 2-consensus [CIL94, DDS87, LA87, Her91]. \(\square \)

Claim 4.2 \(\text{Con(blind-increment2) \geq 2} \).

Proof: We can implement a 2-IDconsensus object, shared by processes \(P_0 \) and \(P_1 \), from two blind-increment objects \(O_0 \) and \(O_1 \), both initialized to 0, as follows. Process \(P_i \) both reads \(O_i \) and blind-increments \(O_i \) in the same step. If \(P_i \) reads 0, it is the winner, and so it returns \(i \). Otherwise \(P_i \) is the winner, so it returns \(\overline{i} \). It is easy to verify that this protocol is correct. From this and Lemma 3.1, we have the claim. \(\square \)

Claim 4.3 For all \(m > 0 \), \(\text{Con(blind-incrementm) \leq 2} \).

Proof: The operations of **blind-increment** commute. Therefore, by a result in [AMT96], \(\text{Con(blind-incrementm) \leq 2} \). \(\square \)

By the above three claims, **blind-increment** is an example of a type \(T \) for which \(\text{Con(T)} = 1 \) and \(\text{Con(T*)} = 2 \). This completes the proof of Theorem 4.1.

Finally, we present the multi-object theorem for types at level 2.

Theorem 4.2

1. \(\text{Con(T)} = 2 \) implies \(\text{Con(T*) \in \{2, \infty\}} \).

2. There is a type \(T \) such that \(\text{Con(T)} = 2 \) and \(\text{Con(T*) = 2} \) [Her91, AMT96].

\(^4\)Informally, an object of type **atomic-snapshot** stores a vector of \(n \) integers, where \(n \) is the number of processes that may access the object. Any process may perform a **read** operation, which simply returns the vector. Process \(P_i \) may perform a **write** \((i, v)\) which changes the value of the \(i^{th} \) element of the vector to \(v \).
3. There is a type T such that $\text{Con}(T) = 2$ and $\text{Con}(T^*) = \infty$ [Her91, AMT96].

Proof Part (1) is immediate from Lemma 4.1 and the observation $\text{Con}(T^*) \geq \text{Con}(T)$. Parts (2) and (3) follow from the following known results: $\text{Con(fetch\&add)} = \text{Con(swap)} = 2$ [Her91], $\text{Con(fetch\&add}^*) = 2$ [AMT96] and $\text{Con(swap}^*) = \infty$ [AMT96].

References

