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Abstract to a third party, a referee, who then compufebased on
these messages. This SM model is the subject of this paper.
Givenm copies of the same problem, does it takdimes Kushilevitz and Nisan’s book [KN97] provides a com-

the amount of resources to solve thesegroblems? This  prehensive treatment of communication complexity. The
is the direct sum problem, a fundamental question that hassurvey paper by Babai [BO1] provides an overview of re-
been studied in many computational models. We study thiscent research.

question in the simultaneous message (SM) model of com- Considerable effort has been spent in understanding the

munication introduced by Yao [Y79]. SM complexity of the (Boolean) equality functiokQ,,,
The equality problem fon-bit strings is well known — defined a£Q,, (z,y) = 1iff « =y, forz,y € {0,1}".
to have SM complexit)(,/n). We prove that solving: It is easy to show that deterministic protocols t®,, re-

copies of the problem has complexitym./n); the best quire n bits of communication, both in the tw_o-party and
lower bound provable using previously known techniques the SM models. The problem becomes considerably more
is Q(y/mn). We also prove similar lower bounds on cer- interesting if we allow randomized protocols (that err with
tain Boolean combinations of multiple copies of the equal- low probability) with Alice and Bob flipping private coins to
ity function. These results can be generalized to a broaderdecide on their messages to the referee. Various SM proto-
class of functions. cols! for EQ,, that communicate onlg)(/n) bits were dis-

We introduce a new notion @fiformational complexity ~ covered by Ambainis [A96], Newman and Szegedy [NS96],
which is related to SM complexity and has nice direct sum @nd Babai and Kimmel [BK97], amongst others. The last
properties. This notion is used as a tool to prove the above WO papers also prove that this is tight, and therefore that

results; it appears to be quite powerful and may be of inde- theé SM (_:omple?dty oEQ,, is O(y/n). _
pendent interest. Babai and Kimmel [BK97] actually prove the following

general lower bound on SM complexity:

Theorem 1.1 ([BK97]) For any f, its SM complexity'( f)
1 Introduction and its deterministic two-party communication complexity

Co(f) are related as followsC'(f) = Q(+/Co(f)).

We consider the problem of computing a function To our knowledge, the lower bound results on some ex-
f(z,y) whose inputs are split between two parties: Alice, plicit functions proven here are the first that are stronger
who holdsz, and Bob, who holdg. The two-party com-  than what [BK97] can prove.
munication model was introduced by Yao [Y79] to study Thedirect sum problerasks whethen copies of a prob-
the number of bits Alice and Bob need to communicate to lem requiremn times as much resources to solve as one copy.
each other to computg¢. In the same paper Yao also in-  For a functionf : {0,1}" x {0,1}™ — {0,1} and integer
troduced the simultaneous message (SM) model in whichm, the direct suny™ : {0, 1}™" x {0,1}™" — {0,1}™ is
Alice and Bob do not talk to each other, but send messagesiefined as the function obtained by concatenatingopies
of f with separate inputs for each copy. For communication

*This work was supported in part by NSF Grant CCR-96-23768, NSF
Grant CCR-98-20855, ARO Grant DAAHO04-96-1-0181, NEC Research 1From here on, we shall assume that our SM model is randomized, with
Institute, and a Gordon Wu Fellowship. private coins for Alice and Bob.




complexity, it was proved by Feder, Kushilevitz, Naor and MAJEQ]", we haveC(f) = Q(m+/n). We also have
Nisan [FKNN91] that in the deterministic two-party model, C(THREQ™") = Q((m — k + 1)/n).

there exists a partial functiofi with C(f) = O(logn), . . . .
whereas solvingn copies takes only’(f™) = O(m + The above results are obtained using an information the-

logm - logn): thus the average cost per copy(1) for oretic approach. For any communication probl¢ghwe
largem. A Iov;/er boundC(f™) > m(y/C(f)/2 — logn — define a quantity called itseyformational complexity de-

O(1)) was also proved. For theerror randomized two- noted IC(f), which describes the minimum requirement

party model, [FKNN91] showed that for the equality prob- on the capacity of the “communication channels” between
lem OR(EQJW) — O(m + logn), in contrast to the sin- Alice/Bob and the referee for a uniformly distributed input

gle copy case€’z(EQ,) = O(logn). For the one-round (for precise definitions please see Section 2). This quantity

deterministic model, [FKNN91] proved that, for affyes- ~ NEVer exceeds tDe SM cor:plex(ﬁj(f). .
sentially C'(f™) = mC(f). For the two-round determin- For f : {0,1}" x {0,1}" — {0,1} andX' C {0,1}",
istic model, Karchmer, Kushilevitz and Nisan [KKN92] let f|x be the restriction off to X x X. We define
showed that essentially(f™) = mC(f) for any f. This C(f) = miny:|x|>(@2/3)2- C(f[x). We call f ropu;_ﬂf
latter relation was also shown true in [KKN92] for non- C(f) = Q(C(f)). From the downward self-reducibility of
deterministic communication models. equality, it follows that if| X| > Z.2" thenC(EQ,) <

The communication complexity model faglationswas ~ C(EQu|x) +1 < 2C(EQ,|x); thusEQ,, is robust.
invented by Karchmer and Wigderson [KW90]: Alice and ~ AS mentioned abovd,C(f) < C(f). Our Main Lemma
Bob want to agree on an output such that a relation 90€s in the other direction.

R(z,y, z) is true. The direct sum problem for this model | emma 1.4 (Main Lemma) Every functionf : {0,1}" x

is wide open and is closely connected to the Boolean cir- 1o 1}» _, {0, 1} satisfiesIC(f) = Q(C(f)) — O(logn).
cuit depth problem [KW90, KRW91]; resolving it would | particular, if f is robust,/C(f) = Q(C(f)) — O(log n).
lead to important results such B<! # NC?. Results for _ _ _

this model were obtained in [KRW91, KKN92] and by Ed-  ThiS lemma is a powerful tool for proving lower bounds
monds, Impagliazzo, Rudich, and Sgall [EIRS91]. In this ON SM complexity, because informational complexity is a
paper we will not study communication complexity for re- ~Well-behaved” measure:

lations. Theorem 1.5 (Additivity Theorem) For any f and anym,
IC(f™) > m-IC(f).

We remark that our informational complexity approach
also works for the one round two-party communication
model, where Alice sends a single message to Bob who
then computes the function. A straightforward analogue of
the concept of informational complexity can be defined and
Theorem 1.2 C'(EQ;)) = Q(my/n). used in analogues of Lemma 1.4 and Theorem 1.5. We will
not elaborate further on this topic here.

The rest of this paper is organized as follows. Section 2
defines several basic concepts. Section 3 contains a proof
of the Main Lemma, divided into several subsections. Fi-
nally, Section 4 proves Theorem 1.5, and then Theorems 1.2
and 1.3 by applying the Main Lemma.

1.1 Results

In this paper we address the direct sum problem for the
case of SM complexity. Henceforti( f) denotes the SM
complexity of f. For the equality function we show

Note that an application of Theorem 1.1 only yields a lower
bound ofQ2(y/mn).

We also obtain results for certain Boolean combinations
of several equality functions. Suppose Alice and Bob re-
ceiven-bit stringsxy, . .., z,, andys, ..., y,, respectively;
defineb; = 1if x; = y; andb; = 0 otherwise. Also define
the functions

OREQZI('rlv oy Tmy Y1y - 7ym) = \/Zn:1 bz
XOREQZL(JTM ey Tmy Yl ey ym) = @Zil b;.

2 Preliminaries

2.1 Conventions

o MAJEQ (T1,- -, TmsY1s- -+ Ym) = Liff The following conventions are used throughout the pa-
{i:b; =1} > %m_ per. Random variables are denoted by boldface characters.
For random variables andy, H(x) denotes the Shannon
o THREQ)"*(z1,...,Tm\Y1s-- ., Ym) = Liff entropy ofx, H(x | y) denotes the entropy af conditioned
[{i: b =1} > k. ony andI(x,y) denotes the mutual information between

1 x andy. Recall that
Theorem 1.3Let0 < A < 5 be a constant and sup-

posem < A2". If f is any ofOREQ;’, XOREQ;" and I(x,y)=H(x)—H(x|y)=H(y) - H(y|x).



Matrices are denoted by uppercase letters and their en- We remark that the choice of the constadn8 in the
tries by the corresponding lowercase letters with indices in above definitions is arbitrary; the error can be reduced from

parentheses. Thus, f is a matrix, its(i, 7)t" entry is writ- any constant to any smaller constant by trivially “repeat-
ten asa(i,j). The set{1,2,...,k} is denoted byk]. All ing” the protocol and increasing the cost or informational
logarithms are to base 2. cost only by a constant factor.
For studying the direct sum question, we also need to
2.2 Definitions define protocols for functions with multiple bits of output.
For a functionf : {0,1}™ x {0,1}"™ — {0,1}™, we require
Consider a Boolean functiofi : {0,1}™ x {0,1}" — Alice and Bob to behave as before, but let the referee use
{0,1}. A simultaneous message (SM) protocol fowith m 0-1 matricesRy, ..., R,,, one for each bit. We call this
error bound is a quintuplgk, ¢, P, Q, R) with k, ¢ integers ane-error protocol if, for eacli, the protocol given byr; is
andP, Q, R matrices of shap2™ x k, 2" x ¢ andk x £ re- ane-error protocol for the*” bit of f. 2 The conceptsost,

spectively. We assume that the rowsbindQ are indexed  icost, C'andIC are defined exactly as before.
by elements of0, 1}™. P and@ are required to be stochas-

tic matrices (i.e. their rows sum to 1) afitlis required to ~ Proposition 2.1 Forany f, IC(f) < C(f).
have entries i{0, 1}. Finally, the product™ = PRQT is

required to satisfy Proof: Consider any protocoP = (k,¢, P,Q,R)

€
I, /3(f) and letx, y,u, v be as above. Theirost(P) =

[ (@,y) = flzy)l <e  forallz,ye{0,1}". (1)  H(w) - H(u|x)+ H(v) - H(v|y) < H(u) + H(v) <

log k +1log ¢ < [log k] + [log {] = cost(P).

The protocol works as follows: suppose Alice receives ) S
€ {0,1}" and Bob receiveg € {0,1}". Alice interprets Thus, alower bound ohC'(f) automatically implies one
row = of matrix P as a probability distribution over the set N C(f).

[k] and picks a “message” froffit] according to this distri-

d

bution. Bob similarly encodeg into a message frorfy]. 3 Proof of the Main Lemma
They both send their messages to a referee, thereby com-
municating[log k| and [log ¢] bits respectively. The ref- Let £ : {0,1}" x {0,1}" — {0, 1} be a function and let

eree uses the messages to index into matrand outputs  p — (% ¢, P, R) € T1.(f) be ane-error SM protocol for
the corresponding entry dt. 2 Equation (1) says thatthe ¢, with ¢ a sufficiently small constant. We prove the Main
probability that the referee outpuf¢z, y) exceedd —e. Lemma in two major stages. In the first stage we prove
We denote the set of all sucherror protocols forf that a protocol satisfying a property we catliformity can

by II.(f). For a protocolP = (k,(,P,Q,R) € I.(f) be converted into a new protocol that has cost comparable
we definecost4(P) = [logk], costp(P) = [logf] and o the informational cost of the original protocol. In the
cost(P) = costa(P) + costp(P). Thesimultaneous mes-  second stage we show how to convert a general protocol
sage communication complex{tyr SM complexity) off is into one that isear-uniform increasing the informational
defined to be cost essentially by a constant factor. It turns out that the

C(f) = . proof for the uniform case can be adjusted to work even for

(f)= min cost(P). unif
Pell, /5(f) near-uniform protocols.

For protocolP, let x,y be random variables uniformly 31 Outline
distributed ovef0, 1}™. Let random variablea andv de-
note the messages that Alice and Bob (respectively) gener-
ate upon receiving inputs andy. Clearly the distributions
of u andv depend on the matriceB and ). The infor-
mational cost icost(P), of the protocol is defined to be U,
icost 4 (P) + icostg(P) whereicost4(P) = I(x,u) and
icostp(P) = I(y, v). Theinformational complexitpf f is
defined to be

For eachr € {0,1}™ andu € [k] let us define the fol-
lowing sets, which depend on the protogal

{u' € [k]: p(x,u') > 0}

X, = {2 €{0,1}": p(a',u) > 0}

Definition 3.1 P is said to bes-uniform for Alice, for an
IC(f) = min icost(P). integers, if each of her messagesc [k| satisfies

 Pellys()
" o s <|X,| < 2s.

20ne can make a more general definition whRrkas entries irf0, 1]
and the referee makes a probabilistic decision whether to oGtputl. 3Another plausible definition would have required the referee to cor-
However it is well known [NS96] that any such protocol can be converted rectly output theentire m-bit result with probability more thah — . Our
to a protocol with deterministic referee by at most doubling the error. weaker definition only makes our lower bound results stronger.




e Forall z1,z5 € X,, we havep(z1,u) = p(aa,u).
Uniformity for Bob is defined similarly.

Lemma 3.2 For a sufficiently small constart, suppose
P € II.(f) is s-uniform for Alice ands’-uniform for Bob,
for somes ands’. Then there is a protocdP’ < II; /3(f)
with cost(P’) < icost(P) 4+ O(logn).

As mentioned above, this lemma is not strong enough for

our purposes. We need a further definition and a similar, but

stronger, lemma. Recall the definitionwfrom Section 2.

Definition 3.3 P is said to benears-uniform for Alice,
with irregularity §, for an integers and a constand < § <
1, if there is a setZ C [k] such that

o s <|X,|<2s, forallue[k]\ Z.

o p(x1,u) p(za,u), forall u € [k]\ Z and all
xr1,T2 € Xu.

e Prlue 7] <.

The messages iti will be calledirregularmessages and the
restregular Near-uniformity for Bob is defined similarly.

For brevity, we shall call a protocol which is near-
uniform for Alice and neas’-uniform for Bob, with irreg-
ularity 6 on each side, &), s, s')-near-uniform protocol.

Lemma 3.4 Given a protocolP € II.(f) and a constant
0 < § < 1, there is a protocolP’ € II.(f) and integerss,
', such thatP’ is (4, s, s’)-near-uniform andcost(P’)
O(icost(P)) + O(logn).

Lemma 3.5 For sufficiently small constantsand 4, sup-
poseP’ € II.(f) is (4,s,s’)-near-uniform for somes
and s’. Then there is anX C {0,1}" and a protocol
P” € I 3(f|x) such that X| > 2-2" and cost(P”) <
icost(P’) + O(log n).

Proof of Lemma 1.4 (Main Lemma): Suppose, for the

3.2 Uniform Protocols

We set: to a sufficiently small constant; for definiteness’

sake
1

34.56° (2)
SupposeP is s-uniform for Alice ands’-uniform for Bob.
Letx,y,u, v be as defined in Section 2. By the definition
of uniformity, we clearly have

3

The idea of the proof is to replace Alice’s strategy by a
new one in which her message set reduces in size fom
to aboutO(2"/s), increasing the error by a constant fac-
tor. Alice’s new message set will be an appropriate random
sample oflk], possibly with some elements [@f] appearing
multiple times (these multiple occurrences are, of course,
considered distinct messages in the new protocol). With the
right choice of parameters the new protocol will have cost
on Alice’s side comparable ti@ost 4 (P).

Fix inputsz, y for Alice and Bob and lef>,, ), be the
corresponding rows of matricdd ). SinceP is a valide-
error protocol, we havgP, RQ} — f(z,y)| < . Consider
the vectorR; = RQ; its entries are to be thought of as
being indexed by Alice’s messages. Call a messagd/,
defectivefor y if the u'" entry of Ry, differs from f(z,y)
by more than,/z. Note that this:'" entry is the probability
that the referee outputsgiven that Alice sent message
Messages not i/, are defined to be not defective. Let
T = (up,us,...) be a finite sequence of messages and let
|T| denote its length.

n—logs—1 < I(x,u) < n—1logs.

Definition 3.6 We say thaf is goodfor (z, y) if
I{i :

whereT N U, is the subsequence @f consisting of only
those elements that are 0.

u; is defective foy}| < 4/ |T NU,|,

Note that only those elements dfwhich belong taU,,
affect whether or nol” is good for(z, y).
We would like to prove that there exists a sequefice

moment, that the above lemmas have been proven. Apply-of appropriate length that is good for &lt, y). We use the

ing Lemma 3.4 to a protoc@ < II.(f) and then applying
Lemma 3.5 to the resulting protocB! gives a protocoP”
with

cost(P") = O(icost(P)) + O(logn),

andP” € 11, 3(f|x) for an X of size at leasé-2". Clearly

cost(P") = C(f|x) = C(f).

Thereforeicost(P) = Q(C(f)) — O(logn). O

In the next three subsections we prove Lemmas 3.2, 3.5 1

and 3.4 respectively.

probabilistic method: we argue thatlachosen at random
in a suitable manner is good for any fixéd y) with prob-
ability greater thari — 2—2". Since there are onB?” pairs
(z,y) the result follows.

Define a random sequen@¥ ) = (uy,...,u,) where
u; are independent random variables distributed identically
to u. The lengthr is a parameter. Also ldi, be a random
variable distributed according 18,.

Lemma 3.7 Fix u € U,. Then

5 Pr[a, =u] < Prlu=u|ue U,] <2Pr[u, = u].



Proof: Recall that the protocol is-uniform for Alice. We
have

o | Xulp(2, u)
Swev, 37| Xuwp(a,w)
2sp(z,u)
Zu’EUI sp(w,u’)
= 2p(x,u)
= 2Pr[a, = u.

Prlu=u|uel,] =

<

The other inequality follows similarly. O

Lemma 3.8 Fixanindex sef C [r] and letT = T(r). Let
T; denote the subsequenceltonsisting of the elements
indexed byl. Then

Pr[Tisgood TNU, =T;] > 1—e 2Vl
Proof: Conditioned onI' N U, = Ty, it is the case that
T is good iff T; is. Now under this condition each ele-
ment of T; is distributed identically tqu | u € U,). By

where the last inequality follows from (2) and (4).

Since there are onlg?” pairs(z, y) it follows that T (¢)
is good for all(x, y) with positive probability. This proves
the lemma. O

We are ready to prove the main result of this subsection.

Proof of Lemma 3.2: LetT be a sequence of length=
2n+3n/(s4/2) that is good for al(z, ). We change Alice’s
strategy as follows: on input, Alice chooses one of the
elements in the subsequernEen U, uniformly at random
and sends it to the referee. Lt be this new protocol.

To analyse the correctness Bf, consider an arbitrary
input (xg,yo). SinceT is good for(zg,yo), the message
chosen by Alice is defective fax, with probability at most
4./c. By definition of defectiveness, if Alice’s message is
not defective, the referee’s output is wrong with probability
at mosty/e. ThereforeP’ € II; z(f). Applying (3) we
havecost 4 (P’) = [logt] < I(x,u)+4+logn—log+/c =
icost4(P) + O(logn).

Note that this transformation has not affected Bob’s part
of the protocol. Therefore, we can do another such trans-

Lemma 3.7 we see that the expected number of defectiveformation for Bob, this time not affecting Alice, and ob-

elements ifl'; is at mos|I| times the probability thaii,
is defective.

Note that| P, R, — f(x,y)| < ¢, by (1); therefordi, is
defective with probability at mosy/c. By standard Cher-
noff bounds, the probability th&; has at least /c|I| de-

fective elements is at most 2 V= and the result follows.
O

Lemma 3.9 Sett = 2"*3n/(s\/z). Then there exists a
sequencd’ with |T'| = t that is good for all(z, ).

Proof: Consider the random sequeri®ét) and fix a par-
ticular (z,y). Eachu; lands in the set/,, with probability
Ywev, 37| Xulp(z,u) > s/2", by the s-uniformity con-
dition. ThereforeE[|T(t) N U,|] > ts/2™ = 8n/\/e and
using a standard Chernoff bound, we have

Pr[|T(t)NU,| <4n/ve] < e ™/ Ve (4)

Let I C [t] be an index set withI| > 4n/\/c. By

Lemma 3.8
Pr[T(t) is good| T(t) N U, = T(t);] > 1—e "
Therefore,

Pr[T(t) is good

> (1-e?) > Pr[T(t) N U, = T(t);]
IC[): 1|40/ V&

= (1—e ") Pr[|T(t)NU,| > 4n/\e]

> 1— 2—2n

tain a protocolP” with costa(P”) = costa(P’) and
costp(P"”) = icostg(P’) + O(logn) = icostg(P) +
O(logn). The error now increases to at mds{/5+/c
which, by (2), is1/3 and we are done. m]

3.3 Near-uniform protocols

Now supposeP’ is a (4, s, s’)-near-uniform protocol in
II.(f). Let Z denote the set of irregular messages of Alice.
Call an inputz for Alice activeif Pr[ii, € Z] < v/4. From
the definition of near-uniformity it follows that at most&
fraction of Alice’s inputs are inactive. The same is true of
Bob’s inputs as well. If we choosgésmall enough, there
exists anX C {0,1}" such tha{X| > 2-2" and inputs in
X x X are active for both Alice and Bob.

We now transforn’ into another protocaP” using a
transformation like that in Section 3.2.

Proof of Lemma 3.5 (sketch): In essence, the proof tech-
nique of Lemma 3.2 works; we indicate the key differences.
DefineV, = U, \ Z for every inputz of Alice. Defective-
ness is defined as before, except that messages Wptire
defined to be not defective. We say that a sequénacd
messages igoodfor (z, y) if

|{i : u; is defective fory}| < 6y/c- [T NV,|.

For an activer, if we fix au € V., we can show that

éPr[ﬁz =u| < Prlu=u|ueU;] <3Pr[a, =u.



The proof is similar to that of Lemma 3.7 and uses the fact bilities given by P’ as follows. Consider the binary repre-
thatd is small. Next, we show that for suah sentation op(x, u):

Pr[Tis good| TNV, = T;] > 1—e 2Vl pla,u) = iam

9i+i’
i=0

whereT and/ are as in Lemma 3.8.
Sett = 2"*n/(s\/z). Note that this is twice as large as  wherea, € {0,1} (It does not matter that the,'s might

thet used in Lemma 3.9. We can show that, for any active  not be uniquely determined.) We set

E[|T(t)NV,|] > (1—+6)ts/2™ > 8n/+/z, for sufficiently

small§. Now, arguing exactly as in Lemma 3.9, we infer p/(l«’u(i)) — Gy+i (6)

that there exists a sequerifawith |T'| = ¢ that is good for P
all (z, y) with = active. Finally, we change Alice’s strategy for( < i < n + ¢, and
as follows: on inputz, she chooses one of the elements in
T NV, uniformly at random and sends it to the referee. , o
Consider this new protocol’s behaviour on an arbitrary P, i) = _ ) outi’ @
input (o, yo), With z, active for Alice. Alice’s message is i=ntetl
irregular with probability at most/s and defective fory  The referee’s matrix is modified so that, upon receiving any

with probability at mos6,/z. When not irregular and not  of these newly created messages, the referee behaves ex-
defective, her message causes the referee to err with probacﬂy as if the messagewere received in the earlier proto-
ability at mosty/e. Therefore the error of the new protocol co|. This ensures that the modified protocol behaves identi-

is at most7/e + /0. cally to the original one.
As in the proof of Lemma 3.2, the cost of this protocol We perform the above modification for eaghc [k].
on Alice’s side isflog t| < icost4(P’) + O(logn). The end result is a protocol with(n + ¢ + 2) messages for
Repeating the entire process for Bob gives a prot®ol  Alice that behaves identically to the original one.
whose error, on inputs iX x X (which are active for both Let Z; = {uir : u € [k]}. From (6) we see that all
Alice and Bob), can be made at magB by choosing: and the newly created messages notdn are smooth. Letr
¢ appropriately. Thu®"” € I1, /3( f| x ) and we are donel andu’ denote the random messages that Alice sends in the

original and modified protocols, respectively, upon receiv-
ing a uniformly distributed random inpwt. We argue that
3.4 General protocols u’ is unlikely to land inZ;. Consider an arbitrary € [k].
By (7),
We now prove Lemma 3.4.
Call a message smoothif p(z1,u) = p(z2,u) for all P (@, i) < i o 1 <
z1,7o € X,. Also, define thedegreeof a message: to m , 27+i 2j+ntec — onitc’
be |X,|. We convert the general protoc®l into a near- et
uniform protocolP’ in two steps, each time creating sev- where the last inequality follows from (5). From the defini-
eral new messages to replace one message. The first stejon of 7, we have
smoothens the messages; the second equalizes the degrees

up to a factor of 2. Ty < Z p(z,u) = 2" Pru=ul.
z€Xy

Smoothening Thereforep’ (z, ui,) < Pr[u = u]/2¢. Now
We “split” Alice’s messages one at a time. Fix a message , 1
u € [k] and letr,, = max,cx, p(z,u). Let; be the integer Priu’ e z1] = on > > V@)
that satisfies we{o,1}m ue[k

1 Prlu = 4]

2 =TS g ®) < D 5

u€lk

We shaII replace messageby n + ¢ + 2 new messages, 1 "
{u© oM u(rre) ), for some constant common = 5 (8)
to aII theus. The message;,, will eventually end up an
irregular message. We must show that our modification of the protocol does

Let P’ denote the matrix for Alice’s new strategy. We not increase its informational cost too much. The lemma
“distribute” the probabilityp(z, «) amongst the new proba- below allows us to bound the change.



Lemma 3.10 If we replace each of Alice’s messages by at Now let Z, the final set of irregular messages, be defined as
mostK new messages then the gain in the mutual informa- Z = Z; U Z,. Combining (8) and (11), and settihgndc

tion I(x, u) is at mostog K. to large enough constants, we can ensure that
Proof: Consider a particular messagethat is split into
K, messagesfu®,u® ... uK}, K, < K, with as- Prlue 7] < Ty < 0
sociated new probabilities (z,u()) and new distribution . _ . _
. Letp(u) = Prlu = u] andp/ (u(i)) = Pr[u’ = u)]. which bounds the irregularity of the final protocol.
ThenH(u) =3 —p(u) log p(u). Let s = 2n—bl(xu), By (10), we have X, | > s for
uelk] et allu ¢ Z,. We split everyu ¢ Z, into K, = || X.|/s]
Because of the way the probabilities are redistributed, 2: i u 2 u = L[Aul/5]
p(u) =3, o/ (z,ul?). Therefore new message$u(!, ..., u5+)}. The probabilities are dis-
€K ’ tributed as follows: partition the inputs ik, into K, parts;
H(u) = Z Z ' (u®) log pf (u?) if z is in thei*® part then assigp’ (z, u”) = p(z,u), oth-
el ie[Ru] erwise assign’ (z,u(") = 0. This partitioning can be ar-
1 4 , ranged so that the degrees of the new messages (i.e., the
= ZKu Z _ITP/ (ut) log p/ (u'") sizes of the parts) are all in the range2s). Clearly the
u i v new messages are all smooth and so we have a protocol that
p(u) . p(u) is nears-uniform for Alice with irregularitys.
< D Ku <_ K, log K, ©) When a messageis split, it is split into
— Z—p(u) (logp(u) — log K,,) K. = || Xul/s] < 2"/s = 9bl(x,u)
< H(u)+logK, new messages. By Lemma 3.10 the gain in mutual in-

) ) ] ] ) formation that results is at mostg K, < bI(x,u) =
where (9) is obtained by applying Jensen’s inequality to the O(icost 4(P)) + O(logn).

Inner summations. _ Lastly, we repeat the entire transformation for Bob to ob-
It is also clear that, for any fixed:, H(u'|z) > (aina(s, s, s')-near-uniform protocoP’, with icost(P’) =
H(u|x). Thereforef (u’|x) > H(u|x). Thus, O(icost(P))+O(log n), that behaves identically 8. This
completes the proof of Lemma 3.4.
I(x,u') = H@{W)-H({U|x)
< H(u)+log K — H(u|x) 4 SM complexity lower bounds

I(x,u) +log K.
U In this section we prove the Additivity Theorem for in-
Since each message is split into+ ¢ + 2 new mes- formatiqngl compliexity. We alsp show that thefold iq—
sages, we can bound the increase in the mutual informatiorfrease in informational complexity holds even wiky," is
by log(n + ¢ + 2) = O(log n). composed with certain specific Boolean functions. Together
with the Main Lemma, these results imply communication
complexity lower bounds oBQ;" and on the Boolean com-
positions.
We now have a protocol in which all messages, except those
in Z, are smooth. Their degrees, however, could vary con-4.1  Direct sum problems
siderably. We replace each message ndt;iwith a set of
new messages, but this time we also partition the inputs for - The most obvious way to deal with a direct sum problem
each message so that the degrees become more balancedss to repeat a protocol for the base problem. Therefore, for
_ Foreverymessage¢ 7y, letI(u) = H(x) — H(x|u); anyf, IC(f™) = O(m)-IC(f). What s interesting is that
sinceu is smooth this is essentially the best we can hope for; this is what the
I(w) = n—log|Xul. (10) Additivity Theorem tells us.

Equalizing degrees of messages

Proof of Theorem 1.5 (Additivity Theorem): We use
the symbolsz;, y; to denote fixed strings if0, 1} and
the symbols;, y; to denote random strings distributed uni-
formly in {0, 1}".

Let P € II5(f™). Forl < i < m and arbi-
Prlu € Z,] < 1/b. (11) trary stringsa = z125...2;_1 € {0,1}0-D™ andb =

LetZy; = {v: v ¢ Zy andI(u) > bI(x,u)}, for some
constanth. The messages iy will not be split and will
end up as irregular messages. Since we hHdwgu) =
> wey Prlu =] I(u), itis clear that



1y .. yio1 € {0,130V define the protoccwl(f% for f
as follows: on receiving inputs andy, Alice and Bob sim-
ulate’? on the random inputs; ... x; _1xx;11 ...X,, and
Y1---Yi—1YYit1 -- - Ym respectively, and the referee uses
the matrix for thei*™ bit of output to determing. Clearly,
the referee will correctly outpuf(z, y) with probability at
least2/3, whenceP\’) & T1, /5 (f).

Consider the probability distribution of Alice’s mes-
sage when she follows protoc®! with the random input
Z1...%2jZj41...2Zm. Let Hj(z,...,z;) denote the en-
tropy of this distribution and lek; denote the expectation

E[H(z1,...,z;)]. Itis easy to see that
icost4(P) = ho — hpm. (12)
Further,
icost 4 (73(%) = Hi1(x1,...,2,-1)
—Ex[Hi(z1,...,2i-1,%X)],
whence
Ea [icostA (P‘SZ)} = hi—1 — hi, (13)

where the expectation is over alkonsisting ofi — 1 blocks
of n-bit strings. Since this statement is true fortave can
average over al2(~1)" possible values ob in (13) and
combine the resulting equation with (12) to obtain

icost4(P) = i Eapb [icostA (77:%,)] )

=1

A similar equation can be derived for Bob’s part of the pro-
tocols, whence

icost(P)

i Eab {icost (7351)0)]
i=1

> I1c(f)
i=1

Thus,IC(f™) > m - IC(f).

>

O

Proof of Theorem 1.2: Recall thatEQ,, is robust and that
C(EQ,) = Q(y/n). By the Main Lemma,/C(EQ,,)
Q(y/n) — O(logn) = Q(y/n). By the Additivity Theorem,
we now havelC(EQ;") = Q(m+/n). Applying Proposi-
tion 2.1 givesC'(EQ;") = Q(m+/n) as desired. O

4.2 Boolean compositions

To prove Theorem 1.3 we simply combine the Lemma
below with Proposition 2.1. We give the proof fOREQ."
only: proofs forXOREQ™, MAJEQ™ and THREQ""* are
similar.

Lemma 4.1 For any constand < A < % and integersn, n
with m < A2™ we have

IC(OREQ™) > Q(mv/n).

Proof: We start with a protocol irP, < II,,3(OREQ;;")
and “repeat” itO(1) times to obtain a protocoP &
II. (OREQ]) for some constant < % — A. Forl <
i < m and an arbitrary stringg = wiws...w;_1 €
{0,1}G-Dm define the protocold’ for EQ, as fol-
lows: on receiving inputg andy, Alice and Bob simu-
late P on the random inputs ... w; 12 X;41 . . . X;n and
Wy ... Wi—1YYi+1 - - - Ym respectively, and the referee uses
the same matrix as before. Hetg denotes the bitwise
complement ofv;. Since

Pr
u,ve{0,1}n

[EQ,(u,v) =1] 27"

the referee fails to outplEQ,, (x, y) correctly with proba-
bility at moste 4+ (m — i) - 27" < e+ m/2" < €+ A,
which is a constant less th%n Therefore we can get a pro-

tocol L") € I, /3(EQy) by “repeating”’Q.’ an appropriate
constant number of times, sayimes.
Arguing exactly as in the proof of Theorem 1.5, we have

i E. [icost (Q;(;))}
% i IC(EQ,)
Q(my/n)

and soicost(Py) = Q(m+/n). The result follows.

icost(P)

1 .
2 icost(P@
L icost (P )}

O
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