Dartmouth logo Dartmouth College Computer Science
Technical Report series
CS home
TR home
TR search TR listserv
By author: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
By number: 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990, 1989, 1988, 1987, 1986

Parallel Max Cut Approximations
Grammati E. Pantziou, Paul G. Spirakis, Christos D. Zaroliagis
Dartmouth PCS-TR93-201


Given a graph with positive integer edge weights one may ask whether there exists an edge cut whose weight is bigger than a given number. This problem is NP-complete. We present here an approximation algorithm in NC which provides tight upper bounds to the proportion of edge cuts whose size is bigger than a given number. Our technique is based on the methods to convert randomized parallel algorithms into deterministic ones introduced by Karp and Wigderson. The basic idea of those methods is to replace an exponentially large sample space by one of polynomial size. In this work, we prove the interesting result that the statistical distance of random variables of the small sample space is bigger than the statistical distance of corresponding variables of the exponentially large space, which is the space of all edge cuts taken equiprobably.


Bibliographic citation for this report: [plain text] [BIB] [BibTeX] [Refer]

Or copy and paste:
   Grammati E. Pantziou, Paul G. Spirakis, and Christos D. Zaroliagis, "Parallel Max Cut Approximations." Dartmouth Computer Science Technical Report PCS-TR93-201, 1993.

Notify me about new tech reports.

Search the technical reports.

To receive paper copy of a report, by mail, send your address and the TR number to reports AT cs.dartmouth.edu

Copyright notice: The documents contained in this server are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Technical reports collection maintained by David Kotz.