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Abstract—The Gap-Hamming-Distance problem arose in prove that there does not exist a nontrivial protocol, i.e.,
the context of proving space lower bounds for a number of one that communicates only a sublinear number of bits,
key problems in the data stream model. In this problem, ¢4 computing the function of interest. Naturally, such a

Alice and Bob have to decide whether the Hamming fi hall . hen th tocol is all d
distance between theirn-bit input strings is large (i.e., at prootis more challenging when the protocol Is allowe

least n/2 + y/n) or small (i.e., at mostn/2 — \/n); they 0 berandomizedand err with some small probability
do not care if it is neither large nor small. This ©(y/n) on each input.

gap in the problem specification is crucial for capturing  The textbook by Kushilevitz and Nisan [KN97] pro-
the approximation allowed to a data stream algorithm. —\iqeg detailed coverage of the basics of communication

Thus far, for randomized communication, an2(n) lower . L . -
bound on this problem was known only in the one-way complexity, and of a number of applications, including

setting. We prove an(n) lower bound for randomized the two mentioned above. In this paper, we only recap
protocols that use any constant number of rounds. the most basic notions, in Section II.

As a consequence we conclude, for instance, that Our focus here is on a specific communication prob-
approximately counting the number of distinct elements in lem — the Gap-Hamming-Distance problem — that, to
a data stream requiresQ(1/e*) space, even with multiple . L
(a constant number of) passes over the input stream. This th€ best of our knowledge, was first formally studied by
extends earlier one-pass lower bounds, answering a long- Indyk and Woodruff [IW03] in FOCS 2003. They studied
standing open question. We obtain similar results for ap- the problem in the context of proving space lower bounds
proximating the frequency moments and for approximating  for the Distinct Elements problem in the data stream
the empirical entropy of a data stream. model. We shall discuss their application shortly, but let

In the process, we also obtain tightn — ©(y/nlogn) . . L .
lower and upper bounds on the one-way deterministic US first define our communication problem precisely.

communication complexity of the problem. Finally, we give

a simple combinatorial proof of an €(n) lower bound on 1he Problem
the one-way randomized communication complexity. In the Gap-Hamming-Distance problem, Alice re-
ceives a Boolean string € {0,1}" and Bob receives
. INTRODUCTION y € {0,1}". They wish to decide whether and y are

This paper concerns communication complexityclose” or “far” in the Hamming sense. That is, they
which is a heavily-studied basic computational modelyish to output0 if A(z,y) < n/2 — /n and 1 if
and is a powerful abstraction useful for obtaining resul&(x,y) > n/2+ /n. They do not care about the output
in a variety of settings not necessarily involving comi neither of these conditions holds. Herd denotes
munication. To cite but two examples, communicatiorlamming distance. In the sequel, we shall be interested
complexity has been applied to prove lower bounds an a parametrized version of the problem, where the
circuit depth (see, e.g., [KW90]) and on query times fathresholds are set at/2 + c\/n, for some parameter
static data structures (see, e.g., [MNSW98], [Pat08).c RT.

The basic setup involves two players, Alice and Bob

each of whom receives an input string. Their goal iQUr Results

to compute some function of the two strings, using a While we prove a number of results about the Gap-
protocol that involves exchanging small number of Hamming-Distance problem here, there is a clear “main
bits. When communication complexity is applied as theorem” that we wish to highlight. Technical terms
lower bound techniqgue — as it often is — one seeks tppearing below are defined precisely in Section Il.



Theorem 1 (Main Theorem, Informal). Suppose a a nontrivial tradeoff between the quality of approxima-
randomized%—error protocol solves the Gap-Hamming-tion desired as the space required to achieve it. The
Distance problem using: rounds of communication. best such result [BJK04] achieved a multiplicative
Then, at least one message mustrzkyféo(k2> bits long. (1 + ¢)-approximation using spa@(l/gQ), where the

In particular, any protocol using a constant number oD-notation suppressel®gm and log(1/e) factors. It
rounds must communicate(n) bits in some round. In also processed the input stream in a single pass, a
fact, these bounds apply to deterministic protocols withery desirable property. Soon afterwards, Indyk and
low distributional error under the uniform distribution. Woodruff [IW03] gave a matchin@(1/<2?) space lower

At the heart of our proof is a round elimination Iemme?Ound for one-pass algorithms for this problem, by

that lets us “eliminate” the first round of communication> reduction from the Gap-Hamming-Distance commu-

. . . nication problem. In SODA 2004, Woodruff [Woo04]
in a protocol for the Gap-Hamming-Distance problem o :
. L Improved the bound, extending it to the full possible

and thus derive a shorter protocol for an “easier” instance o
i . range of subconstant, and also applied it to the

of the same problem. By repeatedly applying this lemma

S L more general problem of estimating frequency moments
we eventually eliminate all of the communication. W n ep .
. . F, = > fF, where f; is the frequency of element
also make the problem instances progressively easief, =11
. - 1,ih the input stream. A number of other natural data
but, if the original protocol was short enough, at the ensd[

. . o . ream problems have similar space lower bounds via
we are still left with a nontrivial problem. The resulting . .
reductions from Gap-Hamming, a more recent example

contradiction lower bounds the length of the Origin%eing the computation of the empirical entropy of a

protocol. We note that this underlying “round ehmmaﬂonstream [CCMO7].

philosophy” is behind a number of key results in com- . , L : . )
munication complexity [MNSW98], [Sen03], [CRO4],. The idea behind the reduct!on is quite S|.mplg. Al-
[ADHPO6], [Cha07], [VW07], [CIPO8] ice and Bob can convert their Gap-Hamming inputs

Besides the above theorem, we also prove tigmto suitable streams of integers, and then simulate a

lower and upperbounds ofn — ©(y/mlogn) on the one-pass streaming algorithm using a single round of

one-way deterministic communication complexity oﬁgnmt?nlf[g'g??ﬁg ;T ;Vrht'ﬁg] gll‘lt(;? Sri)r]c(jassssr?br:Z?srt?z?rgr)lln
Gap-Hamming-Distance. Oni§(n) lower bounds were gori P N9 )

known before. We also prove afi(n) one-way ran- this way, an2(n) one—V\Q/ay communication lower bound
tganslates into af2(1/¢*) one-pass space lower bound.

domized communication lower bound. This match ) o
}Quch less simple was the proof of the communication

earlier results, but our proof has the advantage . , ;
being purely combinatorial. (We recently learned th wer bound |t§e|f. WOOdrUﬁS proof [Woo04] _requwed
ntricate combinatorial arguments and a fair amount

Woodruff [Wo009] had independently discovered a sin{-]c | lculati 3 t al. 1IKSO07 lat
ilar combinatorial proof. We present our proof never?. COMPplex: caicuiations. Jayram €t al. [ ] Jater
rovided a rather different proof, based on a simple

theless, for pedagogical value, as it can be seen a eometric argument, coupled with a clever reduction

generalization of our deterministic lower bound proof. 9 ' P ) . .
rom the INDEX problem. A version of this proof is

Motivation and Relation to Prior Work given in Woodruff’'s Ph.D. thesis [Wo007]. In Section V,

. o o . we provide a still simpler direct combinatorial proof,
We now describe the original motivation for StUdym%ssentiaIIy from first principles

the Gap-Hamming-Distance problem. Later, we discuss
the consequences of our Theorem 1. In the data stre
model, one wishes to compute a real-valued functiq

of a massively long input sequence (the data strea tinct elements — or, more generally, the frequency

using very Iimiteq space, hopefully sublinear in the inp%omentst. Perhap@(l/a) space was possible? This
length. To get |nterest|_ng results, one almos_t alwa)(ﬁas a long-standing open problem [Kum06] in data
needs to allow randomized approximate algorithms. 'SA‘[reams. Yet, some thinking about the underlying Gap-

key problem in this model, that has seen much res . o
amming communication problem suggested that the
search [FM85], [AMS99], [BIK04], [IWO03], [Wo009], 0o jower bound ought to hold for general commu-

. L : i
s the Distinct Eler_ne_nts problem: th? goalis to eSt'ma{%cation protocols, not just for one-way communication.
the number of distinct elements in a stream rof T

L his prompted the following natural conjecture.
elements (for simplicity, assume that the elements are

drawn from the universén| := {1,2,...,m}). Conjecture 2. A i-error randomized communication
An interesting solution to this problem would giveprotocol for the Gap-Hamming-Distance problem must

All of this left open the tantalizing possibility that
Mecond pass over the input stream could drastically
duce the space required to approximate the number of



communicate{2(n) bits in total, irrespective of the tion does not give us the results we want. Incidentally,
number of rounds of communication. an even easier reduction fromsJOINTNESSYields an
arbitrary-round2(y/n) lower bound for Gap-Hamming-

An immediate consequence of the above ConjeCtuIEﬁstance' this result is folklore

is that a second pass doast help beat theQ(1/¢?)

space lower bound for the aforementioned streamin Furthermore, straightforward rectangle-based methods
problems: in fact, no constant number of passes he|68iscrepancy/corruption) fail to effectively lower bound

Our Theorem 1 doesotresolve Conjecture 2. However, e randomized communication complexity of our prob-
it doesimply the Q(1/<2) space lower bound with alem. This is _because ther@o_emst very _Iarg_e near-
constant number of passes. This is becausemabtain  Monochromatic rectangles in its communication matrix.
a linear communication lower bound with a constanthis can be seen, e.g., by considering all inpltsy)

number of rounds. with z; = y; = 0 for i € [O(y/n)].

Finer Points

To better understand our contribution here, it is wortffonnection to Decision Trees and Quantum Communi-
considering some finer points of previously known lowefation
bounds on Gap-Hamming-Distance, including some

“folklore” results. The earlier one-way2(n) bounds e would like to bring up two other illuminating
were inherently one-way, because theiDEX problem observations. Consider the following query complexity

has a trivial two-round protocol. Also, the nature oProblem:theinputis astring < {0,1}" and the desired
the reduction implied a distributional error lower boun@UtPutis1 if |z > n/2++/n and0 if |z < n/2—/n.

for Gap-Hamming only under a somewhat artificial inH€re. 2| denotes the Hamming weight of The model
put distribution. Our bounds here, including our ond$ @ randomized decision tree whose nodes query indi-

way randomized bound, overcome this problem, ddualbits ofz, and whose leaves give outputs{io, 1}.
does the recent one-way bound of Woodruff [Woo0o]! iS not hard to show thaf)(n) queries are needed to
they apply to the uniform distribution. As noted bysolve this problem W|t_h§ error. Essentially, one can do
Woodruff [Wo009], this has the desirable consequent® begter than sampling bits of at random, and then

of implying space lower bounds for the Distinct EIX2(1/¢°) samples are necessary to distinguish a biased
ements problem under weaker assumptions about {fRin that shows heads with probabilify+ ¢ from one
input stream: it could be random, rather than adversarigiat Shows heads with probability — e.

Intuitively, the uniform distribution is the hard case The Gap-Hamming-Distance problem can be seen as
for the Gap-Hamming problem. The Hamming distance generalization of this problem to the communication
between two uniformly distributed-bit strings is likely setting. Certainly, any efficient decision tree for the quer
to be just around thei/2 + ©(/n) thresholds, which Problem implies a correspondingly efficient communica-
means that a protocol will have to work hard to detetion protocol, with Alice acting as the querier and Bob
mine which threshold the input is at. Indeed, this line cdcting as the responder (say). Conjecture 2 says that
thinking suggests aft(n) lower bound for distributional no better communication protocols are possible for this
complexity — under the uniform distribution — on theproblem.
gaplessversion of the problem. Our proofs here confirm This query complexity connection brings up another
this intuition, at least for a constant number of roundscrucial point. Thequantumquery complexity of the

It is relatively easy to obtain aft(n) lower bound on above problem can be shown to li&(,/n), by the
thedeterministiomulti-round communication complexity results of Nayak and Wu [NW99]. This in turn implies
of the problem. One can directly demonstrate that tlen O(y/nlogn) quantum communication protocol for
communication matrix contains no large monochromat®ap-Hamming, essentially by carefully “implementing”
rectangles (see, e.g. [Wo007]). Indeed, the argument gakee quantum query algorithm, as in Razborov [Raz02].
through even with gaps of the form/2 4+ ©(n), rather Therefore, any technique that seeks to prove(dn)
thann/2 £ ©(y/n). It is also easy to obtain afi(n) lower bound for Gap-Hamming (under classical com-
bound on the randomized complexity of the gaplesaunication) must necessarily fail for quantum proto-
problem, via a reduction frordISJOINTNESS Unfortu- cols. This rules out several recently-developed methods,
nately, the known hard distributions fonsJoINTNESS such as the factorization norms method of Linial and
are far from uniform, andI1SJOINTNESSIs actually very Shraibman [LS07] and the pattern matrix method of
easy under a uniform input distribution. So, this reduSherstov [She08].



Connections to Recent Work send the messages; by convention, we usually assume
Our multi-round€(rn) bound turns out to also havethat Alice sends the first message and the recipient

applications [ABC09] to the communication complexiP! the last message announces the outputl-found

of several distributed “functional monitoring” problemsProtocol is also called @ne-way protocol since the

studied recently by Cormode et al. [CMY08] in SODAENtire communication happens in the Alice Bob

2008. Also, our lower bound approach here uses affection.

extends a subspace-finding technique recently develoggemmunication Complexity

by Brody [Bro09] to prove lower bounds on multiparty The deterministic communication complexity(f)

pointer jumping. of a communication probleny is defined to be the
minimum, over deterministic protocol8 for f, of the
number of bits exchanged By for a worst-case input

o o (z,y). By suitably varying the class of protocols over
We begin with definitions of our central problem ofynich the minimum is taken. we obtain e.g., the

interest, and _qui_ckly recall some standard definitionsor randomized, one-way deterministicerror one-
from communication complexity. Along the way, we aISQ/vay randomized, and-error p-distributional determin-
introduce some notation that we use in the rest of th&ic communication complexities of, denotedR.(f),
paper. D= (f), R-(f), and D, .(f), respectively. When the
Definition 1. For stringsz,y € {0,11", the Hamming €rror paramete&: is dropped, it_is tacitly assur_ned to be
distance between andy, denotedA(z,y), is defined %; as is well-known, the precise value of this constant
as the number of coordinatés [n] such thaty; # y;. IS immaterial for asymptotic bounds.

posen € N ande € R*. The c-Gap-Hamming-Distance % € {0,1}" are c-near-orthogonal, and write L. y,

partial function, onn-bit inputs, is denotedHb,.,, and if |A($vy)_— n/2| < cy/n. Here, ¢ is a positive
is defined as follows. real quantity, possibly dependent an Notice that

GHDcn(z,y) =% < x L. v.

II. BASIC DEFINITIONS, NOTATION AND
PRELIMINARIES

1, if Alz,y) >n/2+cyn, The .(ftlistributiodn of tge Hamming distgn::e ?etV\r/]een
_ : two uniform randomn-bit strings — equivalently, the
G c,n 9 - B 5 4 S - 5 . . . . . .
HDe.n (7, 9) 0 it Adw,y) <n/2—cyn distribution of the Hamming weight of a uniform random

*,  otherwise. n-bit string — is just an unbiased binomial distribu-

We also usesHD.,, to denote the corresponding comiion Binom(n, 3). We shall use the following (fairly
munication problem where Alice holds € {0,1}", loose) bounds on the tail of this distribution (see, e.g.,
Bob holdsy € {0,1}", and the goal is for them to Feller [Fel68]).

communicate and agree on an output bit that matchgget 3. et To(c) = Pry[z L. 0"], wherez is dis-
GHD.»(z,y). By conventionx matches botl) and1.  iputed uniformly at random in{0,1}". Let T(c) =
lim,,—,o T (c). Then

Protocols
5.2
Consider a communication problerf : {0,1}" x 2732 < T(¢) ~ e < 9=
{0,1}" — {0,1,x}™ and a protocolP that attempts N cV2r
to solve f. We write P(x,y) to denote the output oP There are two very natural input distributions for

on input(z, y): note that this may be a random variablegHD, ,,: the uniform distribution on{0,1}" x {0,1}",
dependent on the internal coin tossesAfif P is a and the (non-product) distribution that is uniform over
randomized protocol. A deterministic protod®lis said all inputs for which the output is precisely defined. We
to be correct forf if V(z,y) : P(z,y) = f(z,y) call this latter distribution, .

(the “=" is to be read as “matches”). It is said to '
have distributional error ¢ under an input distribution
p it PrigyplPz,y) # f(2,y)] < e. A randomized
protocol P, using a public random string is said to be
have errorz if V(z,y) : Pr.[P(x,y) # f(z,y)] <e. A
protocolP is said to be &-round protocolif it involves Using Fact 3, we can show that for a constant
exactly ¥ messages, with Alice and Bob taking turns tand suitably smalle, the distributional complexities

Definition 4 (Distributions). Forn € N, ¢ € RT, let

e, denote the uniform distribution on the Sdtr, y) €

{0,1}™ x {0,1}™ : = K. y}. Also, letl4,, denote the
uniform distribution on{0, 1}".

4



Dy, xu, e (GHD. ,) andD,,, , -(GHD, ) are within con- Lemma 8. There exists ndo0, n, s, c, ¢]-protocol with
stant factors of each other. This lets us work with the > 1, c = o(y/n), ande < 1.
latter and draw conclusions about the former. The latter

has the advantage that it is meaningful for any % Proof. With these parameterg,., has nonempty

. : o1 support. This impliesPr,,_ , [GHD.,(z,y) = 0] =
whereas the former is only meaningfulsf< 57(c). Pr,. [GHDn(z,y) = 1] — 1. Thus, a0-round de-

Let B(z,r) denote the Hamming ball of radius terministic protocol, which must have constant output
centered atz. We need to use the following bounds P ' put,

on the volume (i.e., size) of a Hamming ball. Here(,;annOt achieve error less th%m -
H :[0,1] — [0,1] is the binary entropy function. B. The Round Elimination Lemma
Fact 4. If r = ¢y/n, then(y/n/c)” < |B(z,r)| <n". The next lemma is the heart of our proof. To set up its
Fact 5. If » = an for some constand < a < 1, then parameters, we s :.(48 In2)-211%, ¢ = 2%, andb =
|B(z,r)| < 2nH() T-1(1/8), and we define a sequenf@;, s, ¢;, i)~

T ' as follows:

IIl. M AIN THEOREM: MULTI-ROUND LOWER - . 3

BOUND no = nit1 = /3,
so = tos, Sit1 = tsi, .
A. Some Basics o = 10, civ1 = 2¢i, fori>0.
In order to prove our multi-round lower bound, we ¢, = 22" 1 = &/T(cit1).

need a simple — yet, powerful — combinatorial lemma, (1)

known as Sauer's Lemma [Sau72]. For this, we reCEL"emma 9 (Round Elimination for GHD). Suppose
the concept of Vapnik-Chervonenkis dimension. Bet 0 < i < kands; < ni/20. Suppose there ex-

{0, 1.}n and’ [’?]'.We say thats shattersl if th? Sel ists a [k — i,n4, S, ¢i, €;]-protocol. Then there exists a
obtained by restricting the vectors hto the coordinates [k — i — 1, nis1, 8101, Cort, €0r1]-protocol

in I has the maximum possible siz2l!l. We define AL Sl Gt 1, € [P '

VC-dim(S) to be the maximunp/| such thatS shatters Proof: Let (n,s,c,e) = (n;8;,¢,6;) and
I. (n',s',c,e") = (g1, Sit1,Cit1,Eit1). AlsO, let u =
Henys W = fer nsy GHD = GHDg,,, aNdGHD' = GHD./ .
Let P be alk — i,n, s, ¢, g]-protocol. Assume, WLOG,
that Alice sends the first message7in

d Call a stringzo € {0,1}" “good” if

51 < E(”)

Whend = an for some constant;, then the above s .
sum can be upper bounded BY¥(®). This yields the By the error guarantee oP and Markov’s inequality,
following corollary. the number of good strings is at least—!. There are

25 < 27/20 different choices for Alice’s first message.
Corollary 7. If [S| > 2#(*), for a constanta, then Therefore, there is a st/ C {0,1}" of good strings
VC-dim(S) = an. such that Alice sends the same first messagm every

We now turn to the proof proper. It is based on JPute € M, with |M] > gn om0 > gnfA/9), By
round elimination lemma that serves to eliminate the fir§torollary 7,VC-dim(M) > n/3. Therefore, there exists
round of communication of &Hb protocol, yielding a & S€ < [n), W't,h (1] =n/3= ”/',:[hat is shattered by
shorter protocol, but fogHD instances with weakened?!: For stringsz’ € {0,1}" andz” € {0,1}"™", we

parameters. To keep track of all relevant parameters, Wiit€ ' © z” to denote the string iH0, 1}" formed by
introduce the following notation. plugging in the bits ofz’ and z” (in order) into the
coordinates inf and[n] \ I, respectively.

Definition 5. A [/{, n,s,c, 6]'prOtOCO| is a deterministic We now give a Suitab|6€_i_1)-r0und protocoQ for
k-round protocol forGHD,,,, that errs on at most an  gHp/, in which Bob sends the first message. Consider an
fraction of inputs, under the input distribution. ., and input (+/,4/) € {0,1}" x {0,1}", with Alice holding

Lemma 6 (Sauer's Lemma).Supposes C {0,1}" has
VC-dim(S) < d. Then

Pr [P(z,y) # GHD(z,y) |z =m¢] < 2¢. (2)

(z,y)~p

in which each message isbits long. 2/ and Bob holding,’. By definition of shattering, there
The next lemma gives us the “end point” of our roun&iSts ana” € {0,1}"7" such thate := 2" o 2" €
elimination argument. M. Alice and Bob agree beforehand on a suitabli@r

each possibler’. Suppose Bob were to pick a uniform



randomy” € {0,1}*~"" and form the string := y/oy".
Then, Alice and Bob could simulate on input(z,y)
using onlyk — i — 1 rounds of communication, with Bob
starting, because Alice’s first messagéinvould always
bem. Call this randomized protoc@®;. We defineQ to
be the protocol obtained by runnimgnstances of; in
parallel, using independent random choicesyéf and

outputting the majority answer. Note that the length of

each message i} is ts = s’. We shall now analyze the
error.
Supposer” 1y y”. Letdy = A(x,y) — n/2, do =

Az’ y') —n//2 andds = A(z",y") — (n — n')/2.
Clearly, d; = ds + ds. Also,
ldi| > |do| —|ds| > IVl —bvVn—n'
NG YANG
a V3
2 C\/ﬁv

where we used (1) and our choice ©fThus,z f. y

The same calculation also shows thit and d, have
the same sign, ailz| > |ds|. ThereforeGHD(z,y) =
GHD' (2, y').

of {0,1}™ of size 2"T(c), whereasy is uniformly
distributed on a subset di0, 1}" of size 2"T'(¢/). (We
are now thinking ofr as being fixed and botlf andy”
as being random.) Therefore,

Ey/ {Eg [5(y')]} = Pr [E)] @
= Pr[P(z,y) # GHD(z, )]
< Pzr [P(x,2) # GHD(z, 2)] - 17:((60/))
< 2eT(c)/T(c), (8)

where (8) holds because, being good, satisfies (2).
Thus, by Markov’s inequality,

Priew) 2 3

y//

Pr
y/

] < 16eT(c)/T(c).  (9)

If, for a particulary’, the bad eventPr,.[E(y')] > %
doesnot occur, then the right side of (6) is at mdsts+
1/8 = 1/4. In other words,Q; errs with probability at
most1/4 for thisy’. By standard Chernoff bounds, the
fold repetition inQ drives this error down tge/4)"/* <

For the rest of the calculations in this proof, fix ar?” """ < €0 < . Combining this with (9), which bounds

input 2’ for Alice, and hencegz” and z as well. For
a fixed ¢/, let £(y’) denote the event tha®(z,y) #
GHD(z, y):

probability thatQ; errs on input(2’,y’) as follows.

Pr[Qi(a’,y) # 6HD'(z,y') | /] ®3)
< PiP(z,y) # GHD(z,y)
V GHD(z,y) # GHD'(2",y/) | '] (4)
< Pr [E(W)] + PrleHD(z,y) # GHD'(2",¢) | ¢/]
< Prie W)+ Pr[ " Ly (5)
< Prle@)+ 1)
= Prle@)]+1/8, (6)

where step (6) follows from our choice 6f To analyze
Q, notice that during theé-fold parallel repetition 0©Q1,
y' remains fixed whiley” varies. Thus, it suffices to

understand how the repetition drives down the sum on
the right side of (6). Unfortunately, for some values of

1/, the sum may excee%i in which case it will be driven

note thaty” remains random. Using the /.~
above observation (at step (5) below), we can bound the

the probability of the bad event, we get
[Q(2',y") # GHD' (', y')] 16eT(c)/T() + ¢
e/T(c)

’
£ )

Pr <

<

wherer denotes the internal random string f (i.e.,
the collection ofy”s used).

Note that this error bound holds faveryfixed 2,
and thus, when(z’,y’) ~ p’. Therefore, we can fix
Bob’s random coin tosses i® to get the desired
[k —i—1,n',¢, ¢, &]-protocol. [ ]

C. The Lower Bound

Having established our round elimination lemma, we
obtain our lower bound in a straightforward fashion.

Theorem 10 (Multi-round Lower Bound). Let P be
a k-round %-error randomized communication protocol
for GHD, ,,, with ¢ = O(1), in which each message is

bits long. Then
n

§ 2 5002

Remark. This is a formal restatement of Theorem 1.

up, not down, by the repetition. To account for this, we

shall bound thexpectatiorof the first term of that sum,
for a randomy’.

Proof: For simplicity, assume: < ¢y = 10. Our
proof easily applies to a general= O(1) by a suitable

To do so, let: ~ p |  be a random string |ndependenmodlf|cat|0n of the parameters in (1). Also, assumg

of y. Notice thatz is uniformly distributed on a subset24+”,

for otherwise there is nothing to prove.



By repeatingP (481n2)-2'* = ¢, times, in parallel, Lemma 12. For all z1, 2 € {0,1}", there existg, that
and outputting the majority of the answers, we cawitnessegz1,z) if and only if A(zy,22) > 2¢v/n.
reduce the error t@—2"" = 0. The size of each
message is nows = sq. Fixing the random coins of the
resulting protocol gives us &; no, so, co, £o]-protocol
Po.

Supposes; < n;/20 for all ¢, with 0 < i < k.
We then repeatedly apply Lemma /9 times, starting
with Py. Eventually, we end up with @, ny, sg, ¢k, eg]-
protocol. Examining (1), we see that, = n/3F,
sk = 215+ 50 = (481n2)25% H11k g andc, = 10 - 2%,
Notice thatn;, > 24°/3F > 1 andc¢;, = o(y/nx). We
also see thatc;)¥_, is an increasing sequence, whenc
civ1/ei = 1/T(civ1) < 1/T(cg) < 23¢°+2, where the
final step uses Fact 3. Thus,

Proof: On the one hand, supposg withesses
(z1,22). Then assume WLOG thak(z;,y) < n/2 —
cy/n and A(zz,y) > n/2 + c¢y/n. By the triangle
inequality, A(z1,x2) > A(za,y) — A(z1,y) = 2¢y/n.
Conversely, supposA(z1,z2) > 2¢y/n. Let L = {i :
x1[i] = z2[i]}, and letR = {i : x1[i] # x2[i]}. Suppose
y agrees withz, on all coordinates fronk and half the
coordinates fromL. Then, A(x1,y) = |L|/2 = (n —
A(x1,2))/2 < n/2—cy/n. Furthermorey agrees with
z9 0N no coordinates fromRk and half the coordinates
fom L, soA(z1,) = |L|/2+ |R| > n/2+ cyn. ®

We show that it is both necessary and sufficient
for Alice to send different messages an and x,
e < €0 (23ci+2)k wheneverA(z1, z2) is “large”. To prove this, we need
the following theorem, due to Bezrukov [Bez87] and a

9—2"" 9(3(10-2%)*+2) k i : - ’ =20
claim that is easily proved using the probabilistic method

— 9—2"1"+300k-27 42k (a full proof of the claim appears in the appendix).
< % Theorem 13. Call a subsetd C {0,1}" d-maximal if

it is largest, subject to the constraint thét(z,y) < d
In other words, we have[8, ny, sk, ck, ex]-protocol with - for all z,y € A.

ne > 1, ex = o(y/n,) ande, < 3. This contradicts
Lemma 8.

Therefore, there must exist an such thats; >
n;/20. Since (s;)¥_, is increasing andn;)*_, is de-
creasing, s > mnx/20. By the above calculations,
(481n2)215% +11kg > 1, /(20 - 3%), which impliess > Claim 14. It is possible to covef0,1}" with at most
n/200%) | as claimed. m 2" 9(nlgn) Hamming balls, each of radius/n. [

Notif:e that,_for gonstarﬁ, the argument in the a_bpv_e Proof of Theorem 11For the lower bound, suppose
proof in fact implies a lower bound for determmlstlcfo

rotocols with small enough constant distributional errorr the sake of contradiction that there is a protocol
P 9 Wwhere Alice sends onlyn — ¢y/nlogn bits. By the

ey T n . oends o et ey i, s 8 b (01
u uni Istribution, '€ of inputs of size|M| > 2n/on—cvnlogn — gevnlogn —

IV. TIGHT DETERMINISTIC ONE-WAY BOUNDS n°V™ upon which Alice sends the same message. By
Theorem 13, the Hamming bal¥(z,cy/n) is 2¢y/n-
maximal, and by Fact 48(x, cy/n)| < |M|. Therefore,
Theorem 11. D7 (GHD..,,) = n — O(y/nlogn) for all there must ber;,z2 € M with A(z1,22) > 2¢y/n.
constantc. By Lemma 12, there exists @that witnessegz1, z2).
No matter what Bob outputs, the protocol errs on either

(z1,y) or on (z2,y).

1) If d = 2t thenB(z,t) is d-maximal for anyz €
{0,1}™.

2) If d =2t +1thenB(z,t) UB(y,t) is d-maximal
for anyz,y € {0,1}™ such thatA(z,y) =1. O

The main result of this section is the following.

Definition 6. Let z1,22,y € {0,1}". We say thaty

winesses: and ot haly is a winess 106z 22) " For a matching upper bound, Alce and Bob fix a
LAed @2 4elh e\, Y en\¥2:4)- coveringC = {B(xo,r)} of {0,1}" by Hamming balls
Intuitively, if (z1,z2) have a witness, then they cannobf radius r = c¢y/n. On input z, Alice sends Bob
be in the same message set. For if Alice sent tilee Hamming ballB(z¢,r) containingz. Bob selects
same message army and zo and Bob’s inputy was a somez’ € B(zg,r) such thatz’ /. y and outputs
witness for(z1, z2) then whatever Bob were to output,GHD(z’,y). The correctness of this protocol follows
the protocol would err on eithefzy,y) or (z2,y). from Lemma 12, asA(x,2’) < 2¢y/n since they are
The next lemma characterizes whigh , x2) pairs have both in B(xo, cy/n). The cost of the protocol is given
withesses. by Claim 14, which shows that it suffices for Alice to



sendlog (2"~9Wnlen)) = n — O(y/nlogn) bits to  Then,A(z,y) = (m — k) + (n1 — k) = m +ny — 2k.

describe each Hamming ball. H Hence,
m4+ny n ¢
V. ONE ROUND RANDOMIZED LOWER BOUND Az, y) > n/2+cy/n <= k< 5 T4 5\/5-
Next, we develop a one-way lower bound for ranNote that given a randony with weight ly| = ni,

domized protocols. Note that our lower bound appliege probability that exactly: of m coordinates have
to the uniform distribution, which, as mentioned in;; = 4, = 1 follows the hypergeometric distribution
Section |, implies space lower bounds for the Distinqt{yp(k;nvmvnl)_ Therefore, we can express the proba-
Elements problem under weaker assumptions about thigty Priyj=n, [A(z,y) > n/2+ cy/n] as

input stream. Woodruff [Woo09] recently proved similar
results, also for the uniform distribution. We include our |, -2 [Alz,y) = n/2+cv/n]

ly|=n1
lower bound as a natural extension of the deterministic B Z Hyp(k: )
bOUnd. - YP(Rin,m,ny) .
N
Theorem 15. F2.7(GHD..) = Q2(n). Finally, we show thatv(z) > 4¢ for a suitably large
Proof: For the sake of clarity, fix = 2 ande = constantz| with the following claims, whose proofs are

1/10, and supposé® is a one-roundg-error, o(n)-bit  left to the appendix.

protocol for GHD.. .. Claim 17. Conditioned onjy| < n/2 — 2y/n, we have

Definition 7. Forz € {0,1}", let Y, := {y: = fo y}. Prlly| >n/2—-21y/n] < 1.
Say thate i_s goodif Pryey, [P(x,y) = GHD(z,y)] < Claim 18. For all d < n/2 — 2.1y/n, we have
2¢. Otherwise, calkz bad Pr[A(2s,y) > n/2 + dy/n] > 0.95.

By Markov's inequality, at most a/2-fraction of Its easy to see from the previous two claims that

x are bad Next, fix Alice’s messagem to maxi-
. ' >0.95-(2/3) > 4e. ]
mize the number ofgood z, and letM = {z € w(@) 2/3)
{0,1}" : z is good and Alice sends on inputz}. It V1. CONCLUDING REMARKS
follows that Our most important contribution here was to prove a

n—1 Joo(n) n(1—o(1)) multi-round lower bound on a fundamental problem in
|M] 22"/2 >2 : communication complexity, the Gap-Hamming Distance
Our goal is to show that sincg\/| is large, we must problem. As a consequence, we exter)ded several known
err on a> 2e-fraction of y € Y, for somez € M, Q(1/£?)-type space boun_ds_ for various data stream
contradicting the goodness of Note that it suffices to Problems, such as the Distinct Elements problem, to
show that ade fraction of y € Y,, witnessz; and . muIU-_pass algorithms. These resolve long-standing open
|M| > 2n(1=e(1) so by Fact 5 and Theorem 13duestions. .
There existr1, z2 with A(z1, 22) > 1—o(1). Next, we'd TheT most |mmed|ate_ open problem suggested by our
like to determine the probability that a randae Y, work is to resolve Conjecture 2. It appears that proving

witnesses(z1, z2). Without loss of generality, let; = the conjecture_ tr_ue i_s going to require a technique other
0. Let w(z) := Pryey,, [GHD(z,y) # GHD(x1,y)]- than round elimination, or else, axtremelypowerful

The following lemma shows thab(z) is an increasing round elimination lemma that does not lose a constant
function of |z|. We leave the proof until the appendix. fraction of the input length at each step. On the other
hand, proving the conjecture false is also of great in-

Lemma 16. For all z,2" € {0,1}", w(z) > w(z’) & terest, and such a proof might extend to nontrivial data

|z| > |'], with equality if and only ifiz| = |2/. stream algorithms, albeit with a super-constant number
We computew(z) by conditioning on|y|: of passes.
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= B(z,r) be the
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Now, fix any z € {0,1}" and anyl < i < ¢. Since Many claims in this paper require tight upper and
x; was picked uniformly at random, eachis equally lower tail bounds for binomial and hypergeometric dis-

likely to be in B,,. Therefore, tributions. We use Chernoff bounds where they apply.
1B, For other bounds, we approximate using normal distri-
Prz € B,,] = 2—2 > 20(Vnlogn)—n butions. We use Feller [Fel68] as a reference.
where inequality stems from Fact 4. Definition 8. Forz € R, let ¢(x) := e=*"/2//27 and
Let BAD, = A\i<,<,= € B, be the event that oo
is not covered by any of the Hamming balls we picked N(z) = / o(y)dy.

at random, and leBAD = \/ BAD,, be the event that _ _ o )
somez is not covered by the Hamming balls. We want N(z) is the cumulative distribution function of the

to limit Pr[BAD]. BAD, occurs when: ¢ B, for all normal distribution. We use it in Fact 3 to approximate
x;. Therefore, using — z < e~ for all real = ' T'(z). Here, we'll also use it to approximate tails of the

binomial and hypergeometric distributions.

t
_ _ 90(v/nlogn)—n —¢.20(v/nlogn)—n
Pr[BAD,] = (1 gblvmiosn) ) =e * Lemma 21 (Feller, Chapter VII, Lemma 2.). For all

By the union bound, x>0,
1 1

Pr[BAD] < 2" Pr[BAD,] = 2wz """ () (E - ;) < N(z) < W;)%,

Picking ¢ = In2(n + 1)2n—0(Vnlosn) — gn=0(/nlosn)  panrem 22 (Feller, CHapter VII, Theorem 2.). For

ensures thaPr[BAD] < 1. Therefore, there exists a sefixed 2, z,,

of t = 2n—0(vnlogn) Hamming balls of radius,/n that

cover{0,1}". n Prin/2+ (z1/2)v/n < ly| < n/2+ (22/2)V/n]
Recall thatw(z) = Pryey,[GHD(z, y) # GHD(0, y)]. ~ N(z1) — N(z).

Lemma 20 (Restatement of Lemma 16).For all Theorem 23. For any~ such thaty = w(1) and~y =

z,x’ € {0,1}", w(z) < w(z’) if and only if |z| < |2'|, o(n'/®), we have

with equality if and only iflz| = |2/].

n
Proof: If |z| = |2/|, then w(x) = w(x’) by Z (k) ~ N().
symmetry. Further, note thaHp(z,y) = 0 if and only k>n/247v/n/2
if GHD(—=z,y) = 1. Therefore, it suffices to handle theClaim 24 (Restatement of Claim 17).Conditioned on
case wheréy| < n/2 — ¢y/n andGHD(0, %) = 0. ly| <n/2—2n,

For the rest of the proof, we assume that= z},

except for thenth coordinate, where,, = 0 andx), = 1. Prilyl = n/2 = 2.1v/n] < 1/3.

Thus,|z| = |2'| — 1. We show thatw(z) < w(z’); the Proof: By Theorem 22 and Lemma 21, we have
rest of the lemma follows by induction.

Let Y be the set of strings with Hamming weight Prln/2 = 2.1v/n < |y| < n/2 - 2v/n]
ly| < n/2 — ¢y/n. PartitionY into the following three ~N(4) - N(42)
sets: < p(4)/4 — p(4.2)(4.271 —4.273)

o A={y:ly|=n/2+cynAy, =0} <2.0219%107°

o B:={y:|yl<n/2+cy/nAy, =0} )

o C:={y:y,=1} By Fact3,Pr(ly| > n/2 —2/n] <2732 72 =271 =
Note the one-to-one correspondence between stringsSiA035 - 107°. Putting the two terms together, we get
B and strings inC' obtained by flipping thexth bit. Prlly| > n/2 — 2.1v/ally| < n/2 — 2v/n)

Now, consider any, € B such thaty witnesses(0, z')

= .10-°
but not (0, z). Flipping thenth bit of y yields a string < w <1/3.
y' € C such thatY witnesses(0,z) but not (0, z’). 6.1035-107°
Hence among; € B U C there is an equal number of u

witnesses for: andz’. For anyy € A, y, = 0, whence Claim 25 (Restatement of Claim 18).For all d <
ly — 2’| = |y — | + 1. Therefore, any that witnesses ,, /5 _ 9.1, /n,

(0, ) must also witnes$0, '), whencew(z) < w(z').
m Pr[A(z2,y) > n/2+ 2y/n] > 0.95.

10



Proof: The proof follows from the following claim,

instantiated withc = 2 anda = 2.1. [ | yn a—c

E[K]+n= 5 —yavn+ vn
Claim 26. For all & > ¢, |z| = yn, and ally > 1 — < O‘Jrc\/ﬁ: mtm_n _tum.
where the inequality holds becauge> 1 —(1—c¢/a)/4.
_Pr [A(z,y) > n/2+cVn] Note also thall — ¢/a)/4 = (a — c)/4a, SO 1 — (1 —
iz /a)/4 = (3a + c)/4a. By Theorem 27
- ep(2m—@&u+dnw e/a)/4 = (Batc)/da. By '
- - X - .
Sa+c Pr[K>?—a+c\/ﬁ]_Pr[K—E[K]>n]
2nn%(1 + o(1
Proof: Letm := |z| = yn and letn; = n/2—a/n. < exp (‘H)

Then, the probability that a randog with |y| = ns 5
can be expressed using the hypergeometric distribution = exp <_2(O‘ —o”(+ 0(1)))
Hyp(k;n,m,n1). Let them set bits ofz be the defects. 167(1 - 1)

The probability ofk: of the ny bits of y are defective is (_2(a —¢)?(40)?(1 + 0(1))>
Hyp(k;n,m,n1). Note thatA(z,y) = (m—k) + (n1 — - 16(av — ¢) (3 +¢)

k) = m + n1 — 2k. Therefore, exp ( 2a — c)a(1 + 0(1)))

Az, y) >n/2+cyn &k < 3a+c

2 4 2 yn a+c
o oz—i—c\/_ It fOIIO\Q’(ii?s"‘t(ii[g) < B - Eyn] > 1 -
o 7 B 2 " exp (_ 3a+c ) n
We have Claim 28. For any z;, € {0,1}"%, GHD(xr,yL) is
Pr [A(z,y) > n/2+ /i) defined for at least & e~2(<)* /5¢/-fraction of y;, €
lyl=n1 - {0,1}7x.
= Pr K< ot C\/ﬁ . Proof: Without loss of generality, assumeg, = 0.
K~Hyp(k;n,m,n1) 2 2

Then,GHD(z1,,y1) is defined for ally such thatjy| <
Next, we use a concentration of measure result due g /2 — ¢/\/n or |y| > nr/2 + ¢/\/nr. Note that for
Hush and Scovel [HS05]. Here, we present a simplifieghy constant: > ¢/,

version.
Pr [|y| < nL c/\/nL}
y 2
n n
Theorem 27 (Hush, Scovel).Letm = yn > n; = > Pr [71: —ay/nL <yl < 7L - C/V”L]
n/2 — ay/n, and let3 = n/m(n — m). > N(2¢) — N(2z)
Pr[K — E[K] > 1] < exp(—=287*(1 + o(1))). > 6(2¢) (i 1 ) _ ¢(22)
— 3
The expected value of a random variabledistributed o 2¢ - (2¢) 2z )
according toHyp(K;n,m, n1) is _ e B (L . ) e
V27 2¢ (2¢)3 2227
72((;/)2
mni  yn /n yn e
Bl = = 1 (5 —ovi) = 5 eV ST
Setn := (a — ¢)/n/4. Note that Pr[ly| > nr/24+c'\/nr] is bounded in the same fashion.
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