Dartmouth logo Dartmouth College Computer Science
Technical Report series
CS home
TR home
TR search TR listserv
By author: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
By number: 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990, 1989, 1988, 1987, 1986

A Simulation of Auroral Absorption
Eric Michael Greenberg
Dartmouth TR2000-368

Abstract: HF radio transmissions propagate long distances by reflecting off the ionosphere. At high latitudes radio propagation is strongly affected by the northern lights (aurora borealis), which causes ionization at low altitudes and hence the absorption of radio waves. Models of this process are still in a primitive state. A simulation of radio wave propagation was created in order to test Foppiano and Bradley's empirical model of auroral absorption. The simulation attempts to predict the net absorption of signals at a receiver by simulating a large number of transmitters, even though the exact sources of the signals are unknown. Although the simulation takes into account auroral and nonauroral absorption as well as other sources of path loss, the analysis focuses on the nighttime aurora. An intelligent search algorithm is used in order to efficiently adjust the model to best fit the data. The output of the simulation is qualitatively and quantitatively compared to signal levels observed with HF radio receivers located in northern Canada. The analysis allows us to develop alternative models of auroral absorption which account for the level of geomagnetic activity, and these are compared to the standard Foppiano and Bradley model.

Note: Advisor: Dan Rockmore


PDF PDF (3028KB)

Bibliographic citation for this report: [plain text] [BIB] [BibTeX] [Refer]

Or copy and paste:
   Eric Michael Greenberg, "A Simulation of Auroral Absorption." Dartmouth Computer Science Technical Report TR2000-368, May 2000.


Notify me about new tech reports.

Search the technical reports.

To receive paper copy of a report, by mail, send your address and the TR number to reports AT cs.dartmouth.edu


Copyright notice: The documents contained in this server are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Technical reports collection maintained by David Kotz.