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Abstract

Givenm copies of the same problem, does it takem times
the amount of resources to solve thesem problems? This
is the direct sum problem, a fundamental question that has
been studied in many computational models. We study this
question in the simultaneous message (SM) model of com-
munication introduced by Yao [Y79].

The equality problem forn-bit strings is well known
to have SM complexityΘ(

√
n). We prove that solvingm

copies of the problem has complexityΩ(m
√

n); the best
lower bound provable using previously known techniques
is Ω(

√
mn). We also prove similar lower bounds on cer-

tain Boolean combinations of multiple copies of the equal-
ity function. These results can be generalized to a broader
class of functions.

We introduce a new notion ofinformational complexity
which is related to SM complexity and has nice direct sum
properties. This notion is used as a tool to prove the above
results; it appears to be quite powerful and may be of inde-
pendent interest.

1 Introduction

We consider the problem of computing a function
f(x, y) whose inputs are split between two parties: Alice,
who holdsx, and Bob, who holdsy. The two-party com-
munication model was introduced by Yao [Y79] to study
the number of bits Alice and Bob need to communicate to
each other to computef . In the same paper Yao also in-
troduced the simultaneous message (SM) model in which
Alice and Bob do not talk to each other, but send messages
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Grant CCR-98-20855, ARO Grant DAAH04-96-1-0181, NEC Research
Institute, and a Gordon Wu Fellowship.

to a third party, a referee, who then computesf based on
these messages. This SM model is the subject of this paper.

Kushilevitz and Nisan’s book [KN97] provides a com-
prehensive treatment of communication complexity. The
survey paper by Babai [B01] provides an overview of re-
cent research.

Considerable effort has been spent in understanding the
SM complexity of the (Boolean) equality function,EQn,
defined asEQn(x, y) = 1 iff x = y, for x, y ∈ {0, 1}n.
It is easy to show that deterministic protocols forEQn re-
quire n bits of communication, both in the two-party and
the SM models. The problem becomes considerably more
interesting if we allow randomized protocols (that err with
low probability) with Alice and Bob flipping private coins to
decide on their messages to the referee. Various SM proto-
cols1 for EQn that communicate onlyO(

√
n) bits were dis-

covered by Ambainis [A96], Newman and Szegedy [NS96],
and Babai and Kimmel [BK97], amongst others. The last
two papers also prove that this is tight, and therefore that
the SM complexity ofEQn is Θ(

√
n).

Babai and Kimmel [BK97] actually prove the following
general lower bound on SM complexity:

Theorem 1.1 ([BK97]) For anyf , its SM complexityC(f)
and its deterministic two-party communication complexity
C0(f) are related as follows:C(f) = Ω(

√
C0(f)).

To our knowledge, the lower bound results on some ex-
plicit functions proven here are the first that are stronger
than what [BK97] can prove.

Thedirect sum problemasks whetherm copies of a prob-
lem requirem times as much resources to solve as one copy.
For a functionf : {0, 1}n × {0, 1}n → {0, 1} and integer
m, the direct sumfm : {0, 1}mn × {0, 1}mn → {0, 1}m is
defined as the function obtained by concatenatingm copies
of f with separate inputs for each copy. For communication

1From here on, we shall assume that our SM model is randomized, with
private coins for Alice and Bob.



complexity, it was proved by Feder, Kushilevitz, Naor and
Nisan [FKNN91] that in the deterministic two-party model,
there exists a partial functionf with C(f) = Θ(log n),
whereas solvingm copies takes onlyC(fm) = O(m +
log m · log n); thus the average cost per copy isO(1) for
largem. A lower boundC(fm) ≥ m(

√
C(f)/2− log n−

O(1)) was also proved. For theε-error randomized two-
party model, [FKNN91] showed that for the equality prob-
lem, CR(EQm

n ) = O(m + log n), in contrast to the sin-
gle copy caseCR(EQn) = Θ(log n). For the one-round
deterministic model, [FKNN91] proved that, for anyf , es-
sentiallyC(fm) = mC(f). For the two-round determin-
istic model, Karchmer, Kushilevitz and Nisan [KKN92]
showed that essentiallyC(fm) = mC(f) for anyf . This
latter relation was also shown true in [KKN92] for non-
deterministic communication models.

The communication complexity model forrelationswas
invented by Karchmer and Wigderson [KW90]: Alice and
Bob want to agree on an outputz such that a relation
R(x, y, z) is true. The direct sum problem for this model
is wide open and is closely connected to the Boolean cir-
cuit depth problem [KW90, KRW91]; resolving it would
lead to important results such asNC1 6= NC2. Results for
this model were obtained in [KRW91, KKN92] and by Ed-
monds, Impagliazzo, Rudich, and Sgall [EIRS91]. In this
paper we will not study communication complexity for re-
lations.

1.1 Results

In this paper we address the direct sum problem for the
case of SM complexity. HenceforthC(f) denotes the SM
complexity off . For the equality function we show

Theorem 1.2 C(EQm
n ) = Ω(m

√
n).

Note that an application of Theorem 1.1 only yields a lower
bound ofΩ(

√
mn).

We also obtain results for certain Boolean combinations
of several equality functions. Suppose Alice and Bob re-
ceiven-bit stringsx1, . . . , xm andy1, . . . , ym respectively;
definebi = 1 if xi = yi andbi = 0 otherwise. Also define
the functions

• OREQm
n (x1, . . . , xm, y1, . . . , ym) =

∨m
i=1 bi.

• XOREQm
n (x1, . . . , xm, y1, . . . , ym) =

⊕m
i=1 bi.

• MAJEQm
n (x1, . . . , xm, y1, . . . , ym) = 1 iff

|{i : bi = 1}| ≥ 1
2m.

• THREQm,k
n (x1, . . . , xm, y1, . . . , ym) = 1 iff

|{i : bi = 1}| ≥ k.

Theorem 1.3 Let 0 < λ < 1
2 be a constant and sup-

posem ≤ λ2n. If f is any ofOREQm
n , XOREQm

n and

MAJEQm
n , we haveC(f) = Ω(m

√
n). We also have

C(THREQm,k
n ) = Ω((m− k + 1)

√
n).

The above results are obtained using an information the-
oretic approach. For any communication problemf we
define a quantity called itsinformational complexity, de-
notedIC(f), which describes the minimum requirement
on the capacity of the “communication channels” between
Alice/Bob and the referee for a uniformly distributed input
(for precise definitions please see Section 2). This quantity
never exceeds the SM complexityC(f).

For f : {0, 1}n × {0, 1}n → {0, 1} andX ⊆ {0, 1}n,
let f |X be the restriction off to X × X. We define
C̃(f) = minX: |X|≥(2/3)2n C(f |X). We call f robust if
C̃(f) = Ω(C(f)). From the downward self-reducibility of
equality, it follows that if|X| ≥ 2

3 · 2
n then C(EQn) ≤

C(EQn|X) + 1 ≤ 2C(EQn|X); thusEQn is robust.
As mentioned above,IC(f) ≤ C(f). Our Main Lemma

goes in the other direction.

Lemma 1.4 (Main Lemma) Every functionf : {0, 1}n ×
{0, 1}n → {0, 1} satisfiesIC(f) = Ω(C̃(f)) − O(log n).
In particular, if f is robust,IC(f) = Ω(C(f))−O(log n).

This lemma is a powerful tool for proving lower bounds
on SM complexity, because informational complexity is a
“well-behaved” measure:

Theorem 1.5 (Additivity Theorem) For anyf and anym,
IC(fm) ≥ m · IC(f).

We remark that our informational complexity approach
also works for the one round two-party communication
model, where Alice sends a single message to Bob who
then computes the function. A straightforward analogue of
the concept of informational complexity can be defined and
used in analogues of Lemma 1.4 and Theorem 1.5. We will
not elaborate further on this topic here.

The rest of this paper is organized as follows. Section 2
defines several basic concepts. Section 3 contains a proof
of the Main Lemma, divided into several subsections. Fi-
nally, Section 4 proves Theorem 1.5, and then Theorems 1.2
and 1.3 by applying the Main Lemma.

2 Preliminaries

2.1 Conventions

The following conventions are used throughout the pa-
per. Random variables are denoted by boldface characters.
For random variablesx andy, H(x) denotes the Shannon
entropy ofx, H(x |y) denotes the entropy ofx conditioned
on y andI(x,y) denotes the mutual information between
x andy. Recall that

I(x,y) = H(x)−H(x |y) = H(y)−H(y |x).



Matrices are denoted by uppercase letters and their en-
tries by the corresponding lowercase letters with indices in
parentheses. Thus, ifA is a matrix, its(i, j)th entry is writ-
ten asa(i, j). The set{1, 2, . . . , k} is denoted by[k]. All
logarithms are to base 2.

2.2 Definitions

Consider a Boolean functionf : {0, 1}n × {0, 1}n →
{0, 1}. A simultaneous message (SM) protocol forf with
error boundε is a quintuple(k, `, P, Q, R) with k, ` integers
andP,Q,R matrices of shape2n × k, 2n × ` andk × ` re-
spectively. We assume that the rows ofP andQ are indexed
by elements of{0, 1}n. P andQ are required to be stochas-
tic matrices (i.e. their rows sum to 1) andR is required to
have entries in{0, 1}. Finally, the productF ∗ = PRQT is
required to satisfy

|f∗(x, y)− f(x, y)| < ε for all x, y ∈ {0, 1}n. (1)

The protocol works as follows: suppose Alice receives
x ∈ {0, 1}n and Bob receivesy ∈ {0, 1}n. Alice interprets
row x of matrix P as a probability distribution over the set
[k] and picks a “message” from[k] according to this distri-
bution. Bob similarly encodesy into a message from[`].
They both send their messages to a referee, thereby com-
municatingdlog ke anddlog `e bits respectively. The ref-
eree uses the messages to index into matrixR and outputs
the corresponding entry ofR. 2 Equation (1) says that the
probability that the referee outputsf(x, y) exceeds1− ε.

We denote the set of all suchε-error protocols forf
by Πε(f). For a protocolP = (k, `, P, Q, R) ∈ Πε(f)
we definecostA(P) = dlog ke, costB(P) = dlog `e and
cost(P) = costA(P) + costB(P). Thesimultaneous mes-
sage communication complexity(or SM complexity) off is
defined to be

C(f) = min
P∈Π1/3(f)

cost(P).

For protocolP, let x,y be random variables uniformly
distributed over{0, 1}n. Let random variablesu andv de-
note the messages that Alice and Bob (respectively) gener-
ate upon receiving inputsx andy. Clearly the distributions
of u andv depend on the matricesP andQ. The infor-
mational cost, icost(P), of the protocol is defined to be
icostA(P) + icostB(P) whereicostA(P) = I(x,u) and
icostB(P) = I(y,v). Theinformational complexityof f is
defined to be

IC(f) = min
P∈Π1/3(f)

icost(P).

2One can make a more general definition whereR has entries in[0, 1]
and the referee makes a probabilistic decision whether to output0 or 1.
However it is well known [NS96] that any such protocol can be converted
to a protocol with deterministic referee by at most doubling the error.

We remark that the choice of the constant1/3 in the
above definitions is arbitrary; the error can be reduced from
any constant to any smaller constant by trivially “repeat-
ing” the protocol and increasing the cost or informational
cost only by a constant factor.

For studying the direct sum question, we also need to
define protocols for functions with multiple bits of output.
For a functionf : {0, 1}n×{0, 1}n → {0, 1}m, we require
Alice and Bob to behave as before, but let the referee use
m 0-1 matricesR1, . . . , Rm, one for each bit. We call this
anε-error protocol if, for eachi, the protocol given byRi is
anε-error protocol for theith bit of f . 3 The conceptscost,
icost, C andIC are defined exactly as before.

Proposition 2.1 For anyf , IC(f) ≤ C(f).

Proof: Consider any protocolP = (k, `, P, Q, R) ∈
Π1/3(f) and letx,y,u,v be as above. Thenicost(P) =
H(u)−H(u |x) + H(v)−H(v |y) ≤ H(u) + H(v) ≤
log k + log ` ≤ dlog ke+ dlog `e = cost(P). 2

Thus, a lower bound onIC(f) automatically implies one
onC(f).

3 Proof of the Main Lemma

Let f : {0, 1}n ×{0, 1}n → {0, 1} be a function and let
P = (k, `, P, Q, R) ∈ Πε(f) be anε-error SM protocol for
f , with ε a sufficiently small constant. We prove the Main
Lemma in two major stages. In the first stage we prove
that a protocol satisfying a property we calluniformitycan
be converted into a new protocol that has cost comparable
to the informational cost of the original protocol. In the
second stage we show how to convert a general protocol
into one that isnear-uniform, increasing the informational
cost essentially by a constant factor. It turns out that the
proof for the uniform case can be adjusted to work even for
near-uniform protocols.

3.1 Outline

For eachx ∈ {0, 1}n andu ∈ [k] let us define the fol-
lowing sets, which depend on the protocolP.

Ux = {u′ ∈ [k] : p(x, u′) > 0}
Xu = {x′ ∈ {0, 1}n : p(x′, u) > 0}

Definition 3.1 P is said to bes-uniform for Alice, for an
integers, if each of her messagesu ∈ [k] satisfies

• s ≤ |Xu| < 2s.

3Another plausible definition would have required the referee to cor-
rectly output theentirem-bit result with probability more than1− ε. Our
weaker definition only makes our lower bound results stronger.



• For all x1, x2 ∈ Xu we havep(x1, u) = p(x2, u).

Uniformity for Bob is defined similarly.

Lemma 3.2 For a sufficiently small constantε, suppose
P ∈ Πε(f) is s-uniform for Alice ands′-uniform for Bob,
for somes ands′. Then there is a protocolP ′ ∈ Π1/3(f)
with cost(P ′) ≤ icost(P) + O(log n).

As mentioned above, this lemma is not strong enough for
our purposes. We need a further definition and a similar, but
stronger, lemma. Recall the definition ofu from Section 2.

Definition 3.3 P is said to benear-s-uniform for Alice,
with irregularity δ, for an integers and a constant0 < δ <
1, if there is a setZ ⊆ [k] such that

• s ≤ |Xu| < 2s, for all u ∈ [k] \ Z.

• p(x1, u) = p(x2, u), for all u ∈ [k] \ Z and all
x1, x2 ∈ Xu.

• Pr[u ∈ Z] < δ.

The messages inZ will be calledirregularmessages and the
restregular. Near-uniformity for Bob is defined similarly.

For brevity, we shall call a protocol which is near-s-
uniform for Alice and near-s′-uniform for Bob, with irreg-
ularity δ on each side, a(δ, s, s′)-near-uniform protocol.

Lemma 3.4 Given a protocolP ∈ Πε(f) and a constant
0 < δ < 1, there is a protocolP ′ ∈ Πε(f) and integerss,
s′, such thatP ′ is (δ, s, s′)-near-uniform andicost(P ′) =
O(icost(P)) + O(log n).

Lemma 3.5 For sufficiently small constantsε and δ, sup-
poseP ′ ∈ Πε(f) is (δ, s, s′)-near-uniform for somes
and s′. Then there is anX ⊆ {0, 1}n and a protocol
P ′′ ∈ Π1/3(f |X) such that|X| ≥ 2

3 ·2
n and cost(P ′′) ≤

icost(P ′) + O(log n).

Proof of Lemma 1.4 (Main Lemma): Suppose, for the
moment, that the above lemmas have been proven. Apply-
ing Lemma 3.4 to a protocolP ∈ Πε(f) and then applying
Lemma 3.5 to the resulting protocolP ′ gives a protocolP ′′

with
cost(P ′′) = O(icost(P)) + O(log n),

andP ′′ ∈ Π1/3(f |X) for anX of size at least23·2
n. Clearly

cost(P ′′) ≥ C(f |X) ≥ C̃(f).

Thereforeicost(P) = Ω(C̃(f))−O(log n). 2

In the next three subsections we prove Lemmas 3.2, 3.5
and 3.4 respectively.

3.2 Uniform Protocols

We setε to a sufficiently small constant; for definiteness’
sake

ε =
1

34 · 56
. (2)

SupposeP is s-uniform for Alice ands′-uniform for Bob.
Let x,y,u,v be as defined in Section 2. By the definition
of uniformity, we clearly have

n− log s− 1 < I(x,u) ≤ n− log s. (3)

The idea of the proof is to replace Alice’s strategy by a
new one in which her message set reduces in size fromk
to aboutO(2n/s), increasing the error by a constant fac-
tor. Alice’s new message set will be an appropriate random
sample of[k], possibly with some elements of[k] appearing
multiple times (these multiple occurrences are, of course,
considered distinct messages in the new protocol). With the
right choice of parameters the new protocol will have cost
on Alice’s side comparable toicostA(P).

Fix inputsx, y for Alice and Bob and letPx, Qy be the
corresponding rows of matricesP,Q. SinceP is a validε-
error protocol, we have|PxRQT

y − f(x, y)| < ε. Consider
the vectorR∗

y = RQT
y ; its entries are to be thought of as

being indexed by Alice’s messages. Call a messageu ∈ Ux

defectivefor y if the uth entry of R∗
y differs from f(x, y)

by more than
√

ε. Note that thisuth entry is the probability
that the referee outputs1 given that Alice sent messageu.
Messages not inUx are defined to be not defective. Let
T = (u1, u2, . . .) be a finite sequence of messages and let
|T | denote its length.

Definition 3.6 We say thatT is goodfor (x, y) if

|{i : ui is defective fory}| ≤ 4
√

ε · |T ∩ Ux|,

whereT ∩ Ux is the subsequence ofT consisting of only
those elements that are inUx.

Note that only those elements ofT which belong toUx

affect whether or notT is good for(x, y).
We would like to prove that there exists a sequenceT

of appropriate length that is good for all(x, y). We use the
probabilistic method: we argue that aT chosen at random
in a suitable manner is good for any fixed(x, y) with prob-
ability greater than1− 2−2n. Since there are only22n pairs
(x, y) the result follows.

Define a random sequenceT(τ) = (u1, . . . ,uτ ) where
ui are independent random variables distributed identically
to u. The lengthτ is a parameter. Also let̃ux be a random
variable distributed according toPx.

Lemma 3.7 Fix u ∈ Ux. Then

1
2

Pr[ũx = u] < Pr[u = u | u ∈ Ux] < 2 Pr[ũx = u].



Proof: Recall that the protocol iss-uniform for Alice. We
have

Pr[u = u | u ∈ Ux] =
1
2n |Xu|p(x, u)∑

u′∈Ux

1
2n |Xu′ |p(x, u′)

<
2sp(x, u)∑

u′∈Ux
sp(x, u′)

= 2p(x, u)
= 2Pr[ũx = u].

The other inequality follows similarly. 2

Lemma 3.8 Fix an index setI ⊆ [τ ] and letT = T(τ). Let
TI denote the subsequence ofT consisting of the elements
indexed byI. Then

Pr [T is good| T ∩ Ux = TI ] ≥ 1− e−
1
2
√

ε|I|

Proof: Conditioned onT ∩ Ux = TI , it is the case that
T is good iff TI is. Now under this condition each ele-
ment ofTI is distributed identically to(u | u ∈ Ux). By
Lemma 3.7 we see that the expected number of defective
elements inTI is at most2|I| times the probability that̃ux

is defective.
Note that|PxR∗

y − f(x, y)| < ε, by (1); thereforẽux is
defective with probability at most

√
ε. By standard Cher-

noff bounds, the probability thatTI has at least4
√

ε|I| de-
fective elements is at moste−

1
2
√

ε|I| and the result follows.
2

Lemma 3.9 Set t = 2n+3n/(s
√

ε). Then there exists a
sequenceT with |T | = t that is good for all(x, y).

Proof: Consider the random sequenceT(t) and fix a par-
ticular (x, y). Eachui lands in the setUx with probability∑

u∈Ux

1
2n |Xu|p(x, u) ≥ s/2n, by thes-uniformity con-

dition. ThereforeE[|T(t) ∩ Ux|] ≥ ts/2n = 8n/
√

ε and
using a standard Chernoff bound, we have

Pr
[
|T(t) ∩ Ux| ≤ 4n/

√
ε
]
≤ e−n/

√
ε. (4)

Let I ⊆ [t] be an index set with|I| ≥ 4n/
√

ε. By
Lemma 3.8

Pr [T(t) is good| T(t) ∩ Ux = T(t)I ] ≥ 1− e−2n.

Therefore,

Pr [T(t) is good]

≥
(
1− e−2n

) ∑
I⊆[t]: |I|≥4n/

√
ε

Pr [T(t) ∩ Ux = T(t)I ]

= (1− e−2n) · Pr
[
|T(t) ∩ Ux| ≥ 4n/

√
ε
]

> 1− 2−2n

where the last inequality follows from (2) and (4).
Since there are only22n pairs(x, y) it follows thatT(t)

is good for all(x, y) with positive probability. This proves
the lemma. 2

We are ready to prove the main result of this subsection.

Proof of Lemma 3.2: Let T be a sequence of lengtht =
2n+3n/(s

√
ε) that is good for all(x, y). We change Alice’s

strategy as follows: on inputx, Alice chooses one of the
elements in the subsequenceT ∩ Ux uniformly at random
and sends it to the referee. LetP ′ be this new protocol.

To analyse the correctness ofP ′, consider an arbitrary
input (x0, y0). SinceT is good for(x0, y0), the message
chosen by Alice is defective fory0 with probability at most
4
√

ε. By definition of defectiveness, if Alice’s message is
not defective, the referee’s output is wrong with probability
at most

√
ε. ThereforeP ′ ∈ Π5

√
ε(f). Applying (3) we

havecostA(P ′) = dlog te ≤ I(x,u)+4+log n−log
√

ε =
icostA(P) + O(log n).

Note that this transformation has not affected Bob’s part
of the protocol. Therefore, we can do another such trans-
formation for Bob, this time not affecting Alice, and ob-
tain a protocolP ′′ with costA(P ′′) = costA(P ′) and
costB(P ′′) = icostB(P ′) + O(log n) = icostB(P) +
O(log n). The error now increases to at most5

√
5
√

ε
which, by (2), is1/3 and we are done. 2

3.3 Near-uniform protocols

Now supposeP ′ is a (δ, s, s′)-near-uniform protocol in
Πε(f). Let Z denote the set of irregular messages of Alice.
Call an inputx for Alice activeif Pr[ũx ∈ Z] <

√
δ. From

the definition of near-uniformity it follows that at most a
√

δ
fraction of Alice’s inputs are inactive. The same is true of
Bob’s inputs as well. If we chooseδ small enough, there
exists anX ⊆ {0, 1}n such that|X| ≥ 2

3 ·2
n and inputs in

X ×X are active for both Alice and Bob.
We now transformP ′ into another protocolP ′′ using a

transformation like that in Section 3.2.

Proof of Lemma 3.5 (sketch): In essence, the proof tech-
nique of Lemma 3.2 works; we indicate the key differences.
DefineVx = Ux \ Z for every inputx of Alice. Defective-
ness is defined as before, except that messages not inVx are
defined to be not defective. We say that a sequenceT of
messages isgoodfor (x, y) if

|{i : ui is defective fory}| ≤ 6
√

ε · |T ∩ Vx|.

For an activex, if we fix a u ∈ Vx, we can show that

1
3

Pr[ũx = u] < Pr[u = u | u ∈ Ux] < 3 Pr[ũx = u].



The proof is similar to that of Lemma 3.7 and uses the fact
thatδ is small. Next, we show that for suchx

Pr [T is good| T ∩ Vx = TI ] ≥ 1− e−
1
2
√

ε|I|,

whereT andI are as in Lemma 3.8.
Sett = 2n+4n/(s

√
ε). Note that this is twice as large as

thet used in Lemma 3.9. We can show that, for any activex,
E[|T(t)∩Vx|] ≥ (1−

√
δ)ts/2n ≥ 8n/

√
ε, for sufficiently

small δ. Now, arguing exactly as in Lemma 3.9, we infer
that there exists a sequenceT with |T | = t that is good for
all (x, y) with x active. Finally, we change Alice’s strategy
as follows: on inputx, she chooses one of the elements in
T ∩ Vx uniformly at random and sends it to the referee.

Consider this new protocol’s behaviour on an arbitrary
input (x0, y0), with x0 active for Alice. Alice’s message is
irregular with probability at most

√
δ and defective fory0

with probability at most6
√

ε. When not irregular and not
defective, her message causes the referee to err with prob-
ability at most

√
ε. Therefore the error of the new protocol

is at most7
√

ε +
√

δ.
As in the proof of Lemma 3.2, the cost of this protocol

on Alice’s side isdlog te ≤ icostA(P ′) + O(log n).
Repeating the entire process for Bob gives a protocolP ′′

whose error, on inputs inX ×X (which are active for both
Alice and Bob), can be made at most1/3 by choosingε and
δ appropriately. ThusP ′′ ∈ Π1/3(f |X) and we are done.2

3.4 General protocols

We now prove Lemma 3.4.
Call a messageu smoothif p(x1, u) = p(x2, u) for all

x1, x2 ∈ Xu. Also, define thedegreeof a messageu to
be |Xu|. We convert the general protocolP into a near-
uniform protocolP ′ in two steps, each time creating sev-
eral new messages to replace one message. The first step
smoothens the messages; the second equalizes the degrees
up to a factor of 2.

Smoothening

We “split” Alice’s messages one at a time. Fix a message
u ∈ [k] and letπu = maxx∈Xu

p(x, u). Let j be the integer
that satisfies

1
2j

≤ πu <
1

2j−1
. (5)

We shall replace messageu by n + c + 2 new messages,
{u(0), u(1), . . . , u(n+c), uirr}, for some constantc, common
to all theu’s. The messageuirr will eventually end up an
irregular message.

Let P ′ denote the matrix for Alice’s new strategy. We
“distribute” the probabilityp(x, u) amongst the new proba-

bilities given byP ′ as follows. Consider the binary repre-
sentation ofp(x, u):

p(x, u) =
∞∑

i=0

aj+i

2j+i
,

whereai ∈ {0, 1} (It does not matter that theai’s might
not be uniquely determined.) We set

p′
(
x, u(i)

)
=

aj+i

2j+i
(6)

for 0 ≤ i ≤ n + c, and

p′(x, uirr) =
∞∑

i=n+c+1

aj+i

2j+i
. (7)

The referee’s matrix is modified so that, upon receiving any
of these newly created messages, the referee behaves ex-
actly as if the messageu were received in the earlier proto-
col. This ensures that the modified protocol behaves identi-
cally to the original one.

We perform the above modification for eachu ∈ [k].
The end result is a protocol withk(n + c + 2) messages for
Alice that behaves identically to the original one.

Let Z1 = {uirr : u ∈ [k]}. From (6) we see that all
the newly created messages not inZ1 are smooth. Letu
andu′ denote the random messages that Alice sends in the
original and modified protocols, respectively, upon receiv-
ing a uniformly distributed random inputx. We argue that
u′ is unlikely to land inZ1. Consider an arbitraryu ∈ [k].
By (7),

p′(x, uirr) ≤
∞∑

i=n+c+1

1
2j+i

=
1

2j+n+c
≤ πu

2n+c
,

where the last inequality follows from (5). From the defini-
tion of πu, we have

πu ≤
∑

x∈Xu

p(x, u) = 2n Pr[u = u].

Thereforep′(x, uirr) ≤ Pr[u = u]/2c. Now

Pr[u′ ∈ Z1] =
1
2n

∑
x∈{0,1}n

∑
u∈[k]

p′(x, uirr)

≤
∑
u∈[k]

Pr[u = u]
2c

=
1
2c

. (8)

We must show that our modification of the protocol does
not increase its informational cost too much. The lemma
below allows us to bound the change.



Lemma 3.10 If we replace each of Alice’s messages by at
mostK new messages then the gain in the mutual informa-
tion I(x,u) is at mostlog K.

Proof: Consider a particular messageu that is split into
Ku messages,{u(1), u(2), . . . , u(Ku)}, Ku ≤ K, with as-
sociated new probabilitiesp′

(
x, u(i)

)
and new distribution

u′. Let p(u) = Pr[u = u] andp′
(
u(i)

)
= Pr[u′ = u(i)].

ThenH(u) =
∑

u∈[k]−p(u) log p(u).
Because of the way the probabilities are redistributed,

p(u) =
∑

i∈[Ku] p
′(x, u(i)

)
. Therefore

H(u′) =
∑
u∈[k]

∑
i∈[Ku]

−p′
(
u(i)

)
log p′

(
u(i)

)
=

∑
u

Ku

∑
i

− 1
Ku

p′
(
u(i)

)
log p′

(
u(i)

)
≤

∑
u

Ku ·
(
−p(u)

Ku
log

p(u)
Ku

)
(9)

=
∑

u

−p(u) (log p(u)− log Ku)

≤ H(u) + log K,

where (9) is obtained by applying Jensen’s inequality to the
inner summations.

It is also clear that, for any fixedx, H(u′ |x) ≥
H(u |x). ThereforeH(u′ |x) ≥ H(u |x). Thus,

I(x,u′) = H(u′)−H(u′ |x)
≤ H(u) + log K −H(u |x)
= I(x,u) + log K.

2

Since each message is split inton + c + 2 new mes-
sages, we can bound the increase in the mutual information
by log(n + c + 2) = O(log n).

Equalizing degrees of messages

We now have a protocol in which all messages, except those
in Z1, are smooth. Their degrees, however, could vary con-
siderably. We replace each message not inZ1 with a set of
new messages, but this time we also partition the inputs for
each message so that the degrees become more balanced.

For every messageu /∈ Z1, let I(u) = H(x)−H(x |u);
sinceu is smooth

I(u) = n− log |Xu|. (10)

Let Z2 = {u : u /∈ Z1 andI(u) > bI(x,u)}, for some
constantb. The messages inZ2 will not be split and will
end up as irregular messages. Since we haveI(x,u) =∑

u∈U Pr[u = u] I(u), it is clear that

Pr[u ∈ Z2] ≤ 1/b. (11)

Now letZ, the final set of irregular messages, be defined as
Z = Z1 ∪ Z2. Combining (8) and (11), and settingb andc
to large enough constants, we can ensure that

Pr[u ∈ Z] ≤ 1
2c

+
1
b

< δ

which bounds the irregularity of the final protocol.
Let s = 2n−bI(x,u). By (10), we have|Xu| ≥ s for

all u /∈ Z2. We split everyu /∈ Z2 into Ku = b|Xu|/sc
new messages,{u(1), . . . , u(Ku)}. The probabilities are dis-
tributed as follows: partition the inputs inXu into Ku parts;
if x is in theith part then assignp′

(
x, u(i)

)
= p(x, u), oth-

erwise assignp′
(
x, u(i)

)
= 0. This partitioning can be ar-

ranged so that the degrees of the new messages (i.e., the
sizes of the parts) are all in the range[s, 2s). Clearly the
new messages are all smooth and so we have a protocol that
is near-s-uniform for Alice with irregularityδ.

When a messageu is split, it is split into

Ku = b|Xu|/sc ≤ 2n/s = 2bI(x,u)

new messages. By Lemma 3.10 the gain in mutual in-
formation that results is at mostlog Ku ≤ bI(x,u) =
O(icostA(P)) + O(log n).

Lastly, we repeat the entire transformation for Bob to ob-
tain a(δ, s, s′)-near-uniform protocolP ′, with icost(P ′) =
O(icost(P))+O(log n), that behaves identically toP. This
completes the proof of Lemma 3.4.

4 SM complexity lower bounds

In this section we prove the Additivity Theorem for in-
formational complexity. We also show that them-fold in-
crease in informational complexity holds even whenEQm

n is
composed with certain specific Boolean functions. Together
with the Main Lemma, these results imply communication
complexity lower bounds onEQm

n and on the Boolean com-
positions.

4.1 Direct sum problems

The most obvious way to deal with a direct sum problem
is to repeat a protocol for the base problem. Therefore, for
anyf , IC(fm) = O(m) ·IC(f). What is interesting is that
this is essentially the best we can hope for; this is what the
Additivity Theorem tells us.

Proof of Theorem 1.5 (Additivity Theorem): We use
the symbolsxi, yi to denote fixed strings in{0, 1}n and
the symbolsxi,yi to denote random strings distributed uni-
formly in {0, 1}n.

Let P ∈ Π1/3(fm). For 1 ≤ i ≤ m and arbi-
trary stringsa = x1x2 . . . xi−1 ∈ {0, 1}(i−1)·n and b =



y1y2 . . . yi−1 ∈ {0, 1}(i−1)·n, define the protocolP(i)
a,b for f

as follows: on receiving inputsx andy, Alice and Bob sim-
ulateP on the random inputsx1 . . . xi−1xxi+1 . . .xm and
y1 . . . yi−1y yi+1 . . .ym respectively, and the referee uses
the matrix for theith bit of output to determinef . Clearly,
the referee will correctly outputf(x, y) with probability at
least2/3, whenceP(i)

a,b ∈ Π1/3(f).
Consider the probability distribution of Alice’s mes-

sage when she follows protocolP with the random input
z1 . . . zj zj+1 . . . zm. Let Hj(z1, . . . , zj) denote the en-
tropy of this distribution and lethj denote the expectation
E[Hj(z1, . . . , zj)]. It is easy to see that

icostA(P) = h0 − hm. (12)

Further,

icostA

(
P(i)

a,b

)
= Hi−1(x1, . . . , xi−1)

−Ex[Hi(x1, . . . , xi−1,x)],

whence

Ea

[
icostA

(
P(i)

a,b

)]
= hi−1 − hi, (13)

where the expectation is over alla consisting ofi−1 blocks
of n-bit strings. Since this statement is true for allb, we can
average over all2(i−1)·n possible values ofb in (13) and
combine the resulting equation with (12) to obtain

icostA(P) =
m∑

i=1

Ea,b

[
icostA

(
P(i)

a,b

)]
.

A similar equation can be derived for Bob’s part of the pro-
tocols, whence

icost(P) =
m∑

i=1

Ea,b

[
icost

(
P(i)

a,b

)]
≥

m∑
i=1

IC(f)

Thus,IC(fm) ≥ m · IC(f). 2

Proof of Theorem 1.2: Recall thatEQn is robust and that
C(EQn) = Ω(

√
n). By the Main Lemma,IC(EQn) =

Ω(
√

n)−O(log n) = Ω(
√

n). By the Additivity Theorem,
we now haveIC(EQm

n ) = Ω(m
√

n). Applying Proposi-
tion 2.1 givesC(EQm

n ) = Ω(m
√

n) as desired. 2

4.2 Boolean compositions

To prove Theorem 1.3 we simply combine the Lemma
below with Proposition 2.1. We give the proof forOREQm

n

only: proofs forXOREQm
n , MAJEQm

n andTHREQm,k
n are

similar.

Lemma 4.1 For any constant0 < λ < 1
2 and integersm,n

with m ≤ λ2n we have

IC(OREQm
n ) ≥ Ω(m

√
n).

Proof: We start with a protocol inP0 ∈ Π1/3(OREQm
n )

and “repeat” it O(1) times to obtain a protocolP ∈
Πε(OREQm

n ) for some constantε < 1
2 − λ. For 1 ≤

i ≤ m and an arbitrary stringa = w1w2 . . . wi−1 ∈
{0, 1}(i−1)·n, define the protocolQ(i)

a for EQn as fol-
lows: on receiving inputsx and y, Alice and Bob simu-
lateP on the random inputsw1 . . . wi−1xxi+1 . . .xm and
w1 . . . wi−1y yi+1 . . .ym respectively, and the referee uses
the same matrix as before. Herewi denotes the bitwise
complement ofwi. Since

Pr
u,v∈{0,1}n

[EQn(u,v) = 1] = 2−n,

the referee fails to outputEQn(x, y) correctly with proba-
bility at mostε + (m − i) · 2−n ≤ ε + m/2n ≤ ε + λ,
which is a constant less than12 . Therefore we can get a pro-

tocolP(i)
a ∈ Π1/3(EQn) by “repeating”Q(i)

a an appropriate
constant number of times, sayc times.

Arguing exactly as in the proof of Theorem 1.5, we have

icost(P) =
m∑

i=1

Ea

[
icost

(
Q(i)

a

)]
=

m∑
i=1

Ea

[
1
c
· icost

(
P(i)

a

)]

≥ 1
c

m∑
i=1

IC(EQn)

= Ω(m
√

n)

and soicost(P0) = Ω(m
√

n). The result follows. 2
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