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Abstract

We study the communication complexity of the set
disjointness problem in the general multi-party model.
For t players, each holding a subset of a universe
of sizen, we establish a near-optimal lower bound
of Ω(n/(t log t)) on the communication complexity of
the problem of determining whether their sets are dis-
joint. In the more restrictive one-way communica-
tion model, in which the players are required to speak
in a predetermined order, we improve our bound to
an optimalΩ(n/t). These results improve upon the
earlier bounds ofΩ(n/t2) in the general model, and
Ω(ε2n/t1+ε) in the one-way model, due to Bar-Yossef,
Jayram, Kumar, and Sivakumar [5]. As in the case of
earlier results, our bounds apply to the unique inter-
section promise problem.

This communication problem is known to have con-
nections with the space complexity of approximat-
ing frequency moments in the data stream model.
Our results lead to an improved space complexity
lower bound ofΩ(n1−2/k/ log n) for approximating
thekth frequency moment with a constant number of
passes over the input, and a technical improvement to
Ω(n1−2/k) if only one pass over the input is permitted.

Our proofs rely on the information theoretic direct
sum decomposition paradigm of Bar-Yossef et al [5].
Our improvements stem from novel analytical tech-
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niques, as opposed to earlier techniques based on
Hellinger and related distances, for estimating the in-
formation cost of protocols for one-bit functions.

1. Introduction

Communication complexity, introduced by
Yao [13], quantifies the number of bits that two or
more players need to communicate amongst them-
selves in order to compute a function whose input
is split between them. This fundamental complexity
measure has repeatedly proven to be a very useful tool
for proving lower bounds. Its applications touch upon
a wide range of topics, such as circuit complexity,
cell probe complexity, space-bounded computation,
and (more recently) combinatorial auctions. A
comprehensive treatment of the subject and its many
applications can be found in the book of Kushilevitz
and Nisan [10]; an overview of more recent research
can be found in the survey by Babai [4].

In this paper we study the complexity of functions
with a large numbert of arguments. Consequently, the
communication models of interest involvet players,
each of whom holds one of the arguments.1 In the
generalmulti-party communication model, the play-
ers may exchange several messages, taking turns to
speak in an arbitrary sequence. A predesignated player
(w.l.o.g., playert) then announces the output of the
function. A more restricted model is theone-way com-

1It is very important to note that the models we work with differ
from the well-studied “number on the forehead” models, in which
playeri holds all of the argumentsexcepttheith one.
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munication model, which requires that players speak
exactly once each, and in the order1, 2, . . . , t, with
playeri speaking only to playeri + 1 (for i < t) and
playert announcing the output of the function. Here,
we obtain improved lower bounds for the set disjoint-
ness problem in both these models.

The above models of communication turn out to be
naturally related to thedata stream model, which has
been at the centre of much recent research [3, 9, 2]
on algorithms for massive data sets. In this model,
an algorithm is allowed to make a few passes (usu-
ally one pass) over its massively long input and has
only a limited amount of workspace in which to store
and manipulate parts of this input. The connection be-
tween space complexity in the data stream model and
multi-party communication complexity has been ob-
served earlier [3, 5]. In this paper we again exploit this
connection to translate our improved communication
lower bounds into data stream space lower bounds.

1.1. Our Results

In the multi-party set disjointness problem, each of
the t players is given a set from the universe[n] =
{1, 2, . . . , n} together with a promise that the sets are
either pairwise disjoint or areuniquely intersecting,
i.e., they have one element in common but are other-
wise disjoint. The players must distinguish between
these two cases, using a possibly randomised protocol.

The above problem was first studied by Alon, Ma-
tias, and Szegedy [3] who proved a lower bound
of Ω(n/t4) on its communication complexity. They
also showed, via a reduction, that this implies an
Ω(n1−5/k) lower bound on the space complexity of ap-
proximating thekth frequency moment of an input se-
quence in the data stream model.2 The communication
lower bound was subsequently improved toΩ(n/t2)
by Bar-Yossef, Jayram, Kumar, and Sivakumar [5]; for
the special case of one-way communication it was im-
proved to the nearly optimalΩ(ε2n/t1+ε).

In this paper, we prove a lower bound of
Ω(n/(t log t)) for the communication problem in the
general model, which beats all of the aforementioned
bounds. In the one-way model we can further improve
our bound to an optimalΩ(n/t). Both these results

2If the item j occursνj times in the input sequence, thekth

frequency moment is defined as
P

j∈[m] ν
k
j .

hold in the so-calledblackboard modelin which the
players write their messages on a blackboard for all
other players to see; in the one-way case, the players
write messages strictly in the order1, 2, . . . , t.

Using the reduction of Alon, Matias, and
Szegedy [3], we can then show that approximating the
kth frequency moment of a sequence of integers from
[m] has space complexityΩ(m1−2/k/ logm) if the al-
gorithm is allowed a constant number of passes over
its input. The best result obtainable previously was
Ω(m1−3/k). If the algorithm is allowed only one pass
over its input, we again improve earlier results and ob-
tain anΩ(m1−2/k) bound; this improvement is largely
technical, since Bar-Yossef et al. were already able to
establish aΩ(ε2m1−(2+ε)/k) bound. It is worth noting
that the best upper bound for the problem in the one
pass model is̃O(m1−1/k) for k ≥ 3 andO(logm) for
k ∈ {0, 1, 2}.

1.2. Our Techniques

Our proofs make crucial use of the notion ofin-
formation costwhich was formally introduced by
Chakrabarti, Shi, Wirth, and Yao [6], and is also im-
plicit in recent work by Ablayev [1] and Saks and
Sun [12]. More precisely, we use the extension and
generalisation of this notion due to Bar-Yossef et
al [5]. Roughly speaking, the information cost of
a protocol is the amount of information that can be
gleaned about the players’ inputs by examining the
transcript of the protocol, constituted by the play-
ers’ messages. When defined appropriately, the corre-
sponding complexity measure, known asinformation
complexity, can be shown to lower bound the actual
communication complexity and satisfy direct-sum like
properties. The key insight in the work of Chakrabarti
et al. [6] as well as Bar-Yossef et al. [5] can be summed
up as follows:

To lower bound the actual complexity of a
complex “direct-sum like” problem, it suf-
fices to lower bound the information com-
plexity of a simpler “primitive” problem.

In this work, the complex problem we are con-
cerned with is the set disjointness (promise) problem.
Suppose we require the players to output0 to indicate
that their sets are disjoint and1 to indicate that they



intersect. Viewing the input of each player as ann-bit
string (the characteristic vector of his set), we see that
the function to be computed is theOR of n bits, each
of which is theAND of t bits. Accordingly, we are in-
terested in the information complexity of the function
ANDt in which t players are given one bit each and
have to compute theAND of their bits.

At this point our techniques deviate considerably
from earlier ones. Bar-Yossef et al. [5] relate the in-
formation cost of a protocol to certain well-studied
distance measures between probability distributions;
specifically, Hellinger and related distances. We use
analytical properties of functions arising in the defi-
nition of information cost, together with the special
combinatorial structure of communication protocols,
to obtain a tighter tradeoff between the information
cost and the error probability of a protocol. As ob-
served in [5], the earlier lower bounds were not tight
due to limitations of the properties of the statistical dis-
tance measures used therein. Thus, our direct analyti-
cal approach appears necessary.

1.3. Optimality

Our lower bound for the one-way model is optimal,
and therefore, our lower bound for the general model
is nearly optimal. This is because there is a blackboard
one-way protocol for the problem that usesO(n/t +
t + log n) bits of communication. Without the one-
way restriction the same upper bound holds even in
the private message (i.e., non-blackboard) model. We
now outline a proof of these upper bounds.

A result due to H̊astad and Wigderson [8] says that
the two-party set disjointness problem with input sets
of size at mostk has a public coin randomised com-
munication protocol with costO(k), independent of
the size of the universe. Now, if the universe has size
n, applying the private versus public coin theorem of
Newman [11] gives us a private coin protocol with cost
O(k + log n).

Let k = 3n/t. Because of the unique intersection
promise we know that at leastt/2 of the players have
input sets of size at mostk each; call these players
“good.” UsingO(t) bits of private message commu-
nication, two good players can identify one another.
By the unique intersection promise, the desired output
is 1 iff the sets of these two players intersect. Thus,

the two players may run the Håstad-Wigderson pro-
tocol and communicate the outcome to playert who
then announces the output. The cost of this protocol
is clearlyO(t + k + log n), as desired. The proto-
col can be made one-way by exploiting the structure
of the H̊astad-Wigderson protocol and involving all of
the good players in it; we omit the details.

1.4. Organisation of the Paper

The remainder of this paper is organised as follows.
In Section 2 we outline the decomposition paradigm
which is central to our proof and formally state our re-
sults. We then present our proofs in the next two sec-
tions. Section 3 handles general protocols and proves
a near-optimal lower bound, and Section 4 improves
the bound to an optimal one for one-way protocols.

2. Information Cost and the Decomposition
Paradigm

We now formally introduce the notion of infor-
mation cost and briefly review the decomposition
paradigm of Bar-Yossef et al [5]. Since the main focus
of this paper is the particular problem of set disjoint-
ness, we sometimes sacrifice full generality for ease of
presentation.

Conventions and Basic Definitions. We shall use
boldface letters to denote vectors and capital letters
to denote random variables. We use “log” to de-
note logarithm to the base2 and “ln” to denote the
natural logarithm. R+ shall denote the set of non-
negative reals. For discrete distributionsX,Y we let
H(X) denote the entropy ofX andI(X : Y ) the mu-
tual information betweenX and Y . We recall that
I(X : Y ) = H(X)− H(X |Y ) = H(Y )− H(Y |X).
See [7] for further background.

We are interested in the computation of func-
tions of the formφn ◦ ψt whereφn : {0, 1}n →
{0, 1} and ψt : {0, 1}t → {0, 1} are arbitrary
Boolean functions. To be precise, we haven vec-
tors a(1), . . . ,a(n) ∈ {0, 1}t and t players; playeri
receives theith entry of each vector. Their goal is to
computeφn

(
ψt(a(1)), . . . , ψt(a(n))

)
. In the case of

the set disjointness problem,φn = ORn andψt =
ANDt. We shall make the simplifying assumption that
φn is a symmetric Boolean function.



Since we wish to prove lower bounds forpromise
problems,(a(1), . . . ,a(n)) is required to lie in some
restricted subsetLn ⊆ {0, 1}nt and thus, for symmet-
ric φn, eacha(j) is required to lie in a setL ⊆ {0, 1}t

of legal inputs. For the set disjointness problem with
the unique intersection promise,L consists of the all-
zeroes input0, the all-ones input1, and the unit vec-
torsei (with a “1” in the ith position) for alli ∈ [t].

Let Π be aδ-error randomised protocol forφn ◦ψt.
We denote byΠ(a(1), . . . ,a(n)) the transcript ofΠ on
input (a(1), . . . ,a(n)); notice that this transcript is a
random variable.

Definition 2.1 (Information cost and complexity)
Let µ be a distribution onL. The µ-information
cost of Π, denoted icostµ(Π), is defined as
I(A(1), . . . ,A(n) : Π(A(1), . . . ,A(n))) where
the random vectorsA(j) are drawn independently
from µ. The δ-error µ-information complexity of
φn ◦ ψt, denotedICµ,δ(φn ◦ ψt), is defined to be the
minimum of icostµ(Π) over all δ-error protocolsΠ
for φn ◦ ψt.

For the decomposition paradigm, it is necessary to
consider the following more general notion.

Definition 2.2 (Conditional information cost)
Let D be a random variable. TheD-conditional
µ-information cost ofΠ, denotedicostµ(Π |D), is de-
fined asI(A(1), . . . ,A(n) : Π(A(1), . . . ,A(n)) |Dn)
where theA(j) are as above.3 The corresponding
complexity measure, denotedICµ,δ(φn ◦ ψt |D), is
defined in the obvious way.

We would like to relate theδ-error randomised com-
munication complexity,Cδ(φn ◦ ψt), to the condi-
tional information complexity of the simpler function
ψt with respect to some appropriate distributions. To
enable this,µ andD are required to satisfy the follow-
ing properties:

• µ must be a “collapsing” distribution forφn ◦
ψt. This means that for everya ∈ L, and
all a(2), . . . ,a(n) in the support ofµ, we have
φn(ψt(a), ψt(a(2)), . . . , ψt(a(n))) = ψt(a).

3Our notation differs slightly from that of Bar-Yossef et al. [5]
who would use something likeicostµn(Π | Dn).

• D must “partition”µ. This means that for every
d in the support ofD, the conditional distribu-
tion (µ |D = d) must be a product distribution
on{0, 1}t.

We can now state the direct sum theorem that is the
basis of the decomposition paradigm.

Theorem 2.3 (Bar-Yossef et al. [5])Let µ be a col-
lapsing distribution forφn ◦ ψt and letD be a ran-
dom variable that partitionsµ. ThenCδ(φn ◦ ψt) ≥
ICµ,δ(φn ◦ ψt |D) ≥ n · ICµ,δ(ψt |D). The same
holds for one-way protocols.

For the particular case of the disjointness problem,
letD be a uniform random integer from[t] and letµ be
distributed uniformly on{0, eD}. It is easy to verify
that this choice of distributions satisfies the required
conditions, and so we have:

Corollary 2.4 The set disjointness problem with the
unique intersection promise, denotedDISJn,t, satisfies
Cδ(DISJn,t) ≥ n · ICµ,δ(ANDt |D).

Accordingly, we direct our efforts towards studying
the one-bit functionANDt.

Communication Complexity Results. In the lan-
guage just developed, our results for communication
complexity can be stated as follows.

Theorem 2.5 Withµ andD as defined above, and any
δ > 0,

ICµ,δ(ANDt |D) = Ω
(

1
t log t

)
.

Consequently,Cδ(DISJn,t) = Ω(n/(t log t)).

When protocols are restricted to be one-way, we can
tighten our analysis by making use of the additional
combinatorial properties that result from this restric-
tion. This yields:

Theorem 2.6 Withµ andD as above, and anyδ > 0,

IC1-WAY
µ,δ (ANDt |D) = Ω

(
1
t

)
.

Consequently,C1-WAY
δ (DISJn,t) = Ω(n/t).



Results for the Data Stream Model. Let Fm
k de-

note the problem of computing, to within(1 ± ε) ap-
proximation, thekth frequency moment of a sequence
of items, each from[m]. By suitably modifying a re-
duction due to Alon, Matias, and Szegedy [3], Bar-
Yossef et al. [5] show that a space efficient data stream
algorithm forFm

k can be used to construct an efficient
t-party communication protocol forDISJm,t for an ap-
propriately chosent. This construction is such that the
resulting protocol is one-way if the data stream algo-
rithm makes only a single pass over its input. Using
this construction and Theorems 2.5 and 2.6 we obtain
the following results (we omit the quantitative details
of the proofs):

Theorem 2.7 Any ε-approximate randomised data
stream algorithm forFm

k that works with confidence
≥ 3

4 and makes a constant number of passes over its

input requiresΩ
(

m1−2/k

(1+3ε)2/k log m

)
space. If the algo-

rithm makes only one pass over its input, it requires

Ω
(

m1−2/k

(1+3ε)2/k

)
space.

3. The Information Complexity of ANDt

We now turn to the study of communication proto-
cols for the functionANDt. This specific function it-
self plays very little role in the analysis in this section,
though we do care thatANDt(0) 6= ANDt(1). Thus,
the lower bound on theD-conditionalµ-information
complexity that we obtain here holds for a very gen-
eral class of functions. However, this generalisation
does not extend easily to the communication complex-
ity world, and that is because the particular distribu-
tionsD andµ used here were custom-made for the
DISJn,t problem. Recall thatD is a random integer
chosen uniformly from[t] and thatµ is a random vec-
tor in {0, 1}t chosen uniformly from{0, eD}.

Let Π be at-party randomised communication pro-
tocol for ANDt. Recall thatΠ(a) denotes the (random)
transcript of the protocol on inputa ∈ {0, 1}t. Let
U be the set of all transcripts that are produced with
positive probability on input0, for which the protocol
outputs “0”. Let V be the corresponding set for output
“1”. For each transcriptπ ∈ U ∪ V and eachi ∈ [t],

we define

pπ = Pr[Π(0) = π] ,
xiπ = Pr[Π(ei) = π]/pπ .

The main combinatorial property ofΠ that we need is
captured by the next lemma and its corollary.

Lemma 3.1 Let I ⊆ [t] be a nonempty set and let
χI ∈ {0, 1}t be its characteristic vector. For any tran-
scriptπ ∈ U ∪ V , Pr[Π(χI) = π] = pπ

∏
i∈I xiπ.

Proof (sketch): It is well known that deterministic
communication protocols satisfy the following “rect-
angle” property: the set of all inputs that produce a
fixed transcript form a combinatorial rectangle (see,
e.g., [10, Ch. 1]). A randomised protocol can be
thought of as a deterministic protocol in which each
player’s input is his original (one-bit) input plus the
(multi-bit) contents of his random tape. With these
observations, the statement of the lemma reduces to
a simple combinatorial fact.

Corollary 3.2 For any nonemptyI ⊆ [t],∑
π∈U∪V

pπ

∏
i∈I

xiπ ≤ 1 . (1)

Let us now define

κ = t · icostµ(Π |D) ;

δ0 = Pr[Π(0) ∈ V ] =
∑
π∈V

pπ (2)

δ1 = Pr[Π(1) ∈ U ] =
∑
π∈U

pπ

t∏
i=1

xiπ . (3)

It is clear thatmax{δ0, δ1} lower bounds the error
probability of Π. Thus, our goal is to prove that
κ = Ω(1/ log t) for sufficiently small constantsδ0 and
δ1.

3.1. An Analytic Formulation

By definition of information cost,κ =
∑t

i=1 I(A :
Π(A) |D = i) =

∑t
i=1 I(Ai : Π(Ai)), whereA

is drawn fromµ andAi is uniformly distributed on



{0, ei}. Clearly, H(Ai) = 1, and it is not hard to
verify that for anyπ ∈ U ∪ V

H(Ai |Π(Ai) = π) = h

(
1

1 + xiπ

)
,

whereh is the entropy function for two-valued distri-
butions:h(x) = −x log x− (1−x) log(1−x). More-
over,Pr[Ai = π] = 1

2pπ(1+xiπ). Putting these facts
together gives us the following analytic expression for
κ:

κ =
∑

π∈U∪V

t∑
i=1

pπg(xiπ) , (4)

where the functiong : R+ → R is given by

g(x) = 1− 1 + x

2
· h
(

1
1 + x

)
. (5)

It will also be useful to define two auxiliary functions:
g+(x) = g(x)− 1

2(1−x) andf(x) = 2g(x)+2g+(x).
The following lemma collects together several useful
facts about these functions which we shall repeatedly
use.

Lemma 3.3 The functionsf , g, andg+ satisfy the fol-
lowing properties:
(i) g+ is nonnegative, decreasing in[0, 1], increasing

in [1,∞), and convex in[0,∞).
(ii) 1− x− g(x) < 4g+(x), for x ∈ [0, 1

2 ].
(iii) −g(x) < 4g+(x), for x ∈ [2,∞).
(iv) f(x) + lnx ≥ 0, for x ∈ [12 , 2].
(v) f is decreasing in[0, 2].

Proof : All of these facts can be proved via simple
calculus. We omit the details.

We note that replacingg with g+ in (4) yields an
expression which lower boundsκ:

κ ≥
∑

π∈U∪V

t∑
i=1

pπg+(xiπ) . (6)

This is becauseg(x) − g+(x) = 1
2(1 − x) and, by a

special case of (1),
∑

π pπxiπ ≤ 1. Combining this
with (4) gives

∑
π∈U∪V

t∑
i=1

pπf(xiπ) ≤ 4κ , (7)

3.2. Balancing

We call a protocolbalancedif for eachπ and each
i, xiπ ∈ {0}∪ [12 , 2]. Intuitively, a protocol is balanced
if any transcript which is produced on inputs0 as well
asei is “almost” equally likely to be produced on each
of these inputs.

Lemma 3.4 For every protocolΠ there is a balanced
protocol Π′ which computes the same function asΠ
and satisfiesicostµ(Π′ |D) ≤ 5 · icostµ(Π |D). Fur-
thermore, ifΠ is one-way, thenΠ′ can be designed to
be one-way.

Proof : If, for someπ and i, 0 < xiπ < 1
2 , then

we can splitπ into two transcriptsπ0 and π1 such
thatπ0 is produced only on input0 andπ1 is equally
likely to be produced on inputs0 andei. The prob-
ability pπ is split amongstpπ0 and pπ1 as follows:
pπ0 = (1 − xiπ)pπ; pπ1 = xiπpπ. For the new tran-
scripts,xiπ0 = 0 andxiπ = 1. Such a split can be
effected by appending to the existing protocol an extra
message from playeri that distinguishesπ0 from πi.
We have

pπ0g(xiπ0) + pπ1g(xiπ1)− pπg(xiπ)
= pπ(1− xiπ − g(xiπ))
< 4pπg+(xiπ) .

Likewise, if, for someπ andi, xiπ > 2, then we can
split π into two transcriptsπ0 andπ1 such thatπ1 is
produced only on inputei, π0 is equally likely to be
produced on inputs0 andei, pπ0 = pπ, pπ1 = 0, and
xiπ0 = 1. We have

pπ0g(xiπ0) + pπ1g(xiπ1)− pπg(xiπ)
= −pπg(xiπ)
< 4pπg+(xiπ) .

Repeatedly perform these two operations until the
original protocolΠ becomes a balanced protocolΠ′.
Lettingκ′ = t · icostµ(Π′ |D), we see that

κ′ − κ <
∑

π

∑t
i=1,xiπ∈(0, 1

2
)∪(2,∞) 4pπg+(xiπ)

≤
∑
π

t∑
i=1

4pπg+(xiπ)

≤ 4κ ,



where the final inequality follows from (6).
To prove a similar statement for one-way protocols

we have to be more careful about how we split tran-
scripts. Letπ be a transcript and leti be the smallest
index such thatxiπ /∈ {0} ∪ [12 , 2]. Since the proto-
col is one-way,π is simply a sequence(u1, . . . , ut),
whereui is playeri’s message. We split thismessage
into two new ones, thereby simultaneously splitting all
transcripts of the form(u1, . . . , ui, ∗, . . . , ∗). We per-
form this operation repeatedly until the protocol be-
comes balanced. A calculation almost identical to the
above completes the proof.

In view of the above lemma, we shall henceforth as-
sume that our protocolΠ is balanced.

3.3. The Proof for Balanced Protocols

Consider, for a moment, the case whenΠ satis-
fies an additional nice property:xiπ is never zero.
Then, sinceΠ is balanced, Part (iv) of Lemma 3.3 al-
lows us to lower boundf(xiπ) by − lnxiπ for each
i and π. By (7), an appropriate weighted sum of
f(xiπ) lower boundsκ. On the other hand, by (3), the
same weighted sum of− lnxiπ upper bounds− ln δ1.
Therefore,κ would be lower bounded by a constant!

The analysis below is based on this idea, but unfor-
tunately the presence of zeroes among thexiπ causes
considerable complication. In particular, we are only
able to show the slightly weaker result thatκ =
Ω(1/ log t).

For a transcriptπ ∈ U ∪ V , define F (π) =∑t
i=1 f(xiπ). We further partition the setU of tran-

scripts as follows:U = U ′ ∪ U0 ∪ · · · ∪ Ut, where

U ′ =
{
π ∈ U : F (π) ≥ 0 andxiπ = 0

for some indexi

}
,

U0 = {π ∈ U : ∀i (xiπ 6= 0)} ,

Ur =
{
π ∈ U : F (π) < 0 andxiπ = 0

for exactlyr indicesi

}
,

for 1 ≤ r ≤ t .

Define q′ =
∑

π∈U ′ pπ and qr =
∑

π∈Ur
pπ for all

r ≥ 0. The next lemma limits the profusion of zeroes
amongst thexiπ.

Lemma 3.5 The setsUr andU ′ satisfy:
(i)
∑t

r=1 rqr ≤ 2κ.
(ii) q′ +

∑t
r=1 qr ≤ 2κ.

(iii) Ur is nonempty only ifr ≤ t
5 .

Proof : Recall that g+ is a nonnegative function
(Lemma 3.3, Part (i)). Therefore, for anyπ ∈ Ur,∑t

i=1 g+(xiπ) ≥ rg+(0) = r
2 and for anyπ ∈ U ′,∑t

i=1 g+(xiπ) ≥ g+(0) = 1
2 . Using (6), we now eas-

ily derive Parts (i) and (ii). For Part (iii), note thatf
is decreasing in[12 , 2]; thus, forπ ∈ Ur, 0 > F (π) ≥
rf(0)+(t− r)f(2), which easily yieldsr ≤ t

5 .

Notice that we may assume thatδ0 ≤ 1
4 and that

κ ≤ 1
8 since otherwise there is nothing to prove. Then,

we have

q0 = 1− q′ −
∑t

r=1 qr −
∑

π∈V pπ

≥ 1− 2κ− δ0

≥ 1
2 . (8)

Using, in succession, (3), (1), Jensen’s inequality for
the function “ln”, (8), Lemma 3.3 (iv), the definition
of U ′, the definition ofUr, and (7), we derive

− ln δ1 = − ln
∑
π∈U0

pπ

t∏
i=1

xiπ

≤ − ln
∑
π∈U0

pπ

t∏
i=1

xiπ − δ0
q0
· ln

∑
π∈V

pπ

t∏
i=1

xiπ

≤ − 1
q0

∑
π∈U0∪V

pπ

t∑
i=1

lnxiπ − ln q0 −
δ0
q0

ln δ0

≤ 2 − 2
∑

π∈U0∪V

pπ

t∑
i=1

lnxiπ

≤ 2 + 2
∑

π∈U0∪V

pπF (π)

≤ 2 + 2
∑

π∈U0∪V ∪U ′

pπF (π)

= 2 + 2
∑

π∈U∪V

pπF (π) − 2
t∑

r=1

∑
π∈Ur

pπF (π)

≤ 8κ+ 2− 2
t∑

r=1

∑
π∈Ur

pπF (π) . (9)

We shall now bound the latter sum from below. Fix
anr such thatUr is nonempty. Sincef is decreasing



in [0, 2], lower boundingF (π) for π ∈ Ur roughly
corresponds to upper bounding the quantitiesxiπ. In-
equality (1), based on the combinatorial structure of
the protocol, provides a tool for doing this, but due to
the presence of zeroes amongst thexiπ, we need to ap-
ply it with a carefully chosen setI ⊆ [t] which avoids
most of these zeroes. In the sequel, we shallaverage
over allI of a particular sizes, wheres depends onr.

Let s = b t
5rc. SinceUr is nonempty, Lemma 3.5

assures us thats ≥ 1. Let us define the setsUr〈I〉 =
{π ∈ Ur :

∏
i∈I xiπ 6= 0} and the quantitiesqr〈I〉 =∑

π∈Ur〈I〉 pπ. We apply Lemma 3.3, Part (iv), and
Jensen’s inequality to obtain

Sr :=
∑

I⊆[t],|I|=s

∑
π∈Ur〈I〉

∑
i∈I

pπf(xiπ)

≥
∑

I⊆[t],|I|=s

∑
π∈Ur〈I〉

∑
i∈I

pπ · (− lnxiπ)

= −
∑

I⊆[t],|I|=s

qr〈I〉
∑

π∈Ur〈I〉

pπ

qr〈I〉
ln
∏
i∈I

xiπ

≥ −
∑

I⊆[t],|I|=s

qr〈I〉 · ln
∑

π∈Ur〈I〉

pπ

∏
i∈I

xiπ

+
∑

I⊆[t],|I|=s

qr〈I〉 ln qr〈I〉

≥
∑

I⊆[t],|I|=s

qr〈I〉 ln qr〈I〉 , (10)

where the final inequality follows by applying (1) for
all theI ’s.

Consider aπ ∈ Ur and ani ∈ [t] such thatxiπ 6= 0.
In the expression that definesSr, the termpπf(xiπ)
appears exactly as many times as there are setsI which
contain i but do not contain anyj such thatxjπ =
0. There are preciselyr suchj’s, and so this latter
number is

(
t−r−1
s−1

)
. Therefore,

Sr =
(
t− r − 1
s− 1

) ∑
π∈Ur

t∑
i=1,xiπ 6=0

pπf(xiπ)

≤
(
t− r − 1
s− 1

) ∑
π∈Ur

F (π) , (11)

where the inequality holds becausef(0) > 0. A simi-

lar counting argument yields

∑
I⊆[t],|I|=s

qr〈I〉 =
(
t− r − 1
s− 1

)
· t− r

s
· qr

≥
(
t− r − 1
s− 1

)
· tqr

2s
, (12)

since, by Lemma 3.5,r ≤ t
5 ≤ t

2 . Continuing
from (10), we have

Sr ≥
(∑

I⊆[t],|I|=s qr〈I〉
)
· ln

∑
I⊆[t],|I|=s qr〈I〉(

t
s

)
≥

(
t−r−1
s−1

) tqr

2s · ln
(

qr

2 ·
t−r−1

t−1 · t−r−2
t−2 · · · t−r−s+1

t−s+1

)
≥

(
t−r−1
s−1

) tqr

2s

(
ln qr − ln 2 + ln

(
1− r

t−s+1

)s)
≥

(
t−r−1
s−1

) tqr

2s

(
ln qr − ln 2 + s ln

(
1− 2r

t

))
≥

(
t−r−1
s−1

) tqr

2s

(
ln qr − ln 2− 4rs

t

)
≥

(
t−r−1
s−1

)
·
(

5
2rqr ln qr − 4rqr

)
,

where the first step follows from Jensen’s inequality
and the fourth follows froms = b t

5rc. Combining this
with (11) yields∑

π∈Ur

F (π) ≥ 5
2
rqr ln qr − 4rqr .

We now sum these inequalities over allr. Lemma 3.5
tells us that

∑t
r=1 rqr ≤ 2κ. On the other hand, by

convexity of(x 7→ x lnx),

t∑
r=1

rqr ln qr ≥

(
t∑

r=1

rqr

)
· ln

∑t
r=1 rqr∑t
r=1 r

≥ 2κ ln(2κ)− 2κ · ln
t∑

r=1

r

≥ −1
e
− 4κ ln t .

Therefore,

t∑
r=1

∑
π∈Ur

pπF (π) ≥ −2− 10κ ln t− 8κ

Continuing from (9), we get

− ln δ1 ≤ 20κ ln t+ 24κ+ 6



and, forδ1 small enough, this givesκ = Ω(1/ log t).
We have shown that for any protocolΠ with error
probabilityδ less than a sufficiently small constant,

icostµ(Π |D) = Ω
(

1
log t

)
and this completes the proof of Theorem 2.5.

4. A Tight Bound for One-Way Protocols

One-way communication protocols have special
structural properties that are stronger than the “rect-
angle” property which was crucial in our arguments in
Section 3. In particular, a one-wayt-player protocol
has a recursive structure given by the strategy of the
first player and a collection of(t − 1)-player proto-
cols, one for each possible message of the first player.
Moreover, this recursive structure gives us recursive
formulae for the information cost as well as the error
probability of the original protocol in terms of those of
the sub-protocols. Using analytic tools (in particular,
a novel inequality for probability distributions) we can
then process these recursive formulae into an inductive
proof of anΩ(1/t) lower bound on the information
cost of the original protocol.

Fix a one-way protocolΠ for ANDt. LetM(a) de-
note the message of player 1 on inputa ∈ {0, 1};
note thatM(a) is a random variable. For each possi-
ble messageu, let pu (resp.qu) be the probability that
player 1 producesu on input0 (resp.1), and letΠu

be the(t− 1)-player protocol that the rest of the play-
ers execute upon seeingu. LetP (resp.Q) denote the
probability distributions given by{pu} (resp.{qu}).
The distributionsP andQ and the collection{Πu}
of (t − 1)-player protocols completely specifyΠ. To
finish this recursive description, we note that a1-
player protocolΠ simply consists of the sole player
announcing the protocol’s output; it is therefore given
by two pairs of probabilities(p0, q0), (p1, q1) — with
p0+p1 = q0+q1 = 1 — corresponding to the two mes-
sages “0” (the protocol outputs “0”) and “1” (it outputs
“1”).

Let µ andD be the distributions specified in Sec-
tion 2; we write them asµt andDt to emphasise their
dependence ont. Definingκ(Π) = t · icostµt(Π |Dt)
for a t-player protocol, we have:

Lemma 4.1 LetA denote a uniform random bit. Then

κ(Π) = I(A : M(A)) +
∑

u

puκ(Πu)

= D(P,Q) +
∑

u

puκ(Πu)

whereD(P,Q) =
∑

u
pu+qu

2

(
1− h

(
pu

pu+qu

))
is the

Jensen-Shannon divergence between the distributions
P andQ.

Proof : This follows in a straightforward fashion from
the definitions. We omit the details.

Let δ0(Π) be the probability thatΠ outputs “1” on
input 0, and letδ1(Π) be the probability that it out-
puts “0” on input1. In caseΠ is a protocol forANDt,
max{δ0(Π), δ1(Π)} lower bounds the error probabil-
ity of Π. The following lemma, whose easy proof we
omit, provides recursive formulae for these quantities:

Lemma 4.2 The error probabilities ofΠ are given by
(i) δ0(Π) =

∑
u puδ0(Πu), and

(ii) δ1(Π) =
∑

u quδ1(Πu).

Let g+ : R+ → R be the function defined in Sec-
tion 3.1. The following technical inequality is the key
to our improved lower bound.

Lemma 4.3 SupposeP = (p1, . . . , pr) and Q =
(q1, . . . , qr) are discrete probability distributions such
that for allu, we havepuqu 6= 0, and whenqu 6= 0, we
havepu/qu ≤ 2. Then, for anyδ1, . . . , δr ∈ [0, 1], we
have

D(P,Q) +
∑r

u=1 pug+(δu) ≥ g+ (
∑r

u=1 quδu) .

Proof : It will be necessary to treat messagesu with
qu = 0 separately. Assume w.l.o.g. thatq1 = · · · =
qk = 0 and thatqu 6= 0 for u > k; if no qu is zero we
put k = 0. Foru > k put λu = pu/qu; thenλu ≤ 2
whenever it is defined.

Consider the functionG : R2 → R given by
G(λ, δ) = g+(λ) + λg+(δ). We claim that its Hes-
sian

∇2G(λ, δ) =
[
g′′+(λ) g′+(δ)
g′+(δ) λg′′+(δ)

]
is positive semidefinite in the rectangle[0, 2] × [0, 1].
Indeed, a direct computation of derivatives gives



g′+(x) = 1
2

(
1 + log

(
x

x+1

))
andg′′+(x) = ((2 ln 2) ·

x(x + 1))−1. So the trace of∇2G is positive inR2
+

and the determinant is positive whenever

1
λ+ 1

≥ (2 ln 2)2 · δ(δ + 1)g′+(δ)2 .

In the rectangle[0, 2] × [0, 1], the left hand side is at
least 1

3 whereas straightforward calculus shows that
the right hand side is strictly less than13 . This proves
the claim. It follows thatG is convex in the above
rectangle.

Let δ̂ =
∑r

u=1 quδu =
∑r

u=k+1 quδu and p̂ =∑k
u=1 pu. Using the properties ofg+ from Lemma 3.3,

and noting that̂δ ≤ 1, we have

D(P,Q) =
k∑

u=1

pug+(qu/pu) +
r∑

u=k+1

qug+(pu/qu)

≥ p̂·g+(0) +
r∑

u=k+1

qug+(λu)

≥ p̂·g+(δ̂) +
r∑

u=k+1

qug+(λu) .

Now, using Jensen’s inequality for the functionG, we
have

D(P,Q) +
r∑

u=1

pug+(δu)

≥ p̂·g+(δ̂) +
r∑

u=k+1

qu(g+(λu) + λug+(δu))

= p̂·g+(δ̂) +
r∑

u=k+1

quG(λu, δu)

≥ p̂·g+(δ̂) +G

( r∑
u=k+1

quλu,

r∑
u=k+1

quδu

)
= p̂·g+(δ̂) +G(1− p̂, δ̂)
≥ p̂·g+(δ̂) + (1− p̂)·g+(δ̂) ,

which establishes the desired inequality.

Lemma 4.4 For a small enough error probabilityδ,
we haveκ(Π) = Ω(1).

Proof : By Lemma 3.4, we may assume thatΠ is a
balanced one-way protocol. Therefore, the probability

distributionsP andQ that define the strategy of player
1 in Π satisfy the conditions of Lemma 4.3. We shall
use that lemma to prove the following claim:

κ(Π) +
δ0(Π)

2
≥ g+(δ1(Π)) . (13)

We prove our claim by induction ont. In the base case
we have a1-player protocol given by pairs(p0, q0)
and (p1, q1) as described earlier. Then,κ(Π) =
D((p0, p1), (q0, q1)) ≥ p0g+(q0/p0); δ0(Π) = p1 =
1 − p0 andδ1(Π) = q0. Sinceg+(0) = 1

2 , the claim
now reduces to

p0g+(q0/p0) + (1− p0)g+(0) ≥ g+(q0) ,

which is immediate from the convexity ofg+.
For the inductive step, we have

κ(Π) +
1
2
δ0(Π)

= D(P,Q) +
∑

u

pu

(
κ(Πu) +

1
2
δ0(Πu)

)
≥ D(P,Q) +

∑
u

pug+(δ1(Πu))

≥ g+

(∑
u

quδ1(Πu)

)
= g+(δ1(Π)) ,

where the first step follows from Lemmas 4.1 and 4.2,
the second from the inductive hypothesis, the third
from Lemma 4.3, and the fourth from Lemma 4.2.
This proves claim (13). Sinceg+ is decreasing in
(0, 1), if δ1(Π) and δ0(Π) are chosen sufficiently
small, we can ensure thatκ(Π) ≥ 1

2 .

The above lemma shows thaticostµ(Π |D) =
Ω(1/t), for anyΠ which solvesANDt, and this in turn
completes the proof of Theorem 2.6.
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