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Abstract

The size of modern datasets has spurred interest in distributed statistical estimation. We

consider a scenario in which randomly drawn data is spread across a set of machines, and the

task is to provide an estimate for the location parameter from which the data was drawn. We

provide a one-shot protocol for computing this estimate which generalizes results from Braverman

et al. [2], which provides a protocol under the assumption that the distribution is Gaussian, as

well as from Duchi et al. [4], which assumes that the distribution is supported on the compact set

[−1, 1]. Like that of Braverman et al., our protocol is optimal in the case that the distribution is

Gaussian.

1 Problem Setup

The rapid growth in the size of modern datasets has fueled interest in distributed statistical inference;
the dataset is too large to fit on a single machine, and is thus separated across multiple machines. The
amount of communication between machines is often the computational bottleneck for distributed
learning algorithms, so often the goal is to design algorithms which minimize the communication
cost.

We consider the coordinator communication model, in which all machines communicate with a coor-
dinator machine which does not receive any data, and do not communicate with each other. As is
typical in modern machine learning contexts, we consider a large dataset drawn from some probabil-
ity distribution on the real numbers which is spread across a large number of machines. We consider
algorithms which determine the location parameter of the distribution from which it is drawn.

More precisely, let µ be a d-dimensional probability distribution on Rd, and let θ be the location
parameter of µ, where θ ∈ Rd and ∀i ∈ {1, 2, ..., d}, |θi| ≤ poly(md). Let the scale parameter be σ.
∗matthew.g.jin.17@dartmouth.edu
†ac@dartmouth.edu
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Figure 1: In the coordinator communication model, communication goes only from machines
M1, ...,Mm to the machine designated as the coordinator.

For example, for the normal distribution, the location parameter is the mean and the scale parameter
is the variance. For the Cauchy distribution, the location parameter is the median, and the scale
parameter is denoted as such. Our goal is to compute an estimate θ̂ for θ, where each of m machines
is given n i.i.d samples drawn from µ.

2 Existing Literature

An important special case of this problem, where µ is Gaussian, is considered at length by Braverman
et al. [2], which demonstrated a lower bound and an upper bound optimal up to constant factor when
the mean vector is dense. Under the same communication model, the protocol of Braverman et al. [2]
has communication cost O(md+ d log2(mdn/σ)) bits and expected mean-squared-error:

E[|θ̂ − θ|2] = O
( 1

m

)
.

In this work, we focus on generalizing the upper bound of Braveman et al. [2], providing a protocol
which has similar communication cost for any distribution satisfying a certain set of conditions. Duchi
et al. [4] considers both upper and lower bounds for this problem for the family Pd of distributions
supported on the compact set [−1, 1]d. Suresh et al. [7] also addresses the problem of distributed mean
estimation under a limited communication budget, yet unlike this and the other mentioned works,
it makes no assumption on the distribution of the dataset, and it is concerned with estimating the
empirical mean of the data rather than that of the underlying statistical model.

Lee et al. [5] seeks to mitigate the communication bottleneck for the problem of distributed high-
dimensional sparse regression by devising a protocol that requires only a single round of communica-
tion. It does this by computing "debiased" local lasso estimators which are then averaged.

The coordinator communication model that we consider here has been studied with various applica-
tions in mind in a number of earlier works. For example, Arackaparambil et al. [1] and Cormode et al.
[3] study the functional monitoring problem, in which k machines each receive a stream of tokens and
communicate with a coordinator that wishes to continuously monitor a function on the union of those
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streams. These papers were largely concerned with devising protocols that minimize the number of
bits communicated and monitor the function with small error.

3 BGMNW Estimation Protocol For Normal Distribution

The protocol from Braverman et al. [2] for estimating the mean parameter for the specific case in
which µ is Gaussian is stated below. In the case of a multivariate Gaussian, the protocol below is
repeated for each dimension.

Let r = blog(mdnσ )c, and {x} = x−bxc. Let g(x) =
∞∑
k=1

1
ke
−2k2π2

sin(2kπx). We present the algorithm

for estimating θ = θ
√
n
σ in two phases. As with all real numbers, θ has an integer part as well as a

fractional one. The integer part of the parameter estimate can be directly computed from the output
of Phase 1. Phase 2 computes the fractional part of the parameter estimate.

Data: A set of samples {X(k)
j }nk=1, each drawn i.i.d. from µ = N (µ, σ2), is

given to the jth machine, j ∈ {1, ...,m}.
1 Machine i, i ∈ {1, 2, ...,m}: Xi ← 1

σ
√
n

n∑
k=1

X
(k)
i

2 Machine i, i ∈ {1, 2, ..., r}, sends the first r bits of Xi to the coordinator.
3 Machine i, i ∈ {r + 1...m}: Ri ← Xi − bXic; R′i ← Xi +

1
5 − bXi +

1
5c

4 Machine i, i ∈ {r + 1...m} sends bits Bi and B′i to Coordinator, where Bi is
1 with probability Ri, 0 with probability 1−Ri, and B′i is 1 with
probability R′i, 0 with probability 1−R′i.

5 γ ←
√
n
σ times the median of the Xi’s sent by machines 1, ..., r

Algorithm: Phase 1: Normal Distribution

If the following conditions on {γ}:

• 1
50 < {γ} <

49
50

• |{γ} − 1
4 | ≥

3
100

• |{γ} − 3
4 | ≥

3
100

are satisfied, then the following code is executed by Coordinator:
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1 Z ← bγc

2 T ← 1
m−r

m∑
i=r+1

Bi

3 S ← {i ∈ Z
∣∣|Z + i√

m
− γ| < 1

100}

4 for i ∈ S do
5 if |g( i√

m
)− π( 12 − T )| ≤

1√
m

then

6 return Z + i√
m

7 end

8 end
9 return γ

Algorithm: Phase 2: Normal Distribution

If any condition is violated, Phase 2 is executed as written with four modifications:

1. Line 1 is replaced by Z ← bγ + 1
5c

2. Line 2 is replaced by T ← 1
m−r

m∑
i=r+1

B′i.

3. Line 3 is replaced by S ← {i ∈ Z
∣∣|Z + i√

m
− (γ + 1

5 )| <
1

100}

4. Line 6 is replaced by return Z + i√
m
− 1

5 .

These modifications shift the quantity being estimated in order to avoid problematic subintervals of
[0, 1]; the shift is then undone to return the proper parameter estimate.

4 General Estimation Protocol

We now present a protocol for estimating the unknown location parameter θ of a distribution with
probability distribution function f and known scale parameter σ. Because the mean parameter vector
of a general d-dimensional may not necessarily be inferred via repetition of the protocol for each
dimension, this analysis will assume d = 1. Moreover, we assume n = 1 for the protocol statement as
well as the analysis. Note that these assumptions can be relaxed given any particular distribution by
having each machine send a sufficient statistic computed from its n input samples and, if applicable,
repeat the protocol for each of d dimensions. These modifications will yield an analogous analysis as
that which will be demonstrated in this work. We make the following assumptions on µ:

• If X ∼ µ, ∀α > 0,∃β > 0,Pr[X > θ + α] ≤ 1
2 − β. Similarly, ∀α > 0,∃β′ > 0,Pr[X < θ − α] ≤

1
2 − β

′.

• |θ| ≤ poly(m)

•
∞∑

i=−∞
f(x) is absolutely convergent for x ∈ R.

• r = O(log(m/σ)) = o(m)
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• ∃c > 0,m/σ ≥ mc

• If X ∼ µ and h(θ) = E[X − bXc]: h′(θ) has finitely many zeros.

• m ≥ 1
α2 , where α is the parameter associated with set J , defined below.

If h′(θ) has finitely many zeros, then, as we will argue later, there exists a distribution-dependent
constant α > 0 and a set of subintervals J of [0, 1] which α-respects h′. This notion is defined as
follows:
Definition 4.1. Let J be a set of disjoint open subintervals of [0, 1]. If i = (a, b) ∈ J , let |i| = b− a,
and let w = (1 − 2α, 1] ∪ [0, 2α) be considered a single contiguous interval; indeed, it is as such if
integral shifts of [0, 1] are considered. We say that J α-respects h′ if:

1. ∀i = (a, b) ∈ J, i 6= w, [b, b+ |i|+ 8α] is disjoint of all elements of J .

2. w ∈ J and [2α, 6α+ 4α] is disjoint of all elements of J , or ∃i ∈ J,w ⊂ i. Define |w| = 4α.

3. ∃m1 > 0,m2 > 0∀x ∈ [0, 1]\J , m1 ≤ |h′(x)| ≤ m2.

Let J ′ denote the extension of J , which is defined:
Definition 4.2. If J α-respects h′, let J ′ be the extension of J , defined as follows:

i = (a, b) ∈ J ∧ i 6= w =⇒
(
a− 2α, b+ 2α

)
∈ J.′

Let the extension of w in J ′ be (1− 2α− α, 1] ∪ [0, 2α+ α). By construction,

1. ∀i = (a, b) ∈ J ′, [b, b+ |i|] is disjoint of all elements of J ′.

2. ∃m > 0∀x ∈ [0, 1]\J ′, 0 < |h′(x)| ≤ m.

The reason for defining J and J ′ in this way will become more apparent when we analyze our proto-
col.

Suppose that the subintervals are indexed 1, ..., |J ′|. Let r be defined as in Section 3. Whenever J ′

is referred to in the protocol, it refers to the extension of the respectful set J , which is guaranteed to
exist by the conditions imposed on the distribution.

As before, the integer part of the estimate can be directly computed after Phase 1, while Phase 2
computes the fractional part.
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Data: For each machine i ∈ {1, ...,m}, an i.i.d. sample from µ {Xi}.
1 Machine i, i ∈ {1, 2, ...,m}: Xi ← Xi

σ

2 Machine i, i ∈ {1, 2, ..., r}, sends the first r bits of Xi to the coordinator.
3 Machine i, i ∈ {r + 1, ...,m} allocates an array R(i) of size |J ′|+ 1

4 for Machine i, i ∈ {r + 1, ...,m}, k ∈ J ′ do
5 R(i)[k]← Xi + |k| − bXi + |k|c
6 end
7 Machine i, i ∈ {r + 1, ...,m}: R(i)[|J ′|+ 1]← Xi − bXic
8 for Machine i, i ∈ {r + 1, ...,m}, k ∈ R(i): do
9 Sends to the coordinator a bit B(i)

k which is 1 with probability R(i)[k]

and 0 with probability 1−R(i)[k].
10 end
11 γ ← the median of the Xi’s sent by machines 1, ..., r.

Algorithm: Phase 1: Generalized Distribution

As before, the coordinator executes Phase 2 to compute the fractional component of the parameter
estimate. As described in Definition 5.1, w = (1 − 2α, 1] ∪ [0, 2α) is considered to be a contiguous
subinterval such that |w| = 4α. Recall the notation {x} = x − bxc. To simplify the notation,
if k denotes a subinterval, let B(i)

k denote the bit sent by the ith machine which is associated with
subinterval k. Note that if {γ} is not found to belong to any interval of J ′, then it must belong to J ′ =

[0, 1]\J ′; the bits associated with J ′ are denoted B(i)
|J′|+1. Finally, let h(x) =

1∫
0

∞∑
i=−∞

yf((y−x)+ i)dy;

notice that h(θ) = E[Ri]. Note that we are working within an idealized model in requiring the
computation of h within the algorithm definition. For real-world purposes, assume that f is such that
h can be efficiently evaluated to arbitrary precision.
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1 Z ← null; B ← 1
m−r

m∑
i=r+1

B
(i)
|J|+2

2 shift ← 0

3 for k ∈ J ′ do
4 if {γ} ∈ k then
5 shift← |k|

6 B ← 1
m−r

m∑
i=r+1

B
(i)
k

7 end

8 end
9 Z ← bγ + shiftc

10 S ← {i ∈ Z
∣∣|Z + i√

m
− (γ + shift)| < α}

11 for i ∈ S do
12 if |h( i√

m
)−B| ≤ m2√

m
then

13 return Z + i√
m
− shift

14 end

15 end
16 return γ

Algorithm: Phase 2: Generalized Distribution

We observe that the total communication of this algorithm is

O(r2 + |J |(m− r)) = O(log2(m/σ) + |J |m).

5 Generalized Algorithm Analysis

This section will first provide an expression for the derivative of the expected value of the fractional
part of the input data. This derivative is closely tied to the notion of a set of subintervals of [0, 1] which
α−respects h′, which in turn is key for the analysis of the protocol. Finally, we will demonstrate that
the mean squared error of the parameter estimate computed by the generalized algorithm is O( 1

m )

after having rescaled the distribution to have scale parameter 1. For notational simplicty, throughout
this section we will let θ refer to the location parameter of the rescaled distribution.

5.1 Derivation of h′ and α-Respectful Intervals

In this subsection, we let the domain of h′ be [0, 1], recognizing that the results generalize for h′ for
any integral shifts of that domain, as h′ has period 1.
Theorem 5.1. Let F be the antiderivative of f , let h(θ) = E[Ri]. If ∀y ∈ R,

∞∑
i=−∞

f(y + i) is
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absolutely convergent and f is continuous, then

h′(θ) = 1−
∞∑

i=−∞
f(i− θ).

Proof. Let h(θ) = E[Ri]. We have:

h(θ) =

1∫
0

∞∑
i=−∞

xf((x− θ) + i)dx.

Because
∞∑

i=−∞
f((x− θ) + i) is absolutely convergent, we have:

h(θ) =

∞∑
i=−∞

1∫
0

xf((x− θ) + i)dx.

Let u = x+ i− θ. Then x = u− i+ θ. By a change of variables, we have:

h(θ) =

∞∑
i=−∞

1+i−θ∫
i−θ

(u− i+ θ)f(u)du.

Let g(u) = u · f(u). Then

h(θ) =

∞∑
i=−∞

[ 1+i−θ∫
i−θ

g(u)du+ (θ − i)
1+i−θ∫
i−θ

f(u)du
]
.

Let G, F respectively be the antiderivatives of g, f , which exist because f is continuous. Applying
the Fundamental Theorem of Calculus, we have:

h′(θ) =

∞∑
i=−∞

( d
dθ

[
G(1 + i− θ)−G(i− θ)

]
+

d

dθ

(
(θ − i)

[
F (1 + i− θ)− F (i− θ)

]))
.

Applying chain rule, as well as substituting for g,

=

∞∑
i=−∞

[(i− θ)f(i− θ)− (1 + i− θ)f(1 + i− θ) + (θ − i)f(i− θ)− (θ − i)f(1 + i− θ) + F (1 + i− θ)− F (i− θ)]

=

∞∑
i=−∞

[−(1 + i− θ)f(1 + i− θ)− (θ − i)f(1 + i− θ) + F (1 + i− θ)− F (i− θ)]

=

∞∑
i=−∞

[F (1 + i− θ)− F (i− θ)− f(1 + i− θ)].

Recognizing that F is a cumulative distribution function, we conclude

h′(θ) = 1−
∞∑

i=−∞
f(1 + i− θ) = 1−

∞∑
i=−∞

f(i− θ).
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Theorem 5.1 allows an algorithm user to determine whether there exists a set J which α-respects
h′:
Definition 5.1. Let J be a set of disjoint open subintervals of [0, 1]. If i = (a, b) ∈ J , let |i| = b− a,
and let w = (1 − 2α, 1] ∪ [0, 2α) be considered a single contiguous interval; indeed, it is as such if
integral shifts of [0, 1] are considered. We say that J α-respects h′ if:

1. ∀i = (a, b) ∈ J, i 6= w, [b, b+ |i|+ 8α] is disjoint of all elements of J .

2. w ∈ J and [2α, 6α+ 4α] is disjoint of all elements of J , or ∃i ∈ J,w ⊂ i. Define |w| = 4α.

3. ∃m1 > 0,m2 > 0∀x ∈ [0, 1]\J , m1 ≤ |h′(x)| ≤ m2.
Definition 5.2. If J α-respects h′, let J ′ be the extension of J , defined as follows:

i = (a, b) ∈ J ∧ i 6= w =⇒
(
a− 2α, b+ 2α

)
∈ J.′

Let the extension of w in J ′ be (1− 2α− α, 1] ∪ [0, 2α+ α). By construction,

1. ∀i = (a, b) ∈ J ′, [b, b+ |i|] is disjoint of all elements of J ′.

2. ∃m > 0∀x ∈ [0, 1]\J ′, 0 < |h′(x)| ≤ m.

An important property of an α-respectful set J and its extension J ′ is that if γ is the median of the
samples sent by machines 1, ..., r, and the following properties hold:

• {γ} ∈ [0, 1]\J ′

• |{θ} − {γ}| ≤ α

then we have that ∀x ∈ [{θ} − α, {θ}+ α],∃m > 0,

0 < |h′(x)| ≤ m.

If the algorithm user is able to verify that h′(θ) has finitely many zeros, then an α-respectful set J is
guaranteed to exist:
Lemma 5.1. Suppose that h′ has finitely many zeros in the interval [0, 1]. Then there exists a set of
subintervals which α-respects h′.

Proof. If there are finitely many zeros, then all of the zeros are isolated. Therefore, we can pick α and
neighborhoods around the zeros to be sufficiently small that conditions (1) and (2) of Definition 5.1
are satisfied. Let J denote the set of these neighborhoods. For condition (3), by construction, all
values of |h′| on the set [0, 1]\J are at least m1 > 0, where m1 is the minimum value of |h′| over the
set of endpoints of the subintervals of J . The lower bound therefore holds.

For the upper bound of condition (3): because J is the union of open sets, it itself is open; therefore,
[0, 1]\J is closed. Because h′ is continuous, its image is also closed and bounded; the claim thus
follows.
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5.2 Expected Mean Squared Error Derivation

We now demonstrate that E[|θ̂ − θ|2] ≤ O
(

1
m

)
. We first present a few definitions and facts which

will be useful in this analysis. Define B = 1
m−r

m∑
i=r+1

B(i). Because each B(i) is Bernoulli with some

probability p:
Var(B) = E[|B − E[B]|2] = 1

(m− r)2
p(1− p)(m− r) ≤ 1

m− r
.

Applying our assumption that r = o(m),

E[|B − E[B]|2] ≤ 2

m
.

Let 0 < α < 1 be a constant. Define Eα to be the event that the median γ of X1, ..., Xr is within an
additive α of θ. Then the following lemma holds:
Lemma 5.2. If X ∼ µ, and µ is such that ∀α > 0∃β > 0,Pr[X > θ + α] ≤ 1

2 − β. Then for some
arbitrarily large constant a > 0,

Pr[Eα] ≥ 1− 2
(m
σ

)−2aβ2

Proof. Let X(i) ∼ µ be the ith machine’s sample. Let

Y (i) =

{
1 X(i) > θ + α

0 X(i) ≤ θ + α

Define Y = 1
r

r∑
i=1

Y (i). Let E denote the event that γ > θ + α. Observe that E is equivalent to the

event Y ≥ 1
2 and that E[Y ] ≤ 1

2 − β. Using this along with Hoeffding’s inequality, we have:

Pr[E] = Pr
[
Y ≥ 1

2

]
= Pr

[
Y − E[Y ] ≥ 1

2
− E[Y ]

]
≤ Pr[Y − E[Y ] ≥ β]

≤ e−2rβ
2

Recalling that r = O(mσ ), we thus have that for some arbitrarily large constant a > 0, Pr[E] ≤(
m
σ

)−2aβ2

. Analogous reasoning for the event in which γ < θ−α yields the same probability. therefore

Pr[Eα] ≥ 1− 2
(
m
σ

)−2aβ2

.

Recall the definition:

h(x) =

1∫
0

∞∑
i=−∞

yf((y − x) + i)dy

Define F to be the event that the coordinator identifies an i such that:

• |Z + i√
m
− γ| < α

• |h( i√
m
)−B| ≤ 1√

m
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We will now prove a set of lemmas which will together demonstrate that E[|θ̂− θ|2] ≤ O( 1
m ). We will

do this by first bounding E[|θ̂ − θ|2|Eα]. Note that by definition of J ′ and the logic of the algorithm,
we know that {γ + shift} ∈ [0, 1]\J ′. For notational simplicty, we will refer to γ + shift as γ.

The following fact will be used in the lemmas to follow: we know that {γ} ≥ 3α because as a result
of shifting, {γ} ∈ [0, 1]\J ′ and w ∈ J ′. If Eα occurs, the integral component of the estimate must
therefore be correct and |{θ} − {γ}| ≤ α.
Lemma 5.3. E[|θ̂ − θ|2|Eα ∧ F ] ≤ O

(
1
m + E[|B − E[B]|2|Eα ∧ F ]

)
Proof. Because F occurs, the fractional component is i√

m
, where i satisfies the described conditions.

E[|θ̂ − θ|2|Eα ∧ F ] = E
[∣∣∣ i√

m
− {θ}

∣∣∣2|Eα ∧ F] .
We have J α-respects h′; let J ′ be its extension. We are given that | i√

m
−{γ}| ≤ α and {γ} ∈ [0, 1]\J ′.

Therefore, ∃m1 > 0,m2 > 0,∀x between i√
m

and {γ},

m1 ≤ |h′(x)| ≤ m2

where m1,m2 are defined as in Definition 5.1.

We can therefore apply the Mean Value Theorem:

E[|θ̂ − θ|2|Eα ∧ F ] ≤
1

m2
1

E[|h
( i√

m

)
− h({θ})|2|Eα ∧ F ].

By triangle inequality,

E[|θ̂ − θ|2|Eα ∧ F ] ≤
1

m2
1

E
[(∣∣∣h( i√

m

)
−B

∣∣∣+ |B − h({θ})|)2|Eα ∧ F] .
Because F occurs and h({θ}) = E[Ri] = E[Bi] = E[B],

E[|θ̂ − θ|2|Eα ∧ F ] ≤
1

m2
1

E

[(
1√
m

+ |B − E[B]|
)2 ∣∣∣Eα ∧ F] .

Recalling that ∀a, b ∈ R, (a+ b)2 ≤ 2a2 + 2b2,

E[|θ̂ − θ|2|Eα ∧ F ] ≤
1

m2
1

(
2

m
+ 2E

[
B − E[B]|Eα ∧ F

]2)
.

Now, consider the following lemma bounding the expected error in the event that F does not oc-
cur:
Lemma 5.4. E[|θ̂ − θ|2

∣∣Eα ∧ ¬F ] ≤ O(1) · E[|B − E[B]|2
∣∣Eα ∧ ¬F ]

Proof. Given Eα ∧ ¬F , we have that ∀i ∈ Z such that | i√
m
− {γ}| ≤ α,

∣∣∣h( i√
m

)
−B

∣∣∣ > 1√
m
.

We will first demonstrate the following subclaim:

Claim: Let m1 is the constant of Definition 5.1. Let m′1 = min(1,m1). Then, given Eα ∧ ¬F ,
|E[B]−B| ≥ m′1α.
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Proof. Assume to the contrary Eα ∧ ¬F ∧ |E[B] − B| < m′1α. Recalling that E[B] = h(θ) = h({θ}),
we have that |h({θ}) − B| < m′1α. Equivalently, B ∈

(
h({θ}) − m′1α, h({θ}) + m′1α

)
. Because

{γ} ∈ [0, 1]\J ′ by design and Eα has occurred, we have that ∀x ∈ [{θ} − α, {θ}+ α], ∃m1 > 0,m2 >

0,m1 ≤ |h′(x)| ≤ m2.

Because h′ is nowhere zero in [{θ} − α, {θ} + α], either h′ is either uniformly positive or uniformly
negative in that interval. Suppose that it is uniformly positive.

By Mean Value Theorem, h({θ}−α)−h({θ})−α ≤ m2, and therefore h({θ}−α) ≥ h({θ})−m2α. Similarly,
h({θ}+α)−h({θ})

α ≥ m1, and therefore h({θ} + α) ≥ h({θ}) +m1α. By Intermediate Value Theorem,
h(x) takes on all values in the range [h({θ)} − m2α, h({θ}) + m1α] when x ∈ [{θ} − α, {θ} + α].
Recalling that m′1 ≤ m1 ≤ m2, we conclude that ∃y ∈ [{θ} − α, {θ} + α], h(y) = B. Analogous
reasoning for the case in which h′ is uniformly negative yields the same result.

Therefore, let y ∈ [{θ} − α, {θ} + α] such that h(y) = B. Given that m ≥ 1
α2 , ∃i ∈ Z such that

| i√
m
− {θ}| ≤ α ∧ | i√

m
− y| ≤ 1√

m
. We can thus say that |h( i√

m
) − h(y)| ≤ m2| i√

m
− y| ≤ m2√

m
,

contradicting that F did not occur.

Recalling that Eα occurs and γ = θ̂,

|θ̂ − θ|2 ≤ α2 ≤ 1

m′21
|E[B]−B|2.

We thus conclude that E[|θ̂ − θ|2|Eα ∧ ¬F ] ≤ O(1) · E[|B − E[B]|2|Eα ∧ ¬F ], as desired.

Lemma 5.5. E[|θ̂ − θ|2|Eα] ≤ O
(

1
m

)
.

Proof. By definition,

E [|θ̂ − θ|2|Eα] = E[|θ̂ − θ|2|Eα ∧ F ] Pr[F ] + E[|θ̂ − θ|2|Eα ∧ ¬F ] Pr[¬F ]

Applying Lemmas 5.3 and 5.4:

E[|θ̂ − θ|2|Eα] ≤ O
( 1

m
+ E[|B − E[B]|2|Eα ∧ F ]

)
Pr[F ] +O(1) · E[|B − E[B]|2

∣∣Eα ∧ ¬F ] Pr[¬F ]
≤ O

( 1

m

)
+O(1) · E[|B − E[B]|2|Eα]

We observe:
E[|B − E[B]|2|Eα] ≤

E[|B − E[B]|2]
Pr[Eα]

≤ 2E[|B − E[B]|2].

Therefore, recalling that E[|B − E[B]|2] ≤ 2
m ,

E[|B − E[B]|2|Eα] ≤ O
( 1

m

)
.

Finally, we conclude E[|θ̂ − θ|2|Eα] ≤ O
(

1
m

)
.

Theorem 5.2. E[|θ̂ − θ|2] ≤ O
(

1
m

)
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Proof. Let |θ| ≤ U = poly(m). By Lemma 5.2, Pr[¬Eα] ≤ 2 ·
(
m
σ

)−2aβ2

, for some arbitrarily large
constant a > 0. We have that:

E[|θ̂ − θ|2] = E[|θ̂ − θ|2|Eα] Pr[Eα] + E[|θ̂ − θ|2|¬Eα] Pr[¬Eα]

≤ E[|θ̂ − θ|2|Eα] +
2 · 4U2

(m/σ)2aβ2

≤ E[|θ̂ − θ|2|Eα] +
poly(m)

(m/σ)2aβ2

By assumption, ∃c > 0,m/σ ≥ mc. Therefore,

E[|θ̂ − θ|2] ≤ E[|θ̂ − θ|2|Eα] +
poly(m)

m2caβ2 .

Taking a to be adequately large, we have

E[|θ̂ − θ|2] ≤ E[|θ̂ − θ|2|Eα] +
1

m
.

Applying Lemma 5.5, we conclude
E[|θ̂ − θ|2] ≤ O

( 1

m

)
.

Corollary 5.1. Recall that in this section, we referred to θ as the location parameter of the distribution
rescaled to have scale 1. If θ denotes this location parameter and θ denotes the location parameter of
the original, unscaled distribution, we have θ = θ

σ . We conclude:

E[|θ̂ − θ|2] ≤ O
(σ2

m

)
.

6 Cauchy Distribution Analysis

We will now demonstrate that there exists an α-respectful set for a Cauchy distribution. The Cauchy
distribution is notable in statistics as the canonical example of a distribution with undefined mean and
variance and in physics for being the distribution of the X-intercept of a laser spinning with uniformly
distributed angle. It is also one of the few stable distributions.

Let f denote the Cauchy probability density function, and let its location parameter be θ. We will
make the simplifying assumptions that the number of samples per machine is 1 and that the scale
parameter γ = 1.
Lemma 6.1. Let h(θ) = E[Ri]. Then h′(θ) = 1− 1

π

∞∑
i=−∞

1
(1+i−θ)2+1 .

Proof.

E[Ri] =
1

π

1∫
0

∞∑
i=−∞

x

1 + (x+ i− θ)2
dx

13



Noting that
∞∑

i=−∞

x
1+(x+i−θ)2 is absolutely convergent,

E[Ri] =
1

π

∞∑
i=−∞

1∫
0

x

1 + (x+ i− θ)2
dx.

Let u = x+ i− θ. Then x = u− i+ θ.

E[Ri] =
1

π

∞∑
i=−∞

1+i−θ∫
i−θ

u− i+ θ

1 + u2
du

=
1

π

∞∑
i=−∞

1+i−θ∫
i−θ

u

1 + u2
du− 1

π

∞∑
i=−∞

1+i−θ∫
i−θ

i− θ
1 + u2

du

=
1

π

∞∑
i=−∞

∣∣∣1+i−θ
i−θ

1

2
log(u2 + 1)− i− θ

π

∞∑
i=−∞

∣∣∣1+i−θ
i−θ

tan−1(u)

=
1

π

∞∑
i=−∞

[1
2
log((1 + i− θ)2 + 1)− 1

2
log((i− θ)2 + 1)

]
− i− θ

π

∞∑
i=−∞

[tan−1(1 + i− θ)− tan−1(i− θ)]

We have the final result:

h(θ) = E[Ri] = 1
π

∞∑
i=−∞

1
2 log

(1+i−θ)2+1
(i−θ)2+1 − (i− θ)[tan−1(1 + i− θ)− tan−1(i− θ)].

We then have that:

h′(θ) = 1
π

∞∑
i=−∞

[
− 1

(1+i−θ)2+1 − tan−1(i− θ) + tan−1(i− θ + 1)
]
.

Observing that the tan−1 terms telescope, canceling except at the index limits, we have:

h′(θ) = 1− 1
π

∞∑
i=−∞

1
(1+i−θ)2+1 .

Theorem 6.1. Let S = [0, 1]− ([0.2, 0.3]∪ [0.7, 0.8]). If Xi is drawn from a Cauchy distribution with
median θ ∈ S and scale parameter γ = 1, then ∃ constant C1 > 0 such that ∀θ,

C1 ≤ |h′(θ)| ≤ 1

Proof. By Lemma 6.1, we have

h′(θ) = 1− 1

π

∞∑
i=−∞

1

(1 + i− θ)2 + 1

= 1− 1

π

[ 10000∑
i=−10000

1

(1 + i− θ)2 + 1
+

∑
|i|≥10001

1

(1 + i− θ)2 + 1

]
.

From Maple, we have that ∀θ ∈ S,

1× 10−3 ≤
∣∣∣1− 1

π

10000∑
i=−10000

1

(1 + i− θ)2 + 1

∣∣∣ ≤ 4× 10−3. (1)

14



Using the monotonicity of the tails of the distribution, we can bound the sums by the integral:

∑
|i|≥10001

1

(1 + i− θ)2 + 1
≤
−10000∫
−∞

1

(1 + x− θ)2 + 1
dx+

∞∫
10000

1

(1 + x− θ)2 + 1
dx

=
∣∣∣x=−10000
x=−∞

tan−1(1 + x− θ) +
∣∣∣x=∞
x=10000

tan−1(1 + x− θ)

= tan−1(−9999− θ) + π

2
+
π

2
− tan−1(10001− θ).

Observing that tan−1 is a monotonically increasing over R, ∀θ ∈ S, we have:

π + tan−1(−10000)− tan−1(10001) ≤
∑

|i|≥10001

1

(1 + i− θ)2 + 1
≤ π + tan−1(−9999)− tan−1(10000).

1× 10−4 ≤
∑

|i|≥10001

1

(1 + i− θ)2 + 1
≤ 2× 10−4

We finally conclude that ∀θ ∈ S,
1× 10−4 ≤ h′(θ) ≤ 1.

Letting α = 1
100 , we see that S ∪ {( 98

100 , 1] ∪ [0, 2
100 )} indeed α-respects h

′.

Finally, note that if X ∼ µ, Pr[X > θ + α] = 1− F (θ + α) = 1− 1
π tan−1(α)− 1

2 = 1
2 −

1
π tan−1(α).

Therefore, for arbitrary α, take β = 1
π tan−1(α): we thus have that

∀α > 0,∃β > 0,Pr[X > θ + α] ≤ 1

2
− β.

Analogous reasoning demonstrates that ∀α > 0,∃β′ > 0,Pr[X < θ − α] ≤ 1
2 − β

′.

Appendices

A Illustration of Inequality 1
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