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Abstract niques, as opposed to earlier techniques based on

Hellinger and related distances, for estimating the in-

We study the communication complexity of the setformation cost of protocols for one-bit functions.
disjointness problem in the general multi-party model.
For t players, each holding a subset of a universe
of sizen, we establish a near-optimal lower bound 1. Introduction
of Q(n/(tlogt)) on the communication complexity of
the problem of determining whether their sets are dis- Communication complexity, introduced by
joint. In the more restrictive one-way communica- Yao [13], quantifies the number of bits that two or
tion model, in which the players are required to speak more players need to communicate amongst them-
in a predetermined order, we improve our bound to selves in order to compute a function whose input
an optimal€2(n/t). These results improve upon the s split between them. This fundamental complexity
earlier bounds of2(n/t?) in the general model, and measure has repeatedly proven to be a very useful tool
Q(e?n/t1*¢) in the one-way model, due to Bar-Yossef, for proving lower bounds. Its applications touch upon
Jayram, Kumar, and Sivakumar [5]. As in the case of a wide range of topics, such as circuit complexity,
earlier results, our bounds apply to the unique inter- cell probe complexity, space-bounded computation,
section promise problem. and (more recently) combinatorial auctions. A

This communication problem is known to have con- comprehensive treatment of the subject and its many
nections with the space complexity of approximat- applications can be found in the book of Kushilevitz
ing frequency moments in the data stream model.and Nisan [10]; an overview of more recent research
Our results lead to an improved space complexity can be found in the survey by Babai [4].
lower bound ofQ(n'~2/%/1ogn) for approximating In this paper we study the complexity of functions
the k*® frequency moment with a constant number of with a large number of arguments. Consequently, the
passes over the input, and a technical improvement tocommunication models of interest involveplayers,
Q(n'=%/%) if only one pass over the input is permitted. each of whom holds one of the argumehtdn the

Our proofs rely on the information theoretic direct generalmulti-party communication modethe play-
sum decomposition paradigm of Bar-Yossef et al [5]. ers may exchange several messages, taking turns to
Our improvements stem from novel analytical tech- speakin an arbitrary sequence. A predesignated player
(w.l.o.g., playert) then announces the output of the
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munication modelwhich requires that players speak hold in the so-calledlackboard modein which the
exactly once each, and in the order, ..., t, with players write their messages on a blackboard for all
playeri speaking only to player+ 1 (for i < t) and other players to see; in the one-way case, the players
playert announcing the output of the function. Here, write messages strictly in the order2, ... t.

we obtain improved lower bounds for the set disjoint- Using the reduction of Alon, Matias, and
ness problem in both these models. Szegedy [3], we can then show that approximating the

The above models of communication turn out to be k** frequency moment of a sequence of integers from
naturally related to theata stream modelvhich has  [m] has space complexi)(m'~2/%/logm) if the al-
been at the centre of much recent research [3, 9, 2]gorithm is allowed a constant number of passes over
on algorithms for massive data sets. In this model, its input. The best result obtainable previously was
an algorithm is allowed to make a few passes (usu-Q(m!'~3/¥). If the algorithm is allowed only one pass
ally one pass) over its massively long input and hasover its input, we again improve earlier results and ob-
only a limited amount of workspace in which to store tain anQ(m'~2/*) bound; this improvement is largely
and manipulate parts of this input. The connection be-technical, since Bar-Yossef et al. were already able to
tween space complexity in the data stream model andestablish &)(s2m!~(2+)/¥) bound. It is worth noting
multi-party communication complexity has been ob- that the best upper bound for the problem in the one
served earlier [3, 5]. In this paper we again exploit this pass model i©) (m!~1/%) for k > 3 andO(log m) for
connection to translate our improved communication k € {0, 1, 2}.
lower bounds into data stream space lower bounds.

1.2. Our Techniques
1.1. Our Results
Our proofs make crucial use of the notion iof

In the multi-party set disjointness problem, each of formation costwhich was formally introduced by
the t players is given a set from the universd = Chakrabarti, Shi, Wirth, and Yao [6], and is also im-
{1,2,...,n} together with a promise that the sets are plicit in recent work by Ablayev [1] and Saks and
either pairwise disjoint or areniquely intersecting  Sun [12]. More precisely, we use the extension and
i.e., they have one element in common but are other-generalisation of this notion due to Bar-Yossef et
wise disjoint. The players must distinguish between al [5]. Roughly speaking, the information cost of
these two cases, using a possibly randomised protocola protocol is the amount of information that can be

The above problem was first studied by Alon, Ma- gleaned about the players’ inputs by examining the
tias, and Szegedy [3] who proved a lower bound transcript of the protocol, constituted by the play-
of Q(n/t*) on its communication complexity. They ers’ messages. When defined appropriately, the corre-
also showed, via a reduction, that this implies an Sponding complexity measure, knowniaformation
Q(n1*5/k) lower bound on the space complexity of ap- complexity can be shown to lower bound the actual
proximating thek*® frequency moment of an input se- communication complexity and satisfy direct-sum like
quence in the data stream modélhe communication ~ properties. The key insight in the work of Chakrabarti
lower bound was subsequently improved(¢n/t2) etal. [6] as well as Bar-Yossef et al. [5] can be summed
by Bar-Yossef, Jayram, Kumar, and Sivakumar [5]; for up as follows:
the special case of one-way communication it was im-
proved to the nearly optim&}(?n /¢! ¢).

In this paper, we prove a lower bound of
Q(n/(tlogt)) for the communication problem in the
general model, which beats all of the aforementioned
bounds. In the one-way model we can further improve
our bound to an optimal2(n/t). Both these results

To lower bound the actual complexity of a
complex “direct-sum like” problem, it suf-

fices to lower bound the information com-
plexity of a simpler “primitive” problem.

In this work, the complex problem we are con-
cerned with is the set disjointness (promise) problem.

2|f the item j occursy; times in the input sequence, thé" Suppose we require the players to outpt indicate
frequency moment is defined 33 ..., v that their sets are disjoint aridto indicate that they




intersect. Viewing the input of each player asrabit

the two players may run the &dtad-Wigderson pro-

string (the characteristic vector of his set), we see thattocol and communicate the outcome to playevho

the function to be computed is tleRr of n bits, each
of which is theAND of ¢ bits. Accordingly, we are in-
terested in the information complexity of the function
AND; in which ¢ players are given one bit each and
have to compute thenD of their bits.

At this point our techniques deviate considerably
from earlier ones. Bar-Yossef et al. [5] relate the in-
formation cost of a protocol to certain well-studied

distance measures between probability distributions;
specifically, Hellinger and related distances. We use

analytical properties of functions arising in the defi-
nition of information cost, together with the special
combinatorial structure of communication protocols,
to obtain a tighter tradeoff between the information
cost and the error probability of a protocol. As ob-
served in [5], the earlier lower bounds were not tight
due to limitations of the properties of the statistical dis-

tance measures used therein. Thus, our direct analyti-

cal approach appears necessary.
1.3. Optimality

Our lower bound for the one-way model is optimal

then announces the output. The cost of this protocol
is clearlyO(t + k + logn), as desired. The proto-
col can be made one-way by exploiting the structure
of the Hastad-Wigderson protocol and involving all of
the good players in it; we omit the details.

1.4. Organisation of the Paper

The remainder of this paper is organised as follows.
In Section 2 we outline the decomposition paradigm
which is central to our proof and formally state our re-
sults. We then present our proofs in the next two sec-
tions. Section 3 handles general protocols and proves
a near-optimal lower bound, and Section 4 improves
the bound to an optimal one for one-way protocols.

2. Information Cost and the Decomposition
Paradigm

We now formally introduce the notion of infor-
mation cost and briefly review the decomposition
paradigm of Bar-Yossef et al [5]. Since the main focus
of this paper is the particular problem of set disjoint-

' ness, we sometimes sacrifice full generality for ease of
and therefore, our lower bound for the general model

presentation.

is nearly optimal. This is because there is a blackboard

one-way protocol for the problem that us@sén/t +
t + logn) bits of communication. Without the one-

Conventions and Basic Definitions. We shall use
boldface letters to denote vectors and capital letters

way restriction the same upper bound holds even int0 denote random variables. We uskeg” to de-
the private message (i.e., non-blackboard) model. wehote logarithm to the bas2 and ‘In” to denote the

now outline a proof of these upper bounds.
A result due to Hstad and Wigderson [8] says that

the two-party set disjointness problem with input sets

of size at mosk has a public coin randomised com-
munication protocol with cosO(k), independent of

natural logarithm. R, shall denote the set of non-
negative reals. For discrete distributioksY we let
H(X) denote the entropy ok andI(X : Y) the mu-
tual information betweenX andY. We recall that
I[(X:Y)=HX)-HX|Y)=H(Y)-HY|X).

the size of the universe. Now, if the universe has size See [7] for further background.

n, applying the private versus public coin theorem of
Newman [11] gives us a private coin protocol with cost
O(k + logn).

Let £ = 3n/t. Because of the unique intersection
promise we know that at least2 of the players have
input sets of size at mogt each; call these players
“good.” Using O(t) bits of private message commu-
nication, two good players can identify one another.

We are interested in the computation of func-
tions of the form¢,, o ¥, where¢,, : {0,1}" —
{0,1} and vy : {0,1}* — {0,1} are arbitrary
Boolean functions. To be precise, we havevec-
torsa™), ... a(® ¢ {0,1}* andt players; player
receives the™ entry of each vector. Their goal is to
computes, (¢¥:(alV), ..., ¢ (al™)). In the case of
the set disjointness problem,, = OR, and

By the unique intersection promise, the desired outputAND,. We shall make the simplifying assumption that

is 1 iff the sets of these two players intersect. Thus,

¢r IS a symmetric Boolean function.



Since we wish to prove lower bounds fpromise
problems,(a(?), ..., a(™) is required to lie in some
restricted subset,, C {0,1}" and thus, for symmet-
ric ¢,,, eacha?) is required to lie in a sef C {0, 1}
of legal inputs. For the set disjointness problem with
the unique intersection promisg,consists of the all-
zeroes inpuD, the all-ones inpul, and the unit vec-
torse; (with a “1” in the it" position) for alli € [t].

LetII be aé-error randomised protocol far, o ;.
We denote byl(aV), ... a(™) the transcript ofI on
input (a(V), ..., a(™); notice that this transcript is a
random variable.

Definition 2.1 (Information cost and complexity)

Let © be a distribution onl. The p-information
cost of II, denoted icost,(I), is defined as
I(AD, ... AW (AWM, ... AM)) where
the random vectorsAU) are drawn independently
from p. The dé-error u-information complexity of
¢n © Py, denotedlC,, 5(¢y, o 1), is defined to be the
minimum of icost,, (IT) over all j-error protocolslI

for ¢, o .

e D must “partition” . This means that for every
d in the support ofD, the conditional distribu-
tion (x| D = d) must be a product distribution
on{0, 1}%.

We can now state the direct sum theorem that is the
basis of the decomposition paradigm.

Theorem 2.3 (Bar-Yossef et al. [5])Let ¢ be a col-
lapsing distribution forg,, o ¢y and let D be a ran-
dom variable that partitiong.. ThenCs(¢,, o 1) >
IC,5(pn 0¥y | D) > n-1C,5(¢ | D). The same
holds for one-way protocols.

For the particular case of the disjointness problem,
let D be a uniform random integer froftj and letu be
distributed uniformly on{0, e, }. It is easy to verify
that this choice of distributions satisfies the required
conditions, and so we have:

Corollary 2.4 The set disjointness problem with the
unique intersection promise, denotedsJ, ;, satisfies
Cs(DIS, ) > n-1C, 5(AND: | D).

Accordingly, we direct our efforts towards studying

For the decomposition paradigm, it is necessary tothe one-bit functioraND;.

consider the following more general notion.

Definition 2.2 (Conditional information cost)

Let D be a random variable. Thé&-conditional
p-information cost ofI, denotedcost,,(I1| D), is de-
fined asl(AM, ..., A™ . m(AM ... AM)| D)
where theA) are as abové. The corresponding
complexity measure, denotdd’,, 5(¢, o ¢ | D), is
defined in the obvious way.

We would like to relate thé-error randomised com-
munication complexity,Cs(¢, o ), to the condi-
tional information complexity of the simpler function
1y With respect to some appropriate distributions. To
enable thisy, and D are required to satisfy the follow-
ing properties:

e 1 must be a “collapsing” distribution fop,, o
. This means that for evers € L, and
all a®, ... a™ in the support ofu, we have

On(Pr(a), ve(a?), ... i (a™)) = y(a).

30ur notation differs slightly from that of Bar-Yossef et al. [5]
who would use something likeost,» (IT | D™).

Communication Complexity Results. In the lan-
guage just developed, our results for communication
complexity can be stated as follows.

Theorem 2.5 With i, and D as defined above, and any

Q(n/(tlogt)).

1
tlogt

IC,, s(AND; | D)

Consequently(s(DISJ, ;)

When protocols are restricted to be one-way, we can
tighten our analysis by making use of the additional

combinatorial properties that result from this restric-

tion. This yields:

Theorem 2.6 With ;s and D as above, and any > 0,

1C.3VAY (aND¢ | D)

ConsequenthCi™WAY (pisy, ;) = Q(n/t).



Results for the Data Stream Model. Let /" de-  we define

note the problem of computing, to withii + ) ap-

proximation, thett? frequency moment of a sequence pr = Pr[ll(0) = 7],

of items, each fronym]. By suitably modifying a re- rix = Pr[ll(e;) = 7|/pr.

duction due to Alon, Matias, and Szegedy [3], Bar-

Yossef et al. [5] show that a space efficient data streamThe main combinatorial property of that we need is

algorithm for F;* can be used to construct an efficient captured by the next lemma and its corollary.

t-party communication protocol farisJ,, ; for an ap-

propriately chosen. This construction is such thatthe Lemma3.1LetI C [t] be a nonempty set and let

resulting protocol is one-way if the data stream algo- x, € {0, 1} be its characteristic vector. For any tran-

rithm makes only a single pass over its input. Using scriptr € U UV, Pr[Il(x;) = 7] = px [[;c; Tin-

this construction and Theorems 2.5 and 2.6 we obtain

the following results (we omit the quantitative details Proof (sketch): It is well known that deterministic

of the proofs): communication protocols satisfy the following “rect-
angle” property: the set of all inputs that produce a
fixed transcript form a combinatorial rectangle (see,

Theorem 2.7 Any c-approximate randomised data e.g., [10, Ch. 1]). A randomised protocol can be

stream algorithm forF}" that works with confidence thought of as a deterministic protocol in which each

> % and makes a constant number of passes over itlayer’s input is his original (one-bit) input plus the

input requiresQ( m! =2/ ) space. If the algo-  (multi-bit) contents of his random tape. With these

(143¢)2/% logm .
rithm makes only one pass over its input, it requires obs_ervatlons, Fhe st_atement of the lemma reduces to
a simple combinatorial fact. .

Q (%) space.
Corollary 3.2 For any nonempty C [¢],

TeUuUV icl

3. The Information Complexity of AND;

We now turn to the study of communication proto-
cols for the functiomaND;. This specific function it-
self plays very little role in the analysis in this section,

Let us now define

though we do care thatND;(0) # AND;(1). Thus, Kk = t-icost,(IT|D);
the lower bound on thé-conditional u-information 5 — Pyl B )
complexity that we obtain here holds for a very gen- o = Prll(0)eV] = pr (2)

eral class of functions. However, this generalisation eV

does not extend easily to the communication complex-

ity world, and that is because the particular distribu-

tions D and i used here were custom-made for the

DISJ,: problem. Recall thap is a random integer |t is clear thatmax{dy,d;} lower bounds the error

chosen uniformly fronjt] and thatu is a random vec-  probability of II. Thus, our goal is to prove that

tor in {0, 1}* chosen uniformly fron{0, e, }. x = Q(1/ log t) for sufficiently small constant& and
Let IT be at-party randomised communication pro- 91.

tocol forAND;. Recall thafll(a) denotes the (random)

transcript of the protocol on input € {0,1}'. Let 3.1. An Analytic Formulation

U be the set of all transcripts that are produced with

positive probability on inpu@, for which the protocol By definition of information costx = Zﬁzl I(A :

outputs 0”. Let V be the corresponding set for output TI(A) | D = i) = >t I(A; : TI(A;)), where A

“1”. For each transcript € U UV and each < [t], is drawn fromy and A; is uniformly distributed on

6 = PrI) €Ul = ) pe][Joir. )

TelU i=1



{0,e;}. Clearly, H(A;) = 1, and it is not hard to
verify that foranyr ¢ U UV
()

whereh is the entropy function for two-valued distri-
butions:h(z) = —xlogx — (1 —z)log(1 —x). More-
over,Pr[A; = 7| = ip,(1+a;.). Putting these facts
together gives us the following analytic expression for
K:

1
1+$i7r

H(A; [TI(A;) = )

Z Zpﬂg(xiﬂ') )

ko= (4)
TeUUV i=1
where the functioy : Ry — R is given by
1+ 1
o) = 1= () ®

It will also be useful to define two auxiliary functions:

g9+(z) = g(z)— 3(1~2) andf(z) = 29(z) +2¢+ (x).
The following lemma collects together several useful

facts about these functions which we shall repeatedly

use.

Lemma 3.3 The functions, g, andg.. satisfy the fol-

lowing properties:

(i) g+ is nonnegative, decreasing j, 1], increasing
in [1,00), and convex if0, o).

(i) 1—2z—g(z) <4g4+(x), forz €0, 1].

(i) —g(z) < 4g4(x), forz € [2,00).

(iv) f(z)+1Inz >0, forz € [3,2].

(v) fis decreasing ino, 2].

Proof : All of these facts can be proved via simple
calculus. We omit the details.

We note that replacing with g, in (4) yields an
expression which lower bounds

Z Zpﬂng (xm) .

TeUUV i=1

Kz

(6)

This is becausg(x) — g4 ()
special case of (1)}, prTix
with (4) gives

Z prf(l“m)

TeUUV i=1

$(1 — =) and, by a
1

< 1. Combining this

IN

4k, (7)

3.2. Balancing

We call a protocobalancedif for each7 and each
i, z;z € {0}U[3,2]. Intuitively, a protocol is balanced
if any transcript which is produced on inputss well
ase; is “almost” equally likely to be produced on each
of these inputs.

Lemma 3.4 For every protocoll there is a balanced
protocol IT" which computes the same functionlds
and satisfiescost,, (II'| D) < 5 - icost,(IT| D). Fur-
thermore, ifll is one-way, thedl’ can be designed to
be one-way.

Proof : If, for somer andi, 0 < z;r < % then

we can splitz into two transcriptsry and m; such
that g is produced only on inpud and is equally
likely to be produced on input8 ande;. The prob-
ability p, is split amongstp,, and p,, as follows:
Pro = (1 — Zix)Dr; Pry = Tizp=. FOr the new tran-
scripts,z;r, = 0 andz;; = 1. Such a split can be
effected by appending to the existing protocol an extra
message from playerthat distinguishes from ;.

We have

Pro9(Ting) + Py 9(Timy) — Prg(Tin)

= pﬂ'(l — Tir — g(x’iﬂ'))

< Aprg+(Tin) -
Likewise, if, for somer and, z;, > 2, then we can
split 7 into two transcriptsrg andm; such thatr is
produced only on inpug;, g is equally likely to be
produced on input® ande;, pr, = pr, pr, = 0, and
Tin, = 1. We have

Pro9(Ting) + Pr 9(Tin,) — Prg(Tir)
—Dr9(Tir)
< Aprgy(xin) .

Repeatedly perform these two operations until the
original protocolll becomes a balanced protodd!.
Letting <’ = ¢ - icost, (I | D), we see that

!/

t
K=k < Y. Zi:l,zme(o,%)u(z,m) Apr g+ (Tir)

Z Z 4p7rg+ (xmr)

T =1

4k,

IN

IN



where the final inequality follows from (6). Lemma 3.5 The setd/, andU’ satisfy:
To prove a similar statement for one-way protocols (i) Zizl rg, < 2K.
we have to be more careful about how we split tran- (i) ¢’ + Zizl ar < 2k.
scripts. Letr be a transcript and letbe the smallest  (iii) U, is nonempty only if <
index such that;» ¢ {0} U [%,2]. Since the proto-
col is one-way,r is simply a sequencéu, ..., u;), _
whereu; is playeri’'s message. We split thimessage (Lfmma 3.3, Part (i)). The:efore, for any € U?;*
into two new ones, thereby simultaneously splitting all Zi;:l 9+(@ix) > 19+(0) = 3 a_nd for anyr € U’,
transcripts of the fornfuy, . .., ui, *, ..., ). We per-  2ui—1 9+ (@ir) = 94+(0) = 3- Using (6), we now eas-
form this operation repeatedly until the protocol be- Iy derive Parts (i) and (ii). For Part (iii), note that
comes balanced. A calculation almost identical to the iS decreasing ifi, 2]; thus, forr € Uy, 0 > F(r) >
above completes the proof. « 7f(0)+(t—r)f(2), whicheasilyyields < ;. =
Notice that we may assume th&t < 1 and that
Kk < é since otherwise there is nothing to prove. Then,

3
£

Proof : Recall thatg, is a nonnegative function

In view of the above lemma, we shall henceforth as-
sume that our protocdl is balanced.

we have
3.3. The Proof for Balanced Protocols G = 1-¢ =3 18— cvpr
. . > 1—-2Kk— 50
Consider, for a moment, the case whHnsatis- )
fies an additional nice propertyzr;. is never zero. z 3 (8)

Then, sincdl is balanced, Part (iv) of Lemma 3.3 al- Using, in succession, (3), (1), Jensen’s inequality for

lows us to lower boundf (zix) by —Inzx for €ach e function 1n”, (8), Lemma 3.3 (iv), the definition
i and 7. By (7), an appropriate weighted sum of U’, the definition ofU/,, and (7), we derive
f(x;z) lower bounds:. On the other hand, by (3), the

same weighted sum of In z;, upper bounds- In 4;. mé — _1 i
Therefore x would be lower bounded by a constant! o = —in Z Pr 1_[”’7”r
The analysis below is based on this idea, but unfor- . .
tunately the presence of zeroes amongathecauses do
: . . < -1 - ir — — -1 )
considerable complication. In particular, we are only ~ — . Z p Hw Q0 . Z br me
able to show the slightly weaker result that =

weUy =1

mwelUp i=1 eV i=1

Q(1/logt). 1 ~ e %0
For a transcriptr € U U V, define F(r) = = 90 WE%:UVPWZ;IDZCW oo 90 oo
Zle f(xiz). We further partition the sdt of tran- '
scripts as followsi/ = U’ U Uy U - - - U Uy, where < 2-2 Z Dr Z In 2
o 7€ U: F(r) > 0andzir =0 etV =l
B { for some index } ’ < 242 ) peF(m)
weUguV
Uy = {meU:Vi(xiy #0)}, < 242 Y pF(m)
reUgUVUU’
U meU: F(r) <0andzj; =0 t
T { for exactlyr indicesi } ’ = 242 > pF(m) =2 ) pF(n)
for1 <r<t. TeUuV r=1rcU,
t
Defineq’ = ..o andg, = 3y px for all < 8 +2-2) Y pF(m). 9)
r > 0. The next lemma limits the profusion of zeroes r=1reUr
amongst ther;. We shall now bound the latter sum from below. Fix

anr such thatU, is nonempty. Sincg is decreasing



n [0, 2], lower boundingF'(w) for = € U, roughly
corresponds to upper bounding the quantitigs In-

equality (1), based on the combinatorial structure of
the protocol, provides a tool for doing this, but due to

the presence of zeroes amongstihe we need to ap-
ply it with a carefully chosen set C [¢] which avoids
most of these zeroes. In the sequel, we saadirage
over all I of a particular sizes, wheres depends om.

Lets = |£]. SinceU, is nonempty, Lemma 3.5
assures us that> 1. Let us define the sefg,(I) =
{m € Uy : [Lie; ir # 0} and the quantitieg, (/) =
> rev, (1) P~ We apply Lemma 3.3, Part (iv), and
Jensen’s inequality to obtain

Sr = Z Z prf(xm)
IC[t),|I|=s weU,(I) i€l
2 Z Z pr' lnxwr
IC[t],|I|=s m€U,(I) i€l
= — Z qr(I) Z < lnl_[as”r
IC[t],|I|=s weUr(I) i€l
Z - Z -In Z pwazw
IC[t],|I|=s weUy(I) el
+ > qI)Ing(I)
I Tl=s
> Z QT<I> In QT’<I> ) (10)
ST

where the final inequality follows by applying (1) for
alltheI’s.

Consider ar € U, and ani € [t] such thate;; # 0.
In the expression that definés, the termp, f(x;r)
appears exactly as many times as there are/sekdch
containi but do not contain any such thatr;, =
0. There are precisely suchj’'s, and so this latter
number is(*." ;). Therefore,

Z Z pﬂ'f(‘riﬂ')

t
t—r—1
s = (U0
s—1 )
weUy i=1,2;77#0

(307 pORC

(11)

where the inequality holds becaug@) > 0. A simi-

lar counting argument yields
t—r—1\ t—1r
Iy = . .
> wn = (7)) 5

IC[t),[|=s
t—r—1 t&
s—1 25’

. ' ‘ o
since, by Lemma 3.5y < < 5 Continuing

from (10), we have

(12)

ng[t],m:s ar{I)

S 2 (ngﬂ,\f|=sqr<f>>'1n ;
(x)

t—r—1\ tgr r t—r—1 t—r—2 t—r—s+1

> ()3 - (% s R )

Y

tgi (lnqr—ln2+ln (1 —

1))

v
/‘\/\q/\/‘\

)% (Ingr —In2+ s (1 %))
> ts Il t% (lnqr In2 — 4”)
> t;igl : (%TQT‘ In g, — 4TQ7“) )

where the first step follows from Jensen’s inequality
and the fourth follows froms = | £ |. Combining this
with (11) yields

5
Y F(m) > orar gy —drg.
7T€U’I‘

We now sum these inequalities overallLemma 3.5
tells us thaty "’ _, r¢, < 2x. On the other hand, by
convexity of(z — xInx),
t t r
> rglng > (Z rqr> 7’” 1
r=1

ZT 17

> 2kIn(2k) — 2k - IHZT
r=1
1
> —— —4kInt.
e
Therefore,
t
ST peF(r) > —2-10kInt — 8k
r=1reU,

Continuing from (9), we get

—Ind; < 20kInt+ 24k +6



and, forg; small enough, this gives = Q(1/logt). Lemma 4.1 Let A denote a uniform random bit. Then
We have shown that for any protocdl with error

probability § less than a sufficiently small constant, k() = L(A: M(A)+ ) pur(lly)
icost,(IL| D) = € <1> = D(P,Q)+ ZPuH(Hu)
logt u
and this completes the proof of Theorem 2.5. whereD(P,Q) = 3, 24% (1 —h ~2e)) is the
) Jensen-Shannon divergence between the distributions
4. A Tight Bound for One-Way Protocols P and(.

One-way communication protocols have special Proof : This follows in a straightforward fashion from
structural properties that are stronger than the “rect-the definitions. We omit the details. ]

angle” property which was crucial in our argumentsin | 5o(IT) be the probability thafl outputs “” on

Section 3. In particular, a one-wayplayer protocol 0t 0, and letd; (1) be the probability that it out-
has a recursive structure given by the strategy of theputs 0" on input 1. In casell is a protocol foranD;

first player and a collection oft — 1)-player proto- .. rs. (1), 6,(I1)} lower bounds the error probabil-
cols, one for each possible message of the first pIayerity of TI. The following lemma, whose easy proof we

Moreover, this recursive structure gives us recursive ; it nrovides recursive formulae for these quantities:
formulae for the information cost as well as the error

probability of the original protocol in terms of those of Lemma 4.2 The error probabilities ofI are given by
the sub-protocols. Using analytic tools (in particular, (i) do(II) = >, pudo(Il,), and

a novel inequality for probability distributions) we can (i) 6:(II) =", ¢,01(IL,). .
then process these recursive formulae into an inductive
proof of an2(1/t) lower bound on the information
cost of the original protocol.

Fix a one-way protocdll for AND;. Let M (a) de-
note the message of player 1 on inpute {0,1}; Lemma 4.3 SupposeP = (pi,...,p,) and Q =
note that) (a) is a random variable. For each possi- (¢, ..., q,) are discrete probability distributions such
ble message, let p, (resp.q.) be the probability that  that for all u, we havep,q, # 0, and wheny, # 0, we
player 1 produces, on input0 (resp.1), and letll,  havep,/q, < 2. Then, for anyy, ..., 4, € [0, 1], we
be the(t — 1)-player protocol that the rest of the play- have
ers execute upon seeing Let P (resp.()) denote the
probability distributions given by{p,} (resp.{q.}). D(P,Q)+ > u_1Pug+(0u) > g+ On_q qudu) -
The distributionsP and @ and the collection{IL, }
of (t — 1)-player protocols completely specify. To
finish this recursive description, we note thatla
player protocolll simply consists of the sole player
announcing the protocol’s output; it is therefore given
by two pairs of probabilitie$pg, qo), (p1, q1) — with ; ' .
Po+PL = qotq1 = 1—corre$sponc)lin(g to th)e tWo mes- Consider the functiond : R?> — R given by

sages “0” (the protocol outputs “0”) and “1” (it outputs gg\]’ 6) = g+(A) + Ag4(d). We claim that its Hes-
“1").

Letg, : Ry — R be the function defined in Sec-
tion 3.1. The following technical inequality is the key
to our improved lower bound.

Proof : It will be necessary to treat messagewith
¢. = 0 separately. Assume w.l.o.g. that= --. =
qr = 0 and thatg, # 0 for v > k; if no ¢, is zero we
putk = 0. Foru > k put\, = py/qu; then), < 2
whenever it is defined.

. Let u and_D be the distributions specifiet_j in Se_c- VQG()\ 5 = gL\ g (8)

tion 2; we write them ag; and D; to emphasise their ’ - q.(8) AgL(0)

dependence oh Definingx(II) = t - icost,,, (IT| Dy)

for a¢-player protocol, we have: is positive semidefinite in the rectandle 2] x [0, 1].
Indeed, a direct computation of derivatives gives



J (z) = % (1 + log (ﬁ)) andg’ (z) = ((2In2)- distributionsP and( that define the strategy of player
#(z + 1)1, So the trace oF2G is positive inR? 1 in IT satisfy the conditions of Lemma 4.3. We shall
: +

and the determinant is positive whenever use that lemma to prove the following claim:

1
—— > (2In2)?. g, (6)%.
e LILCRR A w() +
In the rectanglg0, 2] x [0, 1], the left hand side is at
Ieast% whereas straightforward calculus shows that
the right hand side is strictly less th%n This proves
the claim. It follows thatG is convex in the above

do(1T)
2

> g (61(ID)). (13)

We prove our claim by induction an In the base case
we have al-player protocol given by pairépg, qo)
and (p1,q1) as described earlier. Them(II) =

D((po.p1), (40, 1)) = pog+(q0/po); do(II) = p1 =

rectangle. 1— - - —1 '
2 ., , . po andéy (IT) = go. Sincegy(0) = 3, the claim
Let§ = D o1 @ulu = Doumpr1 @ @D = now reduces to

25:1 py. Using the properties af, from Lemma 3.3,
and noting thad < 1, we have pog+(a0/po) + (1 = po)g+(0) = g+(q0),

k r
D(P,Q) = Zpung(qu/pu) + Z Qw9+ (Pu/ @) which is mmed@te from the convexity of, .

— u—kt1 For the inductive step, we have

> ﬁ'g—i-(o) + Z QU9+()‘u) /ﬁJ(H) + 150(1-1)

u= k+1

> pgi(8) + Z qug+ (A = D(rQ) +Zp"< )+ 50( )>

u=k+1

> D(P wg+ (01 (0,
Now, using Jensen’s inequality for the functiéh we = DBQ) +Zu:p 9+(01(1L)
have
_ r > g+ <Z qml(Hu))
D(P, Q) + Zpug+(5u) u
u=1 = g+(0:1(ID)),
> pgr(0)+ Y qugr Q) + Augs (6u)) where the first step follows from Lemmas 4.1 and 4.2,
u= ’““ the second from the inductive hypothesis, the third
_ 5 Z G0, 02) from Lemma 4.3, and the fourth from Lemma 4.2.
= Pgsl k+1q“ w This proves claim (13). Since, is decreasing in
- , , (0,1), if 61(I) and do(II) are chosen sufficiently
> ﬁ.g+(5)+g( Z Guu,s Z qu5u> small, we can ensure thafIl) > 1. ]
. ":kf{ =kt The above lemma shows thatost,(IT| D) =
= p'9+(<§) +G(1—p,0) ) Q(1/t), for anyII which solvesanp,, and this in turn
> pg+(0)+(1—p)g+(9), completes the proof of Theorem 2.6.
which establishes the desired inequality. n
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