Dartmouth logo Dartmouth College Computer Science
Technical Report series
CS home
TR home
TR search TR listserv
By author: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
By number: 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990, 1989, 1988, 1987, 1986

Hypergraph Partitioning Algorithms
Tom Leighton, Fillia Makedon, Spyros Tragoudas
Dartmouth PCS-TR94-233

Abstract: We present the first polynomial time approximation algorithms for the balanced hypergraph partitioning problem. The approximations are within polylogarithmic factors of the optimal solutions. The choice of algorithm involves a time complexity/approximation bound tradeoff. We employ a two step methodology. First we approximate the flux of the input hypergraph. This involves an approximate solution to a concurrent flow problem on the hypergraph. In the second step we use the approximate flux to obtain approximations for the balanced bipartitioning problem. Our results extend the approximation algorithms by Leighton-Rao on graphs to hypergraphs. We also give the first polylogarithmic times optimal approximation algorithms for multiway (graph and hypergraph) partitioning problems into bounded size sets. A better approximation algorithm for the latter problem is finally presented for the special case of bounded sets of size at most O(log n) on planar graphs and hypergraphs, where n is the number of nodes of the input instance.


PDF PDF (1616KB)

Bibliographic citation for this report: [plain text] [BIB] [BibTeX] [Refer]

Or copy and paste:
   Tom Leighton, Fillia Makedon, and Spyros Tragoudas, "Hypergraph Partitioning Algorithms." Dartmouth Computer Science Technical Report PCS-TR94-233, October, 1994.


Notify me about new tech reports.

Search the technical reports.

To receive paper copy of a report, by mail, send your address and the TR number to reports AT cs.dartmouth.edu


Copyright notice: The documents contained in this server are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Technical reports collection maintained by David Kotz.