
Improved Approximation Algorithms for
Resource Allocation

Gruia Calinescu1, Amit Chakrabarti2?, Howard Karloff3, and Yuval Rabani4??

1 Department of Computer Science, Illinois Institute of Technology,
Stuart Building, 10 West 31st Street, Chicago, IL 60616.

E-mail: calinesc@cs.iit.edu
2 Department of Computer Science, Princeton University, Princeton, NJ 08544.

E-mail: amitc@cs.princeton.edu
3 AT&T Labs — Research, 180 Park Ave., Florham Park, NJ 07932.

E-mail: howard@research.att.com
4 Computer Science Department, Technion — IIT, Haifa 32000, Israel.

Email: rabani@cs.technion.ac.il

Abstract. We study the problem of finding a most profitable subset of
n given tasks, each with a given start and finish time as well as profit and
resource requirement, that at no time exceeds the quantity B of available
resource. We show that this NP-hard Resource Allocation problem
can be (1/2−ε)-approximated in polynomial time, which improves upon
earlier approximation results for this problem, the best previously pub-
lished result being a 1/4-approximation. We also give a simpler and faster
1/3-approximation algorithm.

1 Introduction

We consider the following optimization problem. Suppose we have a limited
supply of one reusable resource and are given a set of n tasks each of which
occupies a fixed interval of time and requires a given amount of the resource.
Further, each task has an associated profit which we obtain if we schedule that
task. Our goal is to select a subset of the n tasks to schedule, so that the resource
available is sufficient at all times for all simultaneously scheduled tasks, and so
that the profit obtained is maximized. Let us call this problem the Resource
Allocation Problem or rap for short.
? Part of this work was done while visiting AT&T Labs — Research. Work at Princeton

University supported by NSF Grant CCR-99817 and ARO Grant DAAH04-96-1-
0181.

?? Part of this work was done while visiting AT&T Labs — Research. Work at the
Technion supported by Israel Science Foundation grant number 386/99, by BSF
grants 96-00402 and 99-00217, by Ministry of Science contract number 9480198, by
EU contract number 14084 (APPOL), by the CONSIST consortium (through the
MAGNET program of the Ministry of Trade and Industry), and by the Fund for the
Promotion of Research at the Technion.

This abstractly specified problem actually occurs in several concrete guises.
For instance, we may be given a set of network sessions, with fixed start and
finish times, that compete for a limited amount of bandwidth between two fixed
endpoints in the network. Leonardi et al. [6] observe that a research project
on scheduling requests for remote medical consulting on a satellite channel re-
quires solving a slight variant of this very problem. Hall and Magazine [5] were
interested in maximizing the value of a space mission by deciding what set of
projects to schedule during the mission, where an individual project typically
occupies only a part of the mission. Due to its various guises, rap is known by
several other names such as Bandwidth Allocation Problem, Resource
Constrained Scheduling and Call Admission Control.

To formulate the problem precisely, we are given an integer B (the total
available amount of the shared resource) and a collection of n tasks, with starting
times si, finishing times ti, resource requirements bi, where bi ≤ B, and profits
pi. All these numbers are nonnegative integers and si < ti for all i. We want to
identify a subset S ⊆ [n] of tasks to schedule which maximizes

∑
i∈S pi among

those S satisfying the following constraint:

∀t
∑

i: [si,ti)3t

bi ≤ B .

rap is a natural generalization of the (polynomial-time solvable) problem of
finding a maximum weight independent set in a weighted interval graph.

1.1 Prior Work

There has been a flurry of research activity focusing either on rap itself or
on problems with a similar flavor. All tend to be NP-hard; in rap, setting each
si = 0 and ti = 1 gives knapsack as a special case of rap. Accordingly, research
on rap strives to obtain polynomial-time approximation algorithms. Since it is
not known whether rap is MaxSNP-hard, the possibility of a polynomial-time
approximation scheme (PTAS) remains open.

Using LP rounding techniques, Phillips et al. [8] obtain a 1/6-approximation
algorithm5 for rap. Actually they solve a more general problem in which each
task occupies not a fixed interval of time but has a fixed length and a window
of time in which it is allowed to slide. Using the local ratio technique, Bar-Noy
et al. [2] obtain results which imply a 1/4-approximation algorithm for rap.
Bar-Noy [3] has since informed us that the techniques in [2] can in fact yield a
1/3-approximation algorithm. Using different ideas, Chen et al. [4] have recently
obtained a 1/3-approximation for rap in the special case where the profit of
each task i equals its “area” (ti − si)bi.

The Storage Allocation Problem is a related problem in which, in
addition, the resource must be allocated to the scheduled tasks in contiguous

5 Since rap is a maximization problem, approximation factors of algorithms for it will
be at most 1 — the larger the factor, the better.

blocks, which must not change during the lifetime of the task. Both Bar-Noy et
al. [2] and Leonardi et al. [6] study this problem and the latter paper obtains
a 1/12-approximation algorithm, which is the current best. The former paper
obtains results for several related problems.

1.2 Our Results

We present three algorithms for restricted versions of rap. Suitably combining
these algorithms leads to approximation algorithms for the general case. The
best approximation ratio that we can obtain improves upon previous results
mentioned above.

Theorem 1.1. Consider rap with the restriction that every task satisfies bi >
δB, for a constant 0 < δ ≤ 1. There is an algorithm that solves the problem
exactly and runs in time O(n2/δ+O(1)).

Theorem 1.2. For every δ, 0 < δ ≤ 0.976, there is a randomized O(n2 log2 n)-
time algorithm for the special case of rap in which all bi ≤ δB, which achieves
a (1− 4ε)-approximation with high probability, where ε =

√
(8/3)δ ln(1/δ). 6

Since limδ→0 δ ln(1/δ) = 0, we conclude that for any ε > 0 there is a δ > 0 such
that there is a randomized, polynomial-time, (1− 4ε)-approximation algorithm
if all bi ≤ δB.

Theorem 1.3. The restriction of rap to inputs having all bi ≤ B/2 has a
deterministic polynomial-time 1/2-approximation algorithm.

In what follows, we shall refer to our algorithms which prove the above the-
orems as the Large Tasks Algorithm, the Small Tasks Algorithm and the List
Algorithm, respectively.

To obtain results for unrestricted rap, we can “combine” the algorithms for
special cases in a certain manner. The combined algorithm’s running time will
be the sum of the running times of the constituents. Combining the Large Tasks
and Small Tasks algorithms gives the following result.

Theorem 1.4. Given any constant ε > 0, there is a randomized polynomial-
time algorithm that approximates rap within a factor of at least 1/2 − ε, with
high probability. The exponent in the running time is poly(1/ε).

(
More precisely,

the exponent is a constant times the smaller of the two positive δ’s that satisfy
ε =

√
δ log(1/δ).

)
One can trade approximation guarantee for running time, and simplicity,

by combining the List Algorithm with a well-known interval graph algorithm
(details in Section 4):

Theorem 1.5. There is a deterministic 1/3-approximation algorithm for rap
with running time O(n2 log2 n).

The technique of the proof of Theorem 1.5 is very simple and quite different
from that used by Bar-Noy [3] to obtain the same approximation ratio.
6 This statement is vacuous unless δ < 0.0044.

1.3 Organization of the Rest of the Paper

The remainder of the paper proves the above theorems. In Section 2 we make
some basic definitions and explain how to combine algorithms. Section 3 de-
scribes the Large Tasks Algorithm, the Small Tasks Algorithm and the recipe
for combining them to obtain Theorem 1.4. Finally, Section 4 describes the List
Algorithm and proves Theorem 1.5.

2 Preliminaries

Assumption 2.1 Throughout the paper we shall assume that the tasks are num-
bered 1 to n in order of increasing starting time, ties broken arbitrarily, i.e.,
i < j ⇒ si ≤ sj.

Definition 2.2. We say that task i is active at an instant t of time (where t
is any real number) if t ∈ [si, ti). Also, for each i, we define Si to be the set of
tasks in {1, 2, . . . , i} that are active at time si: Si = {j ≤ i : tj > si}. Note that
i ∈ Si.

Notice that a task is considered active at its start time si but not at its finish
time ti; this prevents task i from competing for resources with a task which ends
at time si.

We observe that rap can be easily expressed as an integer linear program as
follows:

Maximize
∑n

i=1 pixi (1)
s.t.

∑
j∈Si

bjxj ≤ B, 1 ≤ i < n , (2)
and xi ∈ {0, 1}, 1 ≤ i ≤ n . (3)

This integer program has a natural LP relaxation, obtained by replacing (3) by
the constraint

0 ≤ xi ≤ 1, 1 ≤ i ≤ n . (4)

We shall refer to the LP given by (1), (2) and (4) as lpmain.

Definition 2.3. A set U ⊆ {1, . . . , n} of tasks is called a packing if its charac-
teristic vector satisfies the constraints (2)–(3).

2.1 Solving the LP

We note that lpmain can be solved by a min-cost flow algorithm, based on
the following previously-known construction similar to the one described in [1].
Construct the network N , with vertex set V (N) = {1, 2, . . . , n, n+1}. For every
1 ≤ i ≤ n, add an arc (i, i + 1) of capacity B and cost 0. For every task i, define
ri = min{j : 1 ≤ j ≤ n and sj ≥ ti}, with the convention that the minimum
over an empty set is n+1. Then add an arc (ri, i) of capacity bi and cost −pi/bi.
These are all the arcs of N . A valid flow in N with flow on the arc (ri, i) equal

to fi corresponds to a feasible solution to lpmain with xi = fi/bi and has cost∑n
i=1 pixi. Therefore a min-cost flow in N corresponds to an optimum solution

to lpmain.
The best known strongly polynomial-time min-cost flow algorithm, due to

Orlin [7], solves lpmain in O(n2 log2 n) time.

2.2 Combining Two Algorithms For Restricted rap

Suppose algorithm AL works when each bi > τ and yields an exact (optimal) so-
lution, and algorithm AS works when each bi ≤ τ and yields an α-approximation
for some constant α ≤ 1. The dividing point τ may depend on B.

1. Divide the tasks in the input instance into small tasks (those with bi ≤ τ),
and large tasks (those with bi > τ).

2. Using AS , compute an α-approximation to the optimal packing that uses
small tasks alone.

3. Using AL, compute an optimal packing that uses large tasks alone.
4. Of the two packings obtained in Steps 2 and 3, choose the one with greater

profit.

Note that in any problem instance, if OPT denotes the profit of the optimal
packing and OPTL (respectively, OPTS) denotes the profit of the optimal packing
using only large (respectively, small) tasks, then

either OPTS ≥
1

1 + α
· OPT or OPTL ≥ α

1 + α
· OPT .

Therefore the above combined algorithm achieves an approximation ratio of at
least α/(1 + α).

3 The Large and Small Tasks Algorithms

In this section, we prove Theorems 1.1 and 1.2. For the former, we give a dy-
namic programming algorithm that does not consider lpmain at all. For the
latter, we solve lpmain and use a randomized rounding scheme to obtain a good
approximation. We then derive Theorem 1.4 from these two results as indicated
above.

3.1 Dynamic Programming for the Large Tasks

We describe how to solve rap exactly, provided each bi > δB. We begin with
some definitions.

Let U be a packing. We shall denote the profit of U , i.e., the sum of profits
of all tasks in U , by p(U). If U 6= ∅, we denote the highest numbered task in U
by top(U); this is a task in U which starts last.

Definition 3.1. For a packing U 6= ∅, we define its kernel ker(U) to be the set
of all tasks in U which are active at the time when top(U) starts: ker(U) = {i ∈
U : [si, ti) 3 stop(U)} = {i ∈ U : ti > stop(U)}. We also define ker(∅) = ∅.

Definition 3.2. A packing U is called a pile if ker(U) = U .

A pile is a clique in the underlying interval graph and it is a feasible solution
to the rap instance. Any kernel is a pile. Now define the real function f on piles
V as follows:

f(V) = max {p(U) : U is a packing with ker(U) = V } .

Note that f(∅) = 0. Clearly, if we can compute f(V) for all V , we are done. We
show below how to do this efficiently.

For any packing U 6= ∅, let U ′ = U \ {top(U)}. For a pile V 6= ∅, let T (V)
denote the following set of piles:

T (V) =
{
W ⊇ V ′ : W is a pile and tj ≤ stop(V) for all j ∈ W \ V ′)

}
. (5)

Clearly T (V) 6= ∅, since V ′ ∈ T (V). In words, T (V) consists of all piles obtained
from V by removing its highest numbered (“rightmost”) task and adding in zero
or more tasks that end exactly when or before this removed task starts. We shall
need some facts about the functions defined so far:

Lemma 3.3. In any instance of rap, the following hold:
(i) For any packing U 6= ∅, top(U) = top(ker(U)).
(ii) For any packing U 6= ∅, ker(U ′) ⊇ (ker(U))′.
(iii) Let V 6= ∅ be a pile and W ∈ T (V). If W 6= ∅ then top(W) < top(V).
(iv) Let V 6= ∅ be a pile, W ∈ T (V), and U be a packing with ker(U) = W .
Then U ∪ {top(V)} is a packing.
(v) Let V 6= ∅ be a pile, W ∈ T (V), and U be a packing with ker(U) = W . Then
ker(U ∪ {top(V)}) = V .
(vi) Let V 6= ∅ be a pile and X be a packing with ker(X) = V . Then ker(X ′) ∈
T (V).

Proof. The proofs are straightforward.
(i) This is trivial from the definitions.
(ii) When U is a singleton this is trivial, so we assume that U has at least two
elements; so U ′ 6= ∅.

Let k = top(U) and k′ = top(U ′) < k. Let j ∈ (ker(U))′; by part (i), this
means j ∈ ker(U) \ {k}, i.e., j ∈ ker(U) ⊆ U and j < k; therefore j ∈ U ′ and in
particular j ≤ k′. By Assumption 2.1 we have sj ≤ sk′ and since j ∈ ker(U), we
have tj > sk ≥ sk′ ; thus j is active when k′ = top(U ′) starts and so j ∈ ker(U ′).
(iii) For any j ∈ W , by (5), either j ∈ V ′ whence j < top(V), or else j ∈ W \V ′

and hence sj < tj ≤ stop(V) whence j < top(V). Thus, in particular, top(W) <
top(V).
(iv) First of all, note that if ker(U) = W = ∅, then U = ∅ and {top(V)}
is trivially a packing, since every singleton is. So we may assume W 6= ∅ and
U 6= ∅.

Let k = top(V) and ` = top(U). By parts (i) and (iii), ` = top(U) =
top(ker(U)) = top(W) < top(V) = k. Thus top(U ∪{k}) = max{`, k} = k. This
means that at any time τ < sk, the set U ∪ {k} of tasks satisfies the feasibility
constraint (2) at time τ (because U is given to be a packing). It remains to show
that the feasibility constraint is satisfied at time sk as well. To this end, we shall
show that the set of tasks in U ∪ {k} which are active at time sk is a subset of
V ; since V is a packing, this will complete the proof.

Let j ∈ U ∪ {k} be active at time sk. If j = k we immediately have j ∈ V .
Otherwise, since j is active at time sk, and k > ` as shown above, tj > sk ≥ s`.
Also, j ≤ top(U) = `, so sj ≤ s`. Thus j is active at time s`, so j ∈ ker(U) = W .

Suppose j /∈ V . Then j /∈ V ′ and by (5) we see that tj ≤ sk, a contradiction.
Therefore j ∈ V and we are done.
(v) First, note that W = ∅ implies U = ∅ and, by (5), V ′ = ∅, which means V
is a singleton: V = {top(V)}. The statement is now trivial. So we may assume
W 6= ∅ and U 6= ∅.

Let k = top(V). As shown above, top(U∪{k}) = k. Suppose j ∈ ker(U∪{k}).
Then j is active at time sk. In the proof of part (iv) we have already seen that
this implies j ∈ V . Thus ker(U ∪ {k}) ⊆ V .

Now suppose j ∈ V . Since V is a pile, j is active at time stop(V) = sk. As
shown above, k = top(U∪{k}), so j is active at the start time of job top(U∪{k}).
We claim that j ∈ U ∪ {k}. Indeed, if j 6= k, then j ∈ V \ {k} = V ′. Since
W ∈ T (V), by definition of T (V) (see (5)) we have W ⊇ V ′. Thus j ∈ V ′ ⊆
W ⊆ U , which proves the claim. This in turn shows that j ∈ ker(U ∪{k}). Thus
V ⊆ ker(U ∪ {k}).
(vi) Since V is nonempty, so is X. Let k = top(V) = top(X). By part (ii),
ker(X ′) ⊇ (ker(X))′ = V ′. Let j ∈ ker(X ′) \ V ′. Looking at (5), in order to
prove that ker(X ′) ∈ T (V), we must show that tj ≤ sk. Suppose not. Since
j ∈ ker(X ′) ⊆ X ′ ⊆ X, we have j ≤ k. This means j is active at time sk, since
we’ve assumed that tj > sk; therefore j ∈ ker(X) = V . But j /∈ V ′; so j = k.
However, j ∈ X ′ = X \ {k}, which is a contradiction. ut

The key to the dynamic programming algorithm is the following lemma:

Lemma 3.4. Let V 6= ∅ be a pile. Then

f(V) = ptop(V) + max
W∈T (V)

f(W) . (6)

Proof. Let R denote the right-hand side of (6).
We first establish that f(V) ≥ R. Let W ∈ T (V) be a pile that maximizes

f(W) among all such W , and let U be a packing with ker(U) = W that maxi-
mizes p(U) among all such U . If W = ∅ we have R = ptop(V). Since V is a pile,
it is a packing with kernel V , so f(V) ≥ p(V) ≥ ptop(V) = R.

So assume W 6= ∅. Then U 6= ∅. Now R = ptop(V) + f(W) = ptop(V) + p(U).
By parts (i) and (iii) of Lemma 3.3, top(U) = top(ker(U)) = top(W) < top(V).
Therefore top(V) /∈ U . By parts (iv) and (v) of Lemma 3.3, U ∪ {top(V)} is a
packing with kernel V . By definition of f this means

f(V) ≥ p
(
U ∪ {top(V)}

)
= p(U) + ptop(V) = R .

Now we establish that f(V) ≤ R. Let X be a packing with ker(X) = V that
maximizes p(X) among all such X; then f(V) = p(X). Also, X is nonempty
since V is. By part (i) of Lemma 3.3, top(X) = top(V) = k, say. Since k ∈ X,
p(X) = pk + p(X \ {k}) = pk + p(X ′) ≤ pk + f(ker(X ′)), where the inequality
follows from the definition of f . By part (vi) of Lemma 3.3, ker(X ′) ∈ T (V).
Therefore

f(V) = p(X) ≤ pk + f(ker(X ′)) ≤ pk + max
W∈T (V)

f(W) = R ,

which completes the proof of the lemma. ut

We now describe the dynamic programming algorithm.

Proof (of Theorem 1.1). Compute f(V) for all piles V in increasing order of
top(V), using formula (6). By part (iii) of Lemma 3.3, every pile W ∈ T (V),
W 6= ∅, satisfies top(W) < top(V) so that when computing f(V) we will have
already computed f(W) for every W involved in (6). Then compute the profit
of the optimal packing as the maximum of f(V) over all piles V .

The above algorithm computes only the profit of an optimal packing, but it
is clear how to modify it to find an optimal packing as well.

The running time is clearly at most poly(n) times a quantity quadratic in the
number of piles. Since each task has bi > δB, the size of a pile is at most 1/δ and
so the number of distinct nonempty piles is at most

∑b1/δc
k=1

(
n
k

)
≤ (1 + n)1/δ.

This gives a running time of O(n2/δ+O(1)), as claimed. ut

3.2 Randomized Rounding for the Small Tasks

In this subsection we prove Theorem 1.2. Accordingly, we assume that the tasks
in the input instance satisfy bi ≤ δB and δ ≤ 0.976. We set

ε =

√
8
3

δ ln(1/δ) . (7)

We shall describe an algorithm, based on randomized rounding of an LP
solution, which returns a solution to rap whose expected performance ratio is
at least 1 − 2ε. Repeating this algorithm several times one can get a (1 − 4ε)-
approximation with high probability, thereby proving the theorem.

If 1 − 4ε ≤ 0, there is nothing to prove, so we may assume that ε < 1/4.
Since f(δ) =

√
(8/3)δ ln(1/δ) is increasing on (0, 1/e), decreasing on (1/e, 1],

f(0.976) > 1/4, f(0.0044) > 1/4, and δ ≤ 0.976, we infer that

δ < 0.0044 . (8)

We solve lpmain using the algorithm indicated in Section 2.1. Suppose this
gives us an optimal fractional solution (x1, x2, . . . , xn) with profit OPT∗. We
then choose independent random variables Yi ∈ {0, 1}, i = 1, 2, ..., n, with

Pr[Yi = 1] = (1 − ε)xi. Now, if we define the (dependent) random variables
Z1, Z2, ..., Zn, in that order, as follows:

Zi =
{

1, if Yi = 1 and
∑

j∈Si\{i} bjZj ≤ B − bi ,

0, otherwise ,

then clearly {i : Zi = 1} is a packing, and its expected profit is
∑n

i=1 pi ·Pr[Zi =
1]. We shall now lower bound the probability that Zi = 1. For this purpose we
need a simple probabilistic fact and a tail estimate, collected together in the
following lemma.

Lemma 3.5. Let X1, X2, . . . , Xm be independent random variables and let 0 ≤
β1, β2, ..., βm ≤ 1 be reals, where for i ∈ {1, 2, . . . ,m}, Xi = βi with probability
pi, and Xi = 0 otherwise. Let X =

∑
i Xi and µ = E[X]. Then

(i) σ(X) ≤ √
µ.

(ii) For any λ with 0 < λ <
√

µ, Pr[X > µ + λ
√

µ] < exp
(
− λ2

2

(
1− λ/

√
µ
))

.

Proof. For part (i):

σ2(X) =
m∑

i=1

(
E[X2

i]− (E[Xi])2
)

≤
m∑

i=1

E[X2
i]

≤
m∑

i=1

E[Xi]

= µ ,

where the second inequality follows from βi ≤ 1.
To prove part (ii), put t = ln

(
1 + λ/

√
µ
)
≥ 0. Trivially, t ≥ λ/

√
µ −

λ2/(2µ) since 0 ≤ λ/
√

µ < 1. By Markov’s inequality, Pr
[
X > µ + λ

√
µ
]

=
Pr
[
etX > etµ+tλ

√
µ
]

< E[etX]/ exp(tµ + tλ
√

µ). Now

E[etX] = E

[
m∏

i=1

etXi

]

=
m∏

i=1

E
[
etXi

]
=

m∏
i=1

(
1− pi + pie

tβi
)

≤
m∏

i=1

exp
(
pi(etβi − 1)

)
= exp

(
m∑

i=1

pi

(
etβi − 1

))
.

Further,

m∑
i=1

pi

(
etβi − 1

)
=

m∑
i=1

pi

(
tβi +

1
2!

(tβi)2 +
1
3!

(tβi)3 + · · ·
)

≤
m∑

i=1

piβi

(
et − 1

)
= µ

(
et − 1

)
,

where the inequality follows from the fact that each βi ≤ 1. This gives

Pr [X > µ + λ
√

µ] < exp
(
µ(et − 1)− tµ− tλ

√
µ
)

≤ exp
(
λ
√

µ− λ
√

µ + λ2/2− λ2 + λ3/(2
√

µ)
)

= exp(−λ2/2 + λ3/(2
√

µ)) ,

where the last inequality follows from the lower bound on t. ut

Lemma 3.6. Under conditions (7) and (8), Pr[Zi = 1] ≥ (1− 2ε)xi.

Proof. Conditions (7) and (8) imply ε > 57δ. This fact will be used twice below.
Fix an i. We shall estimate the probability πi = Pr[Zi = 0 | Yi = 1]. Notice

that Zj does not depend on Yi when j < i. Since Zj ≤ Yj for all j and bi ≤ δB,
we now have

πi = Pr
[∑

j∈Si\{i}

bjZj > B − bi

]
≤ Pr

[∑
j∈Si\{i}

bjYj

δB
>

1− δ

δ

]
. (9)

Now the random variables {bjYj/(δB)}j∈Si\{i}, and βj = bj/(δB), pj = (1−ε)xj

satisfy the conditions of Lemma 3.5. Let Y be the sum of the new random
variables and let µ = E[Y]. We have

µ =
∑

j∈Si\{i}

bj

δB
· (1− ε)xj =

1− ε

δ

∑
j∈Si\{i}

bjxj

B
≤ 1− ε

δ
, (10)

by constraint (2) of lpmain. We now consider two cases.

Case 1: µ < (7/8)(1 − δ)/δ. Part (i) of Lemma 3.5 gives σ(Y) ≤ √
µ.

Using (9) and Chebyshev’s inequality we get

πi ≤ Pr
[
Y >

1− δ

δ

]
≤ Pr

[∣∣Y − µ
∣∣ >

1
8
· 1− δ

δ
· σ(Y)
√

µ

]
≤ 64δ2µ

(1− δ)2
.

By our assumption about µ, this is less than 56δ/(1−δ) and now by (8),
πi < 57δ.

Case 2: µ ≥ (7/8)(1− δ)/δ. Set λ such that µ + λ
√

µ = (1− δ)/δ. Then
λ, considered as a function of µ, is decreasing. From this and (10) we
have

λ =
1−δ

δ − µ
√

µ
≥

1−δ
δ − 1−ε

δ√
1−ε

δ

=
ε− δ√
δ(1− ε)

≥ ε− δ√
δ

≥ 56
57

ε√
δ

.

Also, 1 − λ/
√

µ = 2 − (1 − δ)/δµ ≥ 6/7, by the assumption about µ,
and further, we trivially get λ <

√
µ. By (9) and part (ii) of Lemma 3.5,

applied to the variables {bjYj/(δB)}j∈Si\{i} and their sum Y , we obtain

πi ≤ Pr[Y > µ + λ
√

µ]

< exp
(
− λ2

2
(1− λ/

√
µ)
)

< exp
(
− 1

2

(
56
57

)2
ε2

δ

6
7

)
< δ .

In either case, πi < 57δ. Hence,

Pr[Zi = 1] = (1−πi) ·Pr[Yi = 1] ≥ (1− 57δ)(1− ε)xi ≥ (1− ε)2xi ≥ (1− 2ε)xi ,

which completes the proof of the lemma. ut

Proof (of Theorem 1.2). The randomized rounding procedure computes a pack-
ing; let the random variable P denote its profit. As noted in the comments
preceding Lemma 3.5, E[P] =

∑n
i=1 pi · Pr[Zi = 1] which, by Lemma 3.6, is at

least (1 − 2ε)OPT∗ ≥ (1 − 2ε)OPT. However, P never exceeds OPT. Markov’s
inequality now implies Pr[P ≥ (1 − 4ε)OPT] ≥ 1/2. By repetition, we can now
suitably amplify the probability of obtaining at least 1 − 4ε of the profit. The
bound on the running time follows easily from Subsection 2.1. ut

3.3 Proof of Theorem 1.4

We have already described in Subsection 2.2 how to combine the two algorithms
described above. In the terminology of that section, we would have α = 1 − 4ε
and τ = δB where ε and δ are related according to (7). As argued at the
end of that section, this would lead to an approximation ratio of α/(1 + α) =
(1− 4ε)/(2− 4ε) ≥ 1/2− 2ε for general rap.

Given an ε, in order to achieve this 1/2− 2ε approximation, we solve (7) for
δ (we use the smaller δ obtained) and use this δ in the Large and Small Tasks
Algorithms.

4 The List Algorithm

In this section we give a fast and simple 1/2-approximation algorithm in the
case when each bi ≤ B/2; this will prove Theorem 1.3. It is inspired by a similar
“coloring” algorithm of Phillips et al [8]. Our algorithm has the advantage that
it does not have to round to a large common denominator; therefore it is faster
and obtains a 1/2-approximation, rather than a (1/2− ε)-approximation.

Our algorithm generates a list of packings with the property that the “av-
erage” of the packings in the list has large profit. To be precise, we first solve
lpmain and obtaining an optimal fractional solution (x1, x2, . . . , xn) whose profit
is
∑n

i=1 pixi. Our rounding algorithm will produce a list U1, U2, . . . , Um of sets
of tasks, together with non-negative real weights x(U1), . . . , x(Um) for these sets.
These sets and weights will satisfy the following properties:

1. Each set Uk is a packing.
2. 0 ≤ x(Uk) ≤ 1 for each set Uk.
3. For each i we have

∑
k: Uk3i x(Uk) = xi.

4.
∑m

k=1 x(Uk) ≤ 2.

Define the profit of a set to be the sum of the profits of the constituent
tasks. Our algorithm will select a maximum profit set from the list it con-
structs. Let P be the profit of the set picked by the algorithm. Then, assum-
ing that the above properties hold, 1

2

∑n
i=1 pixi = 1

2

∑n
i=1

∑
k: Uk3i pix(Uk) =∑m

k=1
1
2x(Uk)

∑
i:i∈Uk

pi ≤
∑m

k=1
1
2x(Uk)·P ≤ P , where the first equality follows

from Property 3, the first inequality from Property 1 and the final inequality
from Property 4. Therefore we indeed have a 1/2-approximation algorithm.

We now describe the procedure for generating the sets Uk and weights x(Uk).
Initialize a list L of sets to an empty list. Then consider the tasks in the order
1, 2, . . . , n. For task i:

1. If xi = 0 proceed to the next task. (If there are no more
tasks, stop.)

2. Search L for a set not containing i to which i can be added
without violating Property 1.

3. If no such set exists, create a new set V = {i} with weight
x(V) = xi and add V to L. Set xi = 0 and return to step 1.

4. Otherwise, suppose U ∈ L is such a set.
4a. If xi < x(U) then decrease x(U) to x(U) − xi, create a

new set V = U ∪ {i} with weight x(V) = xi and add V
to L. Set xi = 0 and return to step 1.

4b. If xi ≥ x(U), add i to U and decrease xi to xi − x(U).
Return to step 1.

Lemma 4.1. After processing all the tasks as above, L will hold a list of tasks
satisfying all four properties.

Proof. Let x̂i denote the original values of xi that were input to the above pro-
cedure. It is easy to verify that the procedure maintains the following invariant:

xi +
∑

j:Uj3i

x(Uj) = x̂i, 1 ≤ i ≤ n . (11)

Properties 1 and 2 are clearly satisfied. Property 3 follows from (11) and the
fact that after all tasks have been processed, each xi = 0.

It remains to prove that Property 4 holds; we shall show that it holds as an
invariant of the procedure. A new set may be added to the list L either from
step 3 or step 4a. In the latter case, the weight of a set is split amongst itself and
the newly created set, leaving the sum of all weights unaffected. In the former
case, the newly created set is a singleton consisting of task i, say. Consider the
list L immediately after this singleton is added. Note that every task j in a set
in L satisfies j ≤ i. For each set U ∈ L let b(U) be the sum of bj over all j ∈ U
such that task j is active at the time when task i starts (i.e., sj ≤ si < tj , since
j ≤ i). Then ∑

U∈L
b(U)x(U) =

∑
U∈L

∑
j∈U

sj≤si<tj

bjx(U) (12)

=
∑

j:j≤i,
sj≤si<tj

bj

∑
U∈L:U3j

x(U) (13)

=
∑

j:j≤i,
sj≤si<tj

bj x̂j (14)

≤ B . (15)

Equation (13) holds because we process tasks in the order 1, . . . , n, (14) holds
because of (11) and the fact that when task i is being processed we have xj = 0
for all j < i, and (15) holds because of constraint (2) of lpmain.

Let L′ be the sublist of L consisting of those sets which contain i. For U ∈ L′
we clearly have b(U) ≥ bi. For U ∈ L \ L′, since we’re in the case when step 3
is executed, it follows that task i did not fit into any set in L \ L′ and so
b(U) > B − bi. Therefore we get

B ≥
∑

U∈L′
bix(U) +

∑
U∈L\L′

(B − bi)x(U) = bix̂i + (B − bi)
∑

U∈L\L′
x(U)

where the equality follows from (11). Consider the last expression; if we have∑
U∈L\L′ x(U) > x̂i, then the expression is a decreasing function of bi. Since

bi ≤ B/2, we get

B ≥ B

2
x̂i +

B

2

∑
U∈L\L′

x(U) . (16)

If, on the other hand, we have
∑

U∈L\L′ x(U) ≤ x̂i ≤ 1, then (16) clearly holds.
Thus (16) always holds, and applying (11) to it gives B ≥ B

2

∑
U∈L x(U), whence

Property 4 follows. ut

Proof (of Theorem 1.5). We combine two rap algorithms as described in Sec-
tion 2.2, with α = 1/2 and τ = B/2 in the terminology of that section. For one
half we use the above List Algorithm.

For the other half, observe that if each task in a rap instance has bi > B/2,
then two tasks which are active together (at some instant of time) cannot both
be in a packing. Therefore, a packing in this case is simply an independent set
in the underlying interval graph of the rap instance; so the problem reduces
to (weighted) max-independent-set for interval graphs. This problem is well-
known to be solvable (exactly) in O(n log n) time (see, e.g., [2]).

The combination gives us an approximation guarantee of α/(1 + α) = 1/3.
Finally, consider the running time of the List Algorithm. Note that the size

m of list L is at most n, since each task creates at most one new set to be added
to L. This means that the List Algorithm does at most O(n2) work after solving
the LP. From Subsection 2.1 we know that the LP can be solved in O(n2 log2 n)
time. This completes the proof. ut

References

1. E. M. Arkin, E. B. Silverberg. Scheduling jobs with fixed start and end times.
Discrete Applied Mathematics, 18 (1987), 1–8.

2. Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, Baruch Schieber.
A unified approach to approximating resource allocation and scheduling. In Pro-
ceedings of the 32nd Annual ACM Symposium on Theory of Computing (2000),
735–744.

3. Amotz Bar-Noy. Private communication (2001).
4. Bo Chen, Rafael Hassin, Michal Tzur. Allocation of bandwidth and storage. IIE

Transactions, 34 (2002), 501–507.
5. N. G. Hall, M. J. Magazine. Maximizing the value of a space mission. European

Journal of Operational Research, 78 (1994), 224–241.
6. Stefano Leonardi, Alberto Marchetti-Spaccamela, Andrea Vitaletti. Approxima-

tion algorithms for bandwidth and storage allocation problems under real time
constraints. In Proceedings of the 20th conference on Foundations of Software
Technology and Theoretical Computer Science (2000), 409–420.

7. J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
Research, 41 (1993), 338–350.

8. Cynthia Phillips, R. N. Uma, Joel Wein. Off-line admission control for general
scheduling problems. In Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms (2000), 879–888.

