
T H E C O M P L E X I T Y O F M AT H E M AT I C A L S TAT E M E N T S

melissa s . queen

Advisors:
Amit Chakrabarti, Dartmouth Computer Science Department

Cris Calude, University of Auckland Computer Science Department

May 2013

A B S T R A C T

In [4, 5, 7, 2], authors C. S. Calude, E. Calude, M. Dinneen and M.
Burgin use algorithmic information theory to develop a method for
measuring the complexity of mathematical statements. In the process,
they define a statement’s complexity as the smallest program that com-
pletely describes that mathematical statement. This paper discusses their
proposed complexity measure and the results of that measure’s ap-
plication to real theorems and conjectures. We then briefly present
a program that was developed to help researchers make these mea-
surements efficiently and accurately. This practical program, called
KERMIT (Kermit Encoded to Register Machine Instruction Transla-
tor), allows researchers to describe their algorithm in a higher level
language than the minimal set of instructions required to make the
final measurement.

After introducing KERMIT, we use it to measure the complexity of
an important open problem: sensitivity versus block sensitivity. We
design a program to describe this problem, and use KERMIT to re-
duce the program down into a standardized, rudimentary brand of
assembly commonly used for making complexity measurements. We
measure the size of this assembly-like program to determine the com-
plexity of our problem, and compare this result to the measured com-
plexities of other important problems.

iii

C O N T E N T S

1 background 1

1.1 Algorithmic Information Theory 2

1.2 The Algorithmic Complexity of Mathematical State-
ments 3

1.3 From Standard Computation to Inductive Computa-
tion 6

1.4 A Register Machine Language 9

1.5 Current Measured Complexities 10

2 development of the kermit program 11

2.1 Introduction 11

2.2 Overview of the KERMIT language 11

2.3 Overview of the program design 12

2.4 Results 12

3 sensitivity and block sensitivity of boolean

functions 13

3.1 Introduction 13

3.2 Our Algorithm 15

3.3 Results 21

3.3.1 Discussion 21

3.3.2 Assessment of KERMIT 22

4 conclusions and future work 23

4.1 Conclusions 23

4.2 A Brief Exploration of the P versus BPP problem 23

4.2.1 Open Problems 24

Appendix 25

a the register machine instruction prefix-free

encoding 27

b the complete sensitivity versus block sensitiv-
ity kermit program 29

c the register machine instruction transla-
tion 33

bibliography 39

v

1
B A C K G R O U N D

Algorithmic Information Theory (AIT) is the result of putting
Shannon’s information theory and Turing’s computability theory

into a cocktail shaker and shaking vigorously. The basic idea
is to measure the complexity of an object by the size in

bits of the smallest program for computing it.

— G. J. Chaitin [3]

Science can be described in many cases as the search for simple
statements that describe complex, observed behaviors. This pursuit
is bold and comes with no intrinsic guarantee of success. But science
has, remarkably, been very successful. We can concisely describe the
physical laws from which the motions of stars, the trajectory of a
ball, or the rotational frequency of a spinning top can be calculated.
The number π cannot be finitely represented by simply printing out
its decimal representation, “3.14159...”, but we have developed defini-
tions of π that can be represented finitely. We have programs that—if
allowed to run forever—can output every digit of π. Such a program
holds all of the information associated with the number π, but is
much more concise (finite, instead of infinite!) than a digit-by-digit
specification.

Scientific theorems must be able to accurately describe observed
phenomena. But to be useful, they must also be significantly less com-
plex than these phenomena1. An infinite chart in which all (correct)
trajectories for all possible projectiles are enumerated would indeed
describe the observed physical motions, but is an unwieldy and ex-
cessively verbose description. We gain much more insight from the
concise description of the relationship between force, mass and ac-
celeration. Of course, the F = ma equation is not the only concise
description of motion; there are different, but equally effective, for-
mulations in Lagrangian and Hamiltonian mechanics. There are thus
many algorithms to describe the complicated observed phenomenon
of motion, but in general we seek the most concise.

This idea of a compressed algorithm or description of a more compli-
cated object is at the heart of Algorithmic Information Theory (AIT).
In AIT, the complexity of an object is defined as the size of its most
concise description.

1 This philosophy was identified by Leibniz in 1686 and paraphrased by Chaitin - if
a physical law can be as complicated as the experimental data that it explains, then
there is always a law, and the notion of “law” becomes meaningless. [10]

1

2 background

1.1 algorithmic information theory

The idea that some description of an object could be used as a mea-
sure of that object’s complexity was introduced independently by
Solomonoff, Kolmogorov and Chaitin in the mid 1960s. The current
formulation of a descriptive complexity can be informally stated as fol-
lows: The complexity of an object A is the size of the smallest pro-
gram that can fully describe A. If the objects that we are consideringOther equivalent

names for
descriptive

complexity include:
Kolmogorov
complexity,

Kolmogorov-Chaitin
complexity and

algorithmic entropy.

are strings, then a string’s complexity is the size of the smallest pro-
gram that can output that string.

Before we can talk about this program-size based complexity, we
must define “program". A program is a string of bits that can be inter-
preted and run by some universal Turing machine. In AIT, we make
the additional stipulation that this universal Turing machine is prefix-
free. This means that any valid program cannot be the prefix to any
other valid program. Put simply, we cannot just add bits to the end
of a syntactically correct program to create another program. We call
such prefix-free programs self-delimiting2.

The following quote by Chaitin ([9], also quoted in [3]) provides a
reasoning for this requirement:

A key point that must be stipulated ... is that an input pro-
gram must be self-delimited: it’s total length (in bits) must
be given within the program itself. (This seemingly mi-
nor point, which paralyzed the field for nearly a decade,
is what entailed the redefinition of algorithmic random-
ness.) Real programming languages are self-delimiting,
because they provide constructs for beginning and end-
ing a program. [. . .] In essence the beginning and ending
constructs for programs and subprograms function respec-
tively like left and right parentheses in mathematical ex-
pressions.

Since we have now introduced the idea of a program-based com-
plexity measure, it is worth stepping back and comparing this mea-
sure to other, more common, program complexities:

• Program-size Complexity - the number of bits needed to repre-
sent the program.

• Space Complexity - the space used by the program during exe-
cution

• Time Complexity - the time (number of steps) required by the
program to complete the computation

2 As an example, notice that we can make any string x self-delimiting by transforming
it into the string 0|x|1x. A Turing machine can read the string 0|x|1x bit by bit and
know exactly when it has reached the end - it does not require a special “end of
string” symbol.

1.2 the algorithmic complexity of mathematical statements 3

The last two measures are common and well-explored. The first mea-
sure, program-size complexity, is distinct in that it is a static measure.
It does not concern itself with what happens when the program ac-
tually begins executing. It isn’t characterized by by a growth rate or
asymptotic behavior (in contrast to time and space complexities) but
rather is a scalar measurement. Program-size complexity is therefore
meaningful only in comparison to other programs. The insight comes
from seeing how the complexity changes from description to descrip-
tion (program to program), rather than between different inputs to
the same program.

For the remainder of this paper, “complexity" will refer exclusively
to program-size complexity.

AIT has lead to many interesting advances in complexity theory -
including new definitions of random strings, incompleteness, and the
development of Chaitin’s numberΩ. It has been related to concepts in
statistical physics and serves as a kind of bridge between the physics
and information science realms.

1.2 the algorithmic complexity of mathematical state-
ments

When program-size complexity is applied to strings, we specify for
a particular string, s, a program, P, such that when P is executed it
produces s. We can say that P describes s.

How can we create a descriptive program to assess the complex-
ity of a mathematical theorem or conjecture? One possible method is
to view mathematical statements as describing the search for a coun-
terexample [4, 5, 2, 7]. A program can easily encode this search. If the
conjecture is false, a counterexample will eventually be found. But if
a conjecture is true, the search will run on forever. If we could some-
how determine ahead of time if the search will run forever, we would
be able to prove the conjecture is true. Unfortunately, this equates to
solving the halting problem, which is known to be undecidable. But
all is not lost, since we are not actually trying to solve the mathemati-
cal conjectures, but rather to measure their complexity.

Another way to view this encoding is as a reduction of the mathe-
matical statement to the halting problem. It is quite remarkable that,
as we will show, there are a huge variety of mathematical statements
for which this reduction is possible.

Currently, using a reduction to the halting problem is the only way
that descriptive programs are built.3 While other constructions might
be possible, they are not actively sought because there are a number

3 It has been suggested that mathematical statements could be reduced to the totality
problem. The possibility and effectiveness of such a reduction is an open problem.

4 background

of reasons why a reduction to the halting problem seems appropri-
ate and satisfying. First, as stated above, it has been used to charac-
terize a large number of mathematical statements - including all Π1
statements - regardless of the statements’ particular details or encom-
passing fields of study. Second, it seems to intuitively and completely
describe the problem; regardless of a statement’s open/solved status,
the program will somehow encode the predicate, and will need to
perform a search over all possible solutions. Last, it ties the resolu-
tion of the mathematical problem—the truth of the statement—to a
well-defined feature of the program itself: whether or not it halts.

To formally specify descriptive programs, we adopt the following
notation:

P(n) A predicate on n

π The Π1 statement: ∀ n P(n)
U A universal prefix-free Turing machine

ΨUπ A program defined for U that describes

the statement π

For any statement π we can construct the program ΨUπ :We use the notation
¬P(n) to indicate
P(n) = false. for all n do

if ¬P(n) then HALT;
end for

Clearly, π is true if and only if ΨUπ never halts. For some statements
we know the halting behavior of ΨUπ . We know that for π = FLT =

Fermat’s Last Theorem, ΨUFLT will never halt, because FLT has been
proven true. For open problems, the halting behavior is not yet
known.

Since we have now defined a way to build a descriptive program for
a mathematical statement π, we can measure its program-size com-
plexity. Of the many programs ΨUπ , we seek that one with lowest
complexity:

CU(π) = min { | ΨUπ | }

The complexity CU(π) is uncomputable [3]; there is no general way
to prove that we have the smallest program ΨUπ . But we can still work
with an upper bound: Let CU(π) be the tightest known upper bound
of CU(π). That is, CU(π) is the size of the smallest known program
ΨUπ .

1.2 the algorithmic complexity of mathematical statements 5

problem name complexity

Legendre’s Conjecture 422

Fermat’s Last Theorem 729

Goldbach’s Conjecture 756

Dyson’s Conjecture 1064

Euler’s Integer Partition Theorem 2396

Riemann Hypothesis 2741

The 4-Color Theorem 3289

Table 1: Current complexity measures of some mathematical conjectures
and theorems

The complexity measure CU is dependent on a fixed choice of U.
However, changing U to a different U ′ will adjust the complexity by
only up to a fixed amount4:

| CU(π) −CU ′(π) | 6 c

So when two complexity measures differ by a large amount for
a Turing machine U, it is unlikely–and after a certain threshold,
impossible–that their ordering will change for a different universal
Turing machine. Of course, our concept of what an acceptable “large
difference” is depends on our (evolving) knowledge of the complex-
ity measure. Currently, experimental results indicate that for minimal
machines c 6 210[6]. This is large compared to some known complex-
ities - but still leaves many pairs of problems confidently ordered.

In practice, to obtain the complexity CU(π), we must develop a
program ΨUπ and evaluate its program-size complexity in some fixed
universal formalism U. We can then improve our choice of ΨUπ to
obtain a better measure of CU(π)5.

This complexity measure was introduced in 2006 [7] and has since
been applied to a number of both open and closed mathematical con-
jectures. A summary of current standings is presented in Table 1.

4 This is an even better situation than that of time complexity – changing universal
Turing machines can adjust the time complexity of a program by a polynomial, rather
than fixed, amount.

5 This process of improving the best known program is not guaranteed to be insight-
ful, but in practice it often becomes convincing that certain programs cannot be
simplified much further.

6 background

1.3 from standard computation to inductive computa-
tion

It is easy to determine the complexity CU of any conjecture for which
we know a Π1 statement – but we would also like to be able to de-
termine the complexities of some other conjectures, specifically those
for which we only know Π2 statements.

If we apply the same “search for a counterexample” to a Π2 state-
ment, π2 = ∀n ∃m P(n,m) we get the program Ψ̂Uπ2 :

for all n do
for all m do

if P(n,m) then break;
end for

end for

Unfortunately, Ψ̂Uπ2 will never halt. If π2 is true, then the program
will iterate over all n and run forever. If π2 is false, the program will
find an n for which no satisfying m exists, and end up iterating over
all m for forever. The program Ψ̂Uπ2 cannot be said to describe π2 in
any meaningful way.

To be able to characterize mathematical statements for which we
know Π2 formulations, we introduce a more powerful model of com-
putation: the inductive Turing machine (ITM). This solution was in-
troduced in 2011 [2]; whether or not a descriptive program for Π2
statements exists for standard Turing machines is an open problem.

Under the inductive model, a program is allowed to run forever but
still be considered to give an answer if after a finite number of steps
the output stabilizes (does not ever change again). Inductive Turing
computation is more powerful than standard Turing computation.

In the following examples, let Z be the output register of the pro-
gram. For a standard Turing machine, the result of the program is the
value of Z when the program halts. For an inductive Turing machine,
the result of the program is the value of Z when the program halts,
or the value of Z if after a certain time Z stabilizes. In the latter case,
the program is not required to halt.

Consider the following program:

Z = 1;
Halt;

In both the standard and the inductive realms, this program will
always halt, and will always give the result 1.

The next program contains an infinite loop. On a standard Turing
machine, this program would never halt and thus would never give
a result. But on an inductive Turing machine, we notice that after
the first iteration of the loop, Z becomes set to 1 and never changes.

1.3 from standard computation to inductive computation 7

The output has stabilized. Thus, if we were to run this program on an
inductive Turing machine it would return the result 1.

for all n do
Z = 1;

end for
Halt;

In this last example, we again have an infinite loop. But this time
the value of Z oscillates between 0 and 1, never stabilizing. Running
this program on an inductive Turing machine will not give a result.

for all n do
Z = 0;
Z = 1;

end for
Halt;

Inductive computation is a theoretical construct and makes no as-
sumptions or suggestions about what is physically possible. Can we
really allow ourselves access to this powerful model of computation,
even though it might be unrealizable in silico? Yes – the physical re-
ality of computation is not the primary concern of this method. Even
standard Turing machines are not physically realized, since they as-
sume access to infinite memory! We simply require a formalism in
which we can build meaningful and descriptive algorithms.

Before we use this model of computation to describe Π2 statements,
let us apply it to the Π1 statements that we’ve already considered. In-
stead of defining the program ΨUπ for U—a regular Turing machine—
let it be defined for an inductive Turing machine (ITM). To describe
an ITM we will write pseudocode as before, but now we use register
Z to indicate the special output register. We say that ΨUπ = i if ΨUπ
stabilizes to the value i. Consider, then, the following program:

Z = 1;
for all n do

if ¬P(n) then Z = 0;
end for
Halt;

Instead of reducing π to the Halting problem, we have reduced it
to whether or not the inductive program ΨUπ = 0 or ΨUπ = 1.

Now we show the true strength of the inductive model, by devel-
oping a program that describes any Π2 statement. The trick is to func-
tionally compose two ITM: to allow one ITM to query another ITM.
In this way the outer loop over n can query an ITM as to whether
there exists an m such that P(n,m). If we carefully design the inner

8 background

ITM, it will always give a result. We call the resulting machine an ITM
of second order.

To describe an ITM of second order, we let register Y be the reserved
output register from the inner ITM. The outer ITM can query this
register to determine the output of the inner ITM.

For the Π2 statement π2, create the program ΨUπ :

Z = 1;
for all n do

// Start of second ITM
Y = 0;
for all m do

if P(n,m) then Y = 1;
end for
// End of second ITM
if Y = 0 then Z = 0;

end for
Halt;

An alternate way to describe the same algorithm, which clearly
shows the composition of two ITMs:

Z = 1;
for all n do

if F(n) = 0 then Z = 0;
end for
Halt;

Where F(n) describes the ITM:
Z = 0;
for all m do

if P(n,m) then Z = 1;
end for
Halt;

We can now formally describe the inductive complexity measures
of first and second order:

Cind,1
U (π) = min { | Ψ̂Uπ1 | }

Cind,2
U (π) = min { | Ψ̂Uπ2 | }

Again, we must work with upper bounds on these complexity
measures. Let Cind,1

U (π) and Cind,2
U (π) be the tightest known upper

bounds on the complexity measure of statement π in the ITMs of first
and second order, respectively.

1.4 a register machine language 9

1.4 a register machine language

The programming language we use is introduced fully in [5, 7], but
we provide an overview of the instructions here for convenience. We
use a register machine language that allows the program access to an
arbitrary number of registers, each of which can hold an unbounded
integer. The registers can be thought of as the variables of the pro-
gram. With just the few available instructions (described below) we
can build complicated routines that manipulate these variables in
many different and meaningful ways.

In the descriptions below, R2 and R3 may refer to the name of a
register, or a literal value. R1 always refers to a register.

=R1,R2,R3

If the content of R1 and R2 are equal, then the execution con-
tinues at the R3rd instruction of the program. If the contents of
registers R1 and R2 are not equal, then execution continues with the
next instruction in sequence.

&R1,R2

The content of register R1 is replaced by R2.

+R1,R2

The content of register R1 is replaced by the sum of the con-
tents of R1 and R2.

!R1

One bit from the input tape is read into the register R1, so the
content of R1 becomes either 0 or 1. Any attempt to read past the last
data-bit results in a run-time error. None of the programs presented
here have any input, so this instruction is never used.

%

This is the last instruction for each register machine program
before the input data. It halts the execution in two possible states:
either successfully halts or it halts with an under-read error.

A register machine program is a finite list of these instructions. The
prefix-free binary encoding of these instructions is discussed in detail
in [4, 5], and in Appendix A. After encoding, the result is a program
that can be interpreted by a prefix-free universal Turing machine (or

10 background

problem name complexity

Legendre’s Conjecture 422

Fermat’s Last Theorem 729

Goldbach’s Conjecture 756

Dyson’s Conjecture 1064

Euler’s Integer Partition Theorem 2396

Riemann Hypothesis 2741

The 4-Color Theorem 3289

The Collatz Conjecture 516

The Twin Prime Conjecture 649

The P versus NP Problem 6495

Goodstein’s Theorem 7909

Table 2: Current complexity standing of some mathematical conjectures and
theorems

inductive Turing machine), meeting our formal specification of a de-
scriptive program. In essence, the program ΨUπ becomes a string of
bits that I could hand to you, along with instructions for interpret-
ing them, and confidently claim “these ones and zeroes describe the
mathematical statement π."

1.5 current measured complexities

Table 2 shows a summary of the currently measured mathematical
conjectures and theorems. They are divided into two groups by the
horizontal line: The top group have been measured with an ITM of
first order, and the bottom group have been measured with an ITM
of second order.

2
D E V E L O P M E N T O F T H E K E R M I T P R O G R A M

A note on semantics: KERMIT (Kermit Encoding to Register Machine
Instruction Translator) refers to both the name of the translation pro-
gram, and the programming language that the program recognizes.

2.1 introduction

Creating register machine programs by hand is a very tedious and
error-prone process. Many times the program will make use of rudi-
mentary operations such as conditional if-else statements, while-
loops and calls to subroutines. In the absence of an automated pro-
cess, the programmer is forced to write many lines that are merely
repetitions of a simple pattern.

KERMIT (Kermit Encoding to Register Machine Instruction Trans-
lator) was created to make the development of register machine pro-
grams faster, simpler and more accurate. Instead of hand-crafting a
program from the five basic instructions offered by our register ma-
chine language, a user can build a program out of the many higher-
level directives available in the KERMIT language. The translator will
take such a program and parse it down into a concise register ma-
chine program. KERMIT is distinct from other compilers in that the
goal is a concise–rather than fast–program.

Our goal is that this translation service will allow researchers to
more conveniently and quickly make measurements of mathematical
statements.

2.2 overview of the kermit language

The KERMIT program supports three main types of instructions: con-
ditionals, loops, and subroutine calls. Users may define their own
subroutines, and KERMIT provides automatic access to a basic library
with arithmetic subroutines MULT (multiplication), DIV (integer di-
vision), POW (exponentiation), CMP (comparison), SUBT (subtrac-
tion) and DIV2 (division by 2). A basic array library is also included,
using Dinneen’s encoding [11]. This includes subroutines: SIZE (get
the size of an array), APPEND (append a new element), ELM (read
the value of a particular element), and RPL (replace a particular ele-
ment).

The programming style of KERMIT is similar to that of C, but
KERMIT offers a much more primitive set of options. The language
doesn’t abstract away too much of underlying register machine costs;

11

12 development of the kermit program

there are very few single lines in KERMIT that translate to more than
4 or 5 register machine instructions. The fear is that we are much
more accustomed to programming for time complexity, rather than
program-size complexity. If we make KERMIT too similar to regu-
lar programming environments, we may lose the insights we need to
make a program extremely concise.

2.3 overview of the program design

The translation process is broken into three main steps, outlined be-
low.

1. Labeling of the input file. The program opens the input file and
reads it in line by line. For each line, it checks to see if that
line matches any of the valid formats for a KERMIT instruction.
When a match is made, a node is created and added into a
doubly linked list (DLL) of instructions.

When labeling succeeds, we know that each line of the input file
matches one of the expected formats. But that is not a guarantee
that the syntax is completely valid.

2. Linking of the instructions. The final syntax checking is done in
the linking stage. Linking connects related statements together.
For example, every statement with an opening brace is con-
nected to the corresponding closing brace. The breaks and con-
tinues within a loop are connected to that loop node. Return
statements within a subroutine are connected to that subroutine
node.

These connections are made because in the final conversion at
least one of the nodes in each connection needs to access infor-
mation stored in the other node. For example, a break statement
needs to know where the end of the loop is located.

3. Conversion to register machine instructions. After the DLL of in-
struction nodes has been linked, we can iterate through the list
and convert each KERMIT instruction into the corresponding
register machine instructions. Some instruction nodes will trans-
late to a single register machine instruction. Others will create
multiple consecutive instructions, and some may create instruc-
tions in different locations in the final program (Ex: Loops will
have instructions at both the start and end of the loop).

2.4 results

The KERMIT program is working successfully, and in Chapter 3 we
use it to help measure the complexity of an important open problem.

3
S E N S I T I V I T Y A N D B L O C K S E N S I T I V I T Y O F
B O O L E A N F U N C T I O N S

Sensitivity is one the simplest, and block sensitivity one
of the most useful, invariants of boolean functions.

— Claire Kenyon and Samuel Kutin [13]

3.1 introduction

A boolean function of n variables is a function f : {0, 1}n → {0, 1}.
Sensitivity and block sensitivity are complexity measures of boolean
functions. In the definitions below we will use the notation intro-
duced by Nisan [14]: Let w be a boolean string of length n , and
let S be any subset of indices, S ⊆ (1 . . . n). Let wS mean the string w,
with exactly the bits at indices S flipped. We say that function f with
input w is sensitive to indices S if f(w) 6= f(wS).

We begin by defining the sensitivity and block sensitivity of a func-
tion with regards to a particular input. The overall sensitivity and
block sensitivity are then the maximum values of these individual
sensitivities over all inputs.

definition 1 : The sensitivity of function f with input w, denoted
s(f,w) is the number of indices for which f is sensitive. That is,
the number of indices i such that f(w) 6= f(w{i}). The sensitivity
of function f, denoted s(f), is the maximum sensitivity over all
possible inputs:

s(f) = max
w

(s(f,w)) (1)

definition 2 : For block sensitivity, we consider the behavior of the
boolean function when a subset of indices is flipped, rather than
just a single index. For a function f with input w, we define the
block sensitivity as the maximum number of disjoint subsets
for which f is sensitive. Let Bi ⊆ {1 . . . n} denote a non-empty
subset of indices. Consider the OR function over 2 bits:

OR(00) = 0; OR(01) = 1; OR(10) = 1; OR(11) = 1;

The possible Bi are the subsets {0}, {1}, and {0, 1}. We say that
f(w) is sensitive to a particular Bi if f(w) 6= f(wBi). In our ex-
ample, OR(11) is sensitive only to subset {0, 1}, while OR(00) is
sensitive to all three subsets. We seek the maximum number of
disjoint subsets, so we find that:

13

14 sensitivity and block sensitivity of boolean functions

bs(OR, (00)) = 2;

bs(OR, (01)) = 1;

bs(OR, (10)) = 1;

bs(OR, (11)) = 1;

In general, then, the block sensitivity of f with input w, bs(f,w),
is the maximum number of disjoint subsets B1 . . . Bk for which
f(w) 6= f(wBi).

From this definition of block sensitivity for a particular input,
we build the overall block sensitivity of function f by taking the
maximum over all possible inputs:

bs(f) = max
w

(bs(f,w)) (2)

The overall block sensitivity in our example is then bs(OR) = 2.

Block sensitivity was defined by Nisan in 1989 [14] and shown
to be polynomially related to decision tree complexities. Nisan was
further able to show that the block sensitivity of a boolean function
characterizes the time needed to compute that function on a CREW
(Concurrent-Read, Exclusive-Write) PRAM (Parallel Random Access
Machine) with infinite processors1.

Block sensitivity has since been shown to be entwined with such
diverse areas of complexity as: boolean circuit reliability [12], the de-
gree of the (unique) real multilinear polynomial which characterizes
a boolean function [14], and even quantum oracle complexity[1].

While block sensitivity has been shown to be polynomially related
to decision tree depth and certificate complexity, it has been difficult
to develop a tight bound on the relationship between block sensitivity
and sensitivity. We can conclude that bs(f) > s(f), simply by noticing
that any sensitivity measure can be transformed into a block sensitiv-
ity measure by choosing blocks of size 1. Rubinstein showed in 1992

that there is an infinite class of boolean functions for which the sen-
sitivity and block sensitivity are quadratically related: bs(f) = 2s(f)2

[15]. In 2010, Virza improved this result to show that there is an in-
finite set of boolean functions for which bs(f) = 1

2(s(f)
2 + s(f)) [16].

The best general upper bound that we have, however, is exponential:
bs(f) 6 e√

2π
es(f)

√
s(f), shown in [13].

Whether or not sensitivity and block sensitivity are polynomially
related is an open problem of considerable interest.

1 Specifically, the time to compute is a logarithm of the block sensitivity, up to a
bounded factor.

3.2 our algorithm 15

3.2 our algorithm

The conjecture “Sensitivity and Block Sensitivity are polynomially
related” can be formally stated:

∃(C, J) such that ∀f, bs(f) 6 s(f)J +C (3)

Where f is a boolean function and (C, J) are a pair of integers that
define a polynomial. Restating the conjecture as its negation gives us Note that since we

are searching for
any polynomial
bound, not
necessarily the
tightest one, we only
need to consider
polynomials of the
form xJ +C.

a Π2 statement, for which we can write a descriptive program. The
conjecture is thus:

∀(C, J) ∃f, such that bs(f) > s(f)J +C (4)

From this equation we can construct the following program, using
an inductive Turing machine of the second order:

Z = 0;
for all (C, J) do

// START OF SECOND ITM
Y = 0;
for all boolean functions f do

if (bs(f) > s(f)J +C) then Y = 1;
end for
// END OF SECOND ITM
if Y == 0 then Z = 1;

end for

Registers Z and Y are the output registers for the outer and inner
inductive Turing machines, respectively.

To implement this program, we must enumerate all pairs (C, J). We
chose to do this by enumerating all integers, interpreting each integer
as an array (using the array encoding developed by Dinneen [11] and
implemented in the KERMIT program). If the array has exactly two
elements, we interpret these as (C, J). Otherwise, we simply loop to
the next integer. If we were concerned with the running time of this
program, out methods would be incredibly inefficient – most arrays
do not have only 2 elements! But we are concerned only with brevity,
and found this to be a concise way to describe the loop.

To perform the enumeration over all boolean functions, we use a
similar trick. We again loop over all integers, and interpret each as an
array. If the array has 2k elements for some integer k, then we treat
this array as a truth table for a boolean function of k variables. In this
way, we can enumerate all boolean functions for any number of input
variables.

To test the sensitivity of a function F with a particular input w, we
generated a flip(w, i, j) subroutine that flips the bits of w from index
i through j. The KERMIT encoded subroutine is included below:

16 sensitivity and block sensitivity of boolean functions

// Flips the bit at index i. Alters w directly. Let |w| = k.
flip(w, i, k) {

// We will be reading bits out of w and into copy
copy = 1;

5 counter = 0;

while (counter != k) {

// Recall the DIV2 divides w by two,
// and saves the remainder into bit
bit = DIV2(w);

10 if (counter == i) {

// Flip the bit at index i
if (bit == 0) {

copy += 1;

}

15 }

else {

copy += bit;

}

copy = copy + copy;

20 counter++;

}

// The result in copy is reversed, we
// must iterate through again to correct
w = 0;

25 while (copy != 1) {

bit = DIV2(copy);

w += bit;

w = w + w;

}

30 }

Listing 1: Flip subroutine

To read the bits of a string w we use DIV2, which alters the string
directly. We read the bits and save them back into another register
copy, flipping bit i when we come to it. Saving the bits back into copy

reverses their order, so before we finish we must iterate through the
bits of copy and write them back into w. The result is w with the bit at
index i flipped.

The sensitivity-calculating routine is presented below. Since this
subroutine is called only once from within the main program, in the
final version this code is executed directly in main, rather than via a
subroutine call. For clarity, it is presented separately here.

3.2 our algorithm 17

// F is a truth table, stored as an array of size maxw, where maxw
= 2 k̂

s(F, maxw, k) {

S = 0;

5 w = 0;

maxw++;

while (w != maxw) {

// Count the sensitive indices for this particular w
count = 0;

10 index = 0;

while (index != k){

wcopy = w;

flip(w,index);

// Check if it’s sensitive
15 match = 0;

new = F[w];

if (new != 0) {

match++;

}

20 w = wcopy;

orig = F[w];

if (orig != 0) {

match++;

}

25 // When match == 1, the index is sensitive
if (match != 1) {

count++;

}

index++;

30 }

// Take the maximum
if (count > S) {

S = count;

}

35 }

return S;

}

Listing 2: Sensitivity subroutine

The sensitivity subroutine is given a function F in the form of an
array of size maxw representing a truth table. The function F takes k
variables (maxw = 2k). Only one of k or maxw is necessary, but they
are both passed to the function so that they only need to be calculated
once in the main program.

The subroutine loops over all possible inputs w to the function,
values 0 through maxw− 1 (hence the name maxw). For each input,
the subroutine counts the number of indices for which the function
is sensitive. It does this by iteratively invoking the flip subroutine
for every index 0 . . . k− 1, and comparing the result of the function
on the original and flipped inputs. Taking the maximum of all these
counts, we acquire the sensitivity of function F.

18 sensitivity and block sensitivity of boolean functions

The block sensitivity subroutine is more complicated, requiring
three nested loops. The outer loop goes over all inputs to the func-
tion F, the same as for the sensitivity calculation. But then, instead of
looping over each index, we must loop over all possible sets of disjoint
subsets of indices. We use Observation 1 to make a shortcut in our
enumeration of subsets: We need only enumerate sets of continuous
blocks. This is easily done by interpreting the alternating blocks of 1s
and 0s in a binary number as defining subsets of indices. For example,
the binary number 111101100 defines subsets {0, 1}, {2, 3}, {4}, {5, 6, 7, 8}.

definition 1 : Let bs ′(f) be the block sensitivity of f, with the re-
striction that all disjoint subsets must be contiguous blocks of
indices.

observation 1 : For every f such that bs(f) 6= bs ′(f), ∃ at least 1

other function f ′ such that:

1. bs(f ′) = bs(f)

2. s(f ′) = s(f)

3. bs(f ′) = bs ′(f ′)

Proof: Take any function f : {0, 1}n → {0, 1} for which bs(f) 6=
bs ′(f), and consider the input ŵ for which it had maximum
block sensitivity. Now consider applying a “reordering” func-
tion g : {0, 1}n → {0, 1}n that arranges the input ŵ such that the
sensitive, disjoint subsets are in contiguous blocks. Now con-
struct another boolean function f ′ such that:

f ′(g(w)) = f(w) ∀ w

Clearly, f ′(g(wS)) 6= f ′(g(w)) ⇐⇒ f(wS) 6= f(w). Thus, the
sensitivity and block sensitivity of the two functions must be
equivalent: bs(f) = bs(f ′) and s(f) = s(f ′). This satisfies re-
quirements 1 and 2, and by our choice of g we also satisfy 3.
�

bs(F, maxw) {

BS = 0;

w = 0;

maxw++;

5 while (w != maxw) {

count = 0;

// Instead of just looping over i, we need to generate
partitions

p = 0;

while (p != maxw) {

10 // Partitions are represented as continuous blocks of
1s or 0s

// Read off the next partition, and for each index
flip that bit.

subcount = 0;

pcopy = p;

3.2 our algorithm 19

flag = DIV2(pcopy);

15 index = 0;

// And for each partition, check the sensitivity of
each subset

while (pcopy != 0) {

wcopy = w;

do {

20 flip(w, index);

index++;

bit = DIV2(pcopy);

}

while (bit == flag);

25 // We have flipped an entire subset, now check if
it is sensitive

match = 0;

new = F[w];

if (new != 0) {

match++;

30 }

w = wcopy;

orig = F[w];

if (orig != 0) {

match++;

35 }

// When match == 1, the subset is sensitive
if (match == 1) {

subcount++;

}

40 flag = bit;

}

// Take the maximum over all possible partitions
if (subcount > count) {

count = subcount;

45 }

p++;

}

// Take the maximum over all possible inputs
if (count > BS) {

50 BS = count;

}

w++;

}

return BS;

55 }

Listing 3: Block sensitivity subroutine

The main program consists of two nested inductive Turing ma-
chines, described in the following code as nested loops. The outer
loop enumerates polynomials, while the inner loop attempts to break
this polynomial bound by finding a function F such that bs(F) >
s(F)J +C.

The full program, assembled in the format in which it was passed
to the KERMIT program, is included in Appendix B.

20 sensitivity and block sensitivity of boolean functions

Z = 0;

CJ = 0;

while (TRUE) {

CJ++;

5 // See if JC is a valid pair
numelm = SIZE(CJ);

if (numelm != 2) {

// Try another (C,J) candidate
break;

10 }

else {

C = CJ[0];

J = CJ[1];

}

15 // START OF SECOND INDUCTIVE TURING MACHINE
Y = 0;

F = 0;

while (TRUE) {

F++;

20 numelm = SIZE(F);

// Check to see if |F| is a power of 2 by seeing if there
// is exactly one 1 in the binary representation of F
cp = numelm;

k = 0;

25 bit = DIV2(cp);

while (bit != 1) {

k++;

bit = DIV2(cp);

}

30 if (cp != 0) {

// F is not a valid truth table
break;

}

S = s(F, numelm, k);

35 BS = bs(F, numelm);

pol = POW(S,J);

pol = pol + C;

if (BS > pol) {

// This polynomial is not a bound − try another polynomial
40 Y = 1;

break;
}

}

// END OF SECOND INDUCTIVE TURING MACHINE
45

// Check the output of the inner inductive turing machine
if (Y == 0) {

// Y = 0 indicates that all functions obey the polynomial
relationship,

// so we have proven the theorem
50 Z = 1;

HALT;

}

}

Listing 4: Main program

3.3 results 21

3.3 results

We ran KERMIT on the full program (included in appendix B), and
made the following adjustments to the output before continuing:

• We put the POW subroutine directly into the main program, since
it was only called once. The translator printed a warning alert-
ing us to this fact.

• In subroutine flip we adjusted the use of return register retval,
and removed lines flip7, flip17, and flip20.

• On lines L8 through L20 we have an if-statement that contains
only a break. When an if-else statement is translated, it normally
creates a branch at the end of the if-statement body that jumps
over the body of the else-statement. But since the the body of
the if-statement is an unconditional branch, the second branch
on line L10 is unnecessary, and we removed it.

• The second call to ELM (line L16) unnecessarily re-wrote the ar-
ray CJ into input register a. Register a was already set to CJ
by the previous subroutine call. We removed this line. Similarly,
we remove L63 and L118.

• In lines L28 through L42 we are determining if the size of F is a
power of 2. The KERMIT program uses a register called bit, but
in the register machine code it became clear that it was more
concise to use register c, the default output register of the DIV2
subroutine. This removed lines L33 and L39.

• When a subroutine call occurs directly before an unconditional
branch, we can remove the unconditional branch by setting the
subroutine return location (ret) to be the location that the un-
conditional branch would regularly go to. With this reasoning
we were able to remove lines L40 and L169.

• The given input string to subroutine flip is always the string
in register w and the index in register index. We were able to
remove these input assignment lines: L51, L52, L100 and L101.

To convert the register machine program into its binary representa-
tion, we used the Register machine syntax checker and translator (Version
0.0.3.1) by Aniruddh Gandhi, University of Auckland. Before making
the above adjustments, the program was measured at 4916 bits. After
making the optimizing adjustments, it measured at 4594.

3.3.1 Discussion

Previous complexity measurements of Π2 statements have seen an
order of magnitude gap between “simple” statements and more com-

22 sensitivity and block sensitivity of boolean functions

plex ones (see Table 2). Our measurement of the Sensitivity Versus
Block Sensitivity statement creates a much-needed bridge between
these extremes. It also provides a measure for an open problem in
computational complexity, while many of the other measured prob-
lems come from number theory.

3.3.2 Assessment of KERMIT

Making adjustments by hand to the translated register machine pro-
gram improved the complexity measure by only 6.5%, indicating that
the KERMIT program did a good job at concisely translating the Sen-
sitivity Versus Block Sensitivity program. Furthermore, the adjust-
ments that we did make were well-defined and generalizable, indi-
cating that they could be incorporated into the KERMIT program in
the future.

It should be noted that KERMIT does not assess or attempt to
improve the conciseness of the chosen algorithm. For instance, we
could have chosen to represent the boolean functions in many differ-
ent ways, each of which would have changed our enumeration and
many other parts of the main program. These choices still need to
be made by the designer. We do hope, though, that because KERMIT
makes the compiling of a high-level algorithm to register machine
code so much faster, investigators in the future will be able to explore
many different algorithms and choose the tightest possible bound.

4
C O N C L U S I O N S A N D F U T U R E W O R K

4.1 conclusions

We have introduced a new translator, KERMIT, that greatly assists
the development of descriptive programs for mathematical conjec-
tures. KERMIT was applied to an open problem of considerable in-
terest - the Sensitivity Versus Block Sensitivity of Boolean functions.
Using a combination of the KERMIT program and some minor hand-
tuning, we created a concise register machine program of size 4594

bits. This puts the sensitivity versus block sensitivity problem be-
tween the Twin Prime Conjecture (low complexity) and the P versus
NP Problem (high complexity).

4.2 a brief exploration of the p versus bpp problem

The complexity of the P versus NP problem has been measured [8],
and it could be insightful to compare this to other open problems in
computational complexity theory. We consequently decided to inves-
tigate the P versus BPP problem. The P (polynomial) class is the same
as in P versus NP, and is therefore the class of problems solvable in
polynomial time on a standard Turing machine. BPP (bounded-error
probabilistic polynomial time) characterizes a class of problems that
can be solved in polynomial time on a probabilistic Turing machine,
with error less than 1

3 . A probabilistic Turing machine is allowed ac-
cess to a random bit generator (a fair coin). A major open question is:
Does P = BPP?

We approached this problem in the same way that we approached
P versus NP problem, but quickly ran into trouble. For P versus NP,
we had searched for a program P and a polynomial bound (C, J) such (C, J) again

characterizes the
polynomial xJ +C.

that P can solve every instance of Subset Sum in polynomial time.
Because Subset Sum is an NP-complete problem, finding such a pro-
gram means that we have shown P to be equal to NP. Otherwise,
P ⊂ NP. But there is no known BPP-complete problem! So we can’t
simply search for a polynomial time solution to a particular problem;
we need to search for a polynomial time solution to all possible prob-
lems in BPP. To determine if we have found a polynomial time solu-
tion, we need to test it on every instance of the particular BPP prob-
lem. Clearly, this can be formulated only as a Σ3 or Π3 statement, and
will require three nested loops and an inductive Turing machine of
third order. No problem of the third order has been measured, P v.
BPP would be the first of that class.

23

24 conclusions and future work

We did not continue to investigate P v. BPP after realizing these
difficulties. But a descriptive program could be built, and an induc-
tive complexity of the third order measured. It is interesting to note
that we were forced into Π3 by the lack of a BPP-complete problem,
but such a problem might exist. If at some point in the future such a
problem is discovered, P v. BPP could be described with a Π2 state-
ment and would be comparable to P v. NP. So while our complexity
measure attempts to view mathematical conjectures without regard
to their open/closed status, it can still be dependent on our current
knowledge or understanding of the problem. In this case, it appears
that the complexity of P versus BPP is closely tied to the discovery
(or proof of non-existence) of a BPP-complete problem.

4.2.1 Open Problems

This research area is filled with fascinating open problems. A small
sampling:

• What is the complexity of other major open problems, ex: the
Poincare Conjecture?

• Is this complexity measure an effective “difficulty” ranking?

• Can we prove lower bounds on this complexity measure?

• Goodstein’s Theorem is given a very high complexity measure.
Though it has been proven in second order arithmetics, it is
unprovable in Peano Arithmetic. Is this a “source" of its com-
plexity? How does it compare to other statements independent
of Peano Arithmetic?

• Is there a relationship between the complexity of solved prob-
lems, and their proof complexity?

A P P E N D I X

25

A
T H E R E G I S T E R M A C H I N E I N S T R U C T I O N
P R E F I X - F R E E E N C O D I N G

Each instruction has its own binary op-code. Register names are en-
coded as the string code1 = 0|x|1x, x ∈ {0, 1}∗ and literals are encoded
code2 = 1|x|0x, x ∈ {0, 1}∗. Some instructions can take registers or lit-
erals, but this encoding gives an unambiguous distinction between
the two options. The encodings are summarized below:

• & R1,R2 is coded in two different ways depending on R2:

01code1(R1)codei(R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.

• + R1,R2 is coded in two different ways depending on R2:

111code1(R1)codei(R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.

• = R1,R2,R3 is coded in four different ways depending on the
data types of R2 and R3:

00code1(R1)codei(R2)codej(R3),

where i = 1 if R2 is a register and i = 2 if R2 is an integer, j = 1
if R3 is a register and j = 2 if R3 is an integer.

• !R1 is coded by

110code1(R1).

• % is coded by

100.

As a concrete example, the subtraction routine from the basic li-
brary is given below. It uses registers a, b, d, e and ret. It com-
putes a− b, puts the answer in d then returns to the line number
stored in ret. It assumes that a > b.

27

28 the register machine instruction prefix-free encoding

Label Instruction Comments Binary representation

SUBT1 & d, 0 01 00111 100

SUBT2 & e, d 01 00111 100

SUBT3 + e, b 100 011 00100

SUBT4 = e, a, ret // d+b=a 101 011 010 00101

SUBT5 + d, 1 100 00111 101

SUBT6 = a, a, SUBT2 // loop 101 010 010 11010

The register names, a = 010, b = 00100, ret = 00101, d = 00111, and
e = 011, were chosen to minimize the overall number of bits used. In
total, this routine is represented by the 70-bit string:

01001111000100111100100011001001010

11010001011000011110110101001011010

B
T H E C O M P L E T E S E N S I T I V I T Y V E R S U S B L O C K
S E N S I T I V I T Y K E R M I T P R O G R A M

Z = 0;

CJ = 0;

while (TRUE) {

CJ++;

5 // See if JC is a valid pair
numelm = SIZE(CJ);

if (numelm != 2) {

// Try another (C,J) candidate
break;

10 }

else {

C = CJ[0];

J = CJ[1];

}

15 // START OF SECOND INDUCTIVE TURING MACHINE
Y = 0;

F = 0;

while (TRUE) {

F++;

20 numelm = SIZE(F);

// Check to see if |F| is a power of 2 by seeing if there
// is exactly one 1 in the binary representation of F
cp = numelm;

k = 0;

25 bit = DIV2(cp);

while (bit != 1) {

k++;

bit = DIV2(cp);

}

30 if (cp != 0) {

// F is not a valid truth table
break;

}

// Calculate the sensitivity
35 S = 0;

maxi = k + 1;

w = 0;

while (w != numelm) {

// Count the sensitive indices for this particular w
40 count = 0;

index = 0;

while (index != maxi){

wcopy = w;

flip(w,index);

45 orig = F[wcopy];

new = F[w];

if (orig != new) {

count++;

}

29

30 the complete sensitivity versus block sensitivity kermit program

50 w = wcopy;

index++;

}

// Take the maximum over the counts for all inputs
if (count > S) {

55 S = count;

}

w++;

}

60 // Calculate the block sensitivity
BS = 0;

w = 0;

while (w != numelm) {

count = 0;

65 // Instead of just looping over i, we need to generate
partitions

p = 0;

while (p != numelm) {

// Partitions are represented as continuous blocks of 1s
or 0s

// Read off the next partition, and for each index flip
that bit.

70 subcount = 0;

pcopy = p;

flag = DIV2(pcopy);

index = 0;

// And for each partition, check the sensitivity of each
subset

75 while (pcopy != 0) {

// make a working copy
neww = w;

do {

flip(neww, index);

80 index++;

bit = DIV2(pcopy);

}

while (bit == flag);

// We have flipped an entire subset, now check if it is
sensitive

85 orig = F[w];

new = F[neww];

if (orig != new) {

subcount++;

}

90 flag = bit;

}

// Take the maximum over all possible partitions
if (subcount > count) {

count = subcount;

95 }

p++;

}

// Take the maximum over all possible inputs
if (count > BS) {

100 BS = count;

}

the complete sensitivity versus block sensitivity kermit program 31

w++;

}

105 pol = POW(S,J);

pol = pol + C;

if (BS > pol) {

// This polynomial is not a bound − try another polynomial
Y = 1;

110 break;
}

}

// END OF SECOND INDUCTIVE TURING MACHINE

115 // Check the output of the inner inductive turing machine
if (Y = 0) {

// Y = 0 indicates that all functions obey the polynomial
relationship,

// so we have proven the theorem
Z = 1;

120 HALT;

}

}

Listing 5: Complete program

C
T H E R E G I S T E R M A C H I N E I N S T R U C T I O N
T R A N S L AT I O N

L0 = a, a, L1 // Jump to the start of MAIN

flip1 & copy, 1

flip2 = w, 0, flip12 // While loop

flip3 & a, w // Input to subroutine

flip4 & flipret, ret // Store the return location for the current subroutine

flip5 & ret, flip7 // Save the return location

flip6 = a, a, DIV21 // Goto function

flip8 & bit, c // Save the result

flip9 + copy, bit

flip10 + copy, copy

flip11 = a, a, flip2 // Jump to start of the loop

// Now go through again, and flip the ith bit we come to

flip12 & counter, 0

flip13 & w, 0

flip14 = copy, 1, flip30 // While loop

flip15 + counter, 1

flip16 & a, copy // Input to subroutine

flip18 & ret, flip20 // Save the return location

flip19 = a, a, DIV21 // Goto function

flip21 & bit, c // Save the result

flip22 = counter, index, L25 // If statement

flip23 + w, bit

flip24 = a, a, L28 // Jump to end

// Flip the bit

flip25 = bit, 0, L27 // If statement

flip26 = a, a, L28 // Jump to end

flip27 + w, 1

flip28 + w, w

flip29 = a, a, flip14 // Jump to start of the loop

flip30 = a, a, flipret // Return

L1 & Z, 0

L2 & CJ, 0

L3 + CJ, 1

// See if JC is a valid pair

L4 & a, CJ // Input to subroutine

L5 & ret, L7 // Save the return location

L6 = a, a, SIZE1 // Goto function

L7 & numelm, c // Save the result

33

34 the register machine instruction translation

L8 = numelm, 2, L11 // If statement

// Try another (C,J) candidate

L9 = a, a, L170 // Break

L11 & a, CJ // Input to subroutine

L12 & I, 0 // Input to subroutine

L13 & ret, L15 // Save the return location

L14 = a, a, ELM1 // Goto function

L15 & C, d // Save the result

L17 & I, 1 // Input to subroutine

L18 & ret, L20 // Save the return location

L19 = a, a, ELM1 // Goto function

L20 & J, d // Save the result

// START OF SECOND INDUCTIVE TURING MACHINE

L21 & Y, 0

L22 & F, 0

L23 + F, 1

L24 & a, F // Input to subroutine

L25 & ret, L27 // Save the return location

L26 = a, a, SIZE1 // Goto function

L27 & numelm, c // Save the result

// Check to see if |F| is a power of 2 by seeing if there

// is exactly one 1 in the binary representation of F

L28 & cp, numelm

L29 & k, 0

L30 & a, cp // Input to subroutine

L31 & ret, L34 // Save the return location

L32 = a, a, DIV21 // Goto function

L34 = c, 1, L41 // While loop

L35 + k, 1

L36 & a, cp // Input to subroutine

L37 & ret, L34 // Save the return location

L38 = a, a, DIV21 // Goto function

L41 = cp, 0, L43 // If !=, jump to end

// F is not a valid truth table

L42 = a, a, L165 // Break

// Calculate the sensitivity

L43 & S, 0

L44 & w, 0

L45 = w, numelm, L85 // While loop

// Count the sensitive indices for this particular w

L46 & count, 0

L47 & index, 0

L48 + k, 1

L49 = index, k, L77 // While loop

L50 & wcopy, w

L53 & ret, L55 // Save the return location

the register machine instruction translation 35

L54 = a, a, flip1 // Goto function

L55 + w, 1

// Because indexing starts at 1, but input w=0 sometimes, we always +1

L56 & a, F // Input to subroutine

L57 & I, w // Input to subroutine

L58 & ret, L60 // Save the return location

L59 = a, a, ELM1 // Goto function

L60 & new, d // Save the result

L61 & w, wcopy

L62 + w, 1

L64 & I, w // Input to subroutine

L65 & ret, L67 // Save the return location

L66 = a, a, ELM1 // Goto function

L67 & orig, d // Save the result

L68 & match, 0

L69 = orig, 0, L71 // If !=, jump to end

L70 + match, 1

L71 = new, 0, L73 // If !=, jump to end

L72 + match, 1

L73 = match, 1, L75 // If !=, jump to end

L74 + count, 1

L75 + index, 1

L76 = a, a, L49 // Jump to start of the loop

// Take the maximum over the counts for all inputs

L77 & a, count // Input to subroutine

L78 & b, S // Input to subroutine

L79 & ret, L81 // Save the return location

L80 = a, a, CMP1 // Goto function

L81 = d, 2, L83 // If statement

L82 = a, a, L84 // Jump to end

L83 & S, count

L84 = a, a, L45 // Jump to start of the loop

// Calculate the block sensitivity

L85 & BS, 0

L86 & w, 0

L87 = w, numelm, L150 // While loop

L88 & count, 0

// Instead of just looping over i, we need to generate partitions

L89 & p, 0

L90 = p, numelm, L141 // While loop

// Partitions are represented as continuous blocks of 1s or 0s

// Read off the next partition, and for each index flip that bit.

L91 & subcount, 0

L92 & pcopy, p

L93 & a, pcopy // Input to subroutine

L94 & ret, L96 // Save the return location

36 the register machine instruction translation

L95 = a, a, DIV21 // Goto function

L96 & flag, c // Save the result

L97 & index, 0

// And for each partition, check the sensitivity of each subset

L98 = pcopy, 0, L132 // While loop

// make a working copy

L99 & wcopy, w

L102 & ret, L104 // Save the return location

L103 = a, a, flip1 // Goto function

L104 + index, 1

L105 & a, pcopy // Input to subroutine

L106 & ret, L108 // Save the return location

L107 = a, a, DIV21 // Goto function

L108 & bit, c // Save the result

L109 = bit, flag, L100 // Do loop: jump to start

// We have flipped an entire subset, now check if it is sensitive

L110 + w, 1

// Because indexing starts at 1, but input w=0 sometimes, we always +1

L111 & a, F // Input to subroutine

L112 & I, w // Input to subroutine

L113 & ret, L115 // Save the return location

L114 = a, a, ELM1 // Goto function

L115 & new, d // Save the result

L116 & w, wcopy

L117 + wcopy, 1

L119 & I, wcopy // Input to subroutine

L120 & ret, L122 // Save the return location

L121 = a, a, ELM1 // Goto function

L122 & orig, d // Save the result

L123 & match, 0

L124 = orig, 0, L126 // If !=, jump to end

L125 + match, 1

L126 = new, 0, L128 // If !=, jump to end

L127 + match, 1

L128 = match, 1, L130 // If !=, jump to end

L129 + subcount, 1

L130 & flag, bit

L131 = a, a, L98 // Jump to start of the loop

// Take the maximum over all possible partitions

L132 & a, subcount // Input to subroutine

L133 & b, count // Input to subroutine

L134 & ret, L136 // Save the return location

L135 = a, a, CMP1 // Goto function

L136 = d, 2, L138 // If statement

L137 = a, a, L139 // Jump to end

L138 & count, subcount

the register machine instruction translation 37

L139 + p, 1

L140 = a, a, L90 // Jump to start of the loop

// Take the maximum over all possible inputs

L141 & a, count // Input to subroutine

L142 & b, BS // Input to subroutine

L143 & ret, L145 // Save the return location

L144 = a, a, CMP1 // Goto function

L145 = d, 2, L147 // If statement

L146 = a, a, L148 // Jump to end

L147 & BS, count

L148 + w, 1

L149 = a, a, L87 // Jump to start of the loop

POW1 & pol, 1

POW2 & e, 0

POW3 = e, J, L142 // Break

POW4 + e, 1

POW5 & f, 1

POW6 & dp, pol

POW7 = f, S, POW3 // pol = pol*S = (pol + pol + ... + pol)

POW8 + pol, dp

POW9 + f, 1

POW10 = a, a, POW7

L155 + pol, C

L156 & a, BS // Input to subroutine

L157 & b, pol // Input to subroutine

L158 & ret, L160 // Save the return location

L159 = a, a, CMP1 // Goto function

L160 = d, 2, L162 // If statement

L161 = a, a, L164 // Jump to end

// This polynomial is not a bound - try another polynomial

L162 & Y, 1

L163 = a, a, L165 // Break

L164 = a, a, L23 // While (true) loop

// END OF SECOND INDUCTIVE TURING MACHINE

// Check the output of the inner inductive turing machine

L165 = Y, 0, L167 // If statement

L166 = a, a, L3 // Loop

// Y = 0 indicates that all functions obey the polynomial relationship,

// so we have proven the theorem

L167 & Z, 1

L168 = a, a, HALT // Halt the program (jump to end)

HALT % // End of program - Halt

B I B L I O G R A P H Y

[1] R. Beals and et. al. Quantum lower bounds by polynomials. Pro-
ceedings of the 39th IEEE FOCS, 1998.

[2] M. Burgin, C. S. Calude, and E. Calude. Inductive complexity
measures for mathematical problems. CDMTCS Research Report
416, 2011.

[3] C. S. Calude. Information and Randomness: An Algorithmic Perspec-
tive. Springer, 2nd edition, 2002.

[4] C. S. Calude and E. Calude. Evaluating the complexity of math-
ematical problems. part 1. Complex Systems, 2009.

[5] C. S. Calude and E. Calude. Evaluating the complexity of math-
ematical problems. part 2. Complex Systems, 2010.

[6] C. S. Calude and E. Calude. Algorithmic complexity of math-
ematical problems: An overview of results and open problems.
CDMTCS Research Report 410, 2012.

[7] C. S. Calude, E. Calude, and M. J. Dinneen. A new measure of
the difficulty of problems. Journal for Multiple-Valued Logic and
Soft Computing, 2006.

[8] C. S. Calude, E. Calude, and M. S. Queen. Inductive complexity
of the p versus np problem. Parallel Processing Letters, 2013.

[9] G. J. Chaitin. Algorithmic Information Theory. Cambridge Univer-
sity Press, 1987.

[10] G. J. Chaitin. Lecture notes on algorithmic information the-
ory from the 8th estonian winter school in computer science,
ewscs’03, 2003.

[11] M. J. Dinneen. A program-size complexity measure for mathe-
matical problems and conjectures. In M. J. Dinneen, B. Khous-
sainov, and A. Nies, editors, Computation, Physics and Beyond.
Springer, 2012.

[12] P. Gacs and A. Gal. Lower bounds for the complexity of reliable
boolean circuits with noisy gates, 1994.

[13] C. Kenyon and S. Kutin. Sensitivity, block sensitivity, and l-block
sensitivity of boolean functions. Information and Computation,
2002.

39

40 bibliography

[14] N. Nisan. Crew prams and decision trees. Proc. of “21-st ACM
Symposium on the Theory of Computing", 1989.

[15] D. Rubinstein. Sensitivity vs. block sensitivity of boolean func-
tions. Combinatorica, 1995.

[16] Madars Virza. Sensitivity versus block sensitivity of boolean
functions. Information Processing Letter, 2011.

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

http://code.google.com/p/classicthesis/

	Abstract
	Contents
	1 Background
	1.1 Algorithmic Information Theory
	1.2 The Algorithmic Complexity of Mathematical Statements
	1.3 From Standard Computation to Inductive Computation
	1.4 A Register Machine Language
	1.5 Current Measured Complexities

	2 Development of the KERMIT program
	2.1 Introduction
	2.2 Overview of the KERMIT language
	2.3 Overview of the program design
	2.4 Results

	3 Sensitivity and Block Sensitivity of Boolean Functions
	3.1 Introduction
	3.2 Our Algorithm
	3.3 Results
	3.3.1 Discussion
	3.3.2 Assessment of KERMIT

	4 Conclusions and Future Work
	4.1 Conclusions
	4.2 A Brief Exploration of the P versus BPP problem
	4.2.1 Open Problems
	Appendix
	A The Register Machine Instruction prefix-free encoding
	B The complete Sensitivity versus Block Sensitivity KERMIT program
	C The Register Machine Instruction Translation
	Bibliography
	Colophon

