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Abstract

We study the problem of finding a maximum matching in a graph given by an input stream
listing its edges in some arbitrary order, where the quantity to be maximized is given by
a monotone submodular function on subsets of edges. This problem, which we call maxi-
mum submodular-function matching (MSM), is a natural generalization of maximum weight
matching (MWM), which is in turn a generalization of maximum cardinality matching (MCM).
We give two incomparable algorithms for this problem with space usage falling in the semi-
streaming range—they store only O(n) edges, using O(n log n) working memory—that achieve
approximation ratios of 7.75 in a single pass and (3 + ε) in O(ε−3) passes respectively. The op-
erations of these algorithms mimic those of Zelke’s and McGregor’s respective algorithms for
MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general frame-
work for MWM algorithms that allows this kind of adaptation to the broader setting of MSM.

In the sequel, we give generalizations of these results where the maximization is over “in-
dependent sets” in a very general sense. This generalization captures hypermatchings in hy-
pergraphs as well as independence in the intersection of multiple matroids.

1 Introduction

Maximum cardinality matchings and maximum weight matchings are basic concepts in graph
theory and efficient algorithms for computing these structures are fundamental algorithmic results
with myriad applications. The explosion of data—in particular graph data—over the past decade
has motivated a number of researchers to revisit several algorithmic problems on graphs with a
view towards designing space efficient algorithms that process their inputs in streaming fashion, i.e.,
via sequential access alone, though perhaps in multiple passes. In particular, a series of recent
works [6,7,11,13,18,21] have studied the maximum cardinality matching (MCM) problem and its
natural generalization, the maximum weight matching (MWM) problem, on graph streams.

In this work, we study a further generalization of MWM that we call the maximum submodular-
function matching problem or, more briefly, the maximum submodular matching (MSM) problem.
This specific problem does not seem to have been studied in previous work, though there has
been plenty of work in the optimization community on general (non-streaming) algorithms for
constrained submodular function maximization under constraints more general than matchings
(see, e.g., Feldman et al. [8] and the references therein, as well as our own discussion in Section 1.3).
Our work gives the first results for the MSM problem in the data stream model. Our techniques in
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fact lead to results for a wider class of problems, including submodular maximization on hyper-
matchings and intersection of matroids.

Our study of MSM is inspired in part by its applicability to the Word Alignment Problem
(WAP) from computational linguistics, as studied in Lin and Bilmes [17]: we are given a source-
language string and a target-language string and the goal is to find a “good” mapping between
their respective words. Lin and Bilmes [17] cast WAP as maximizing a suitable submodular func-
tion constrained to the intersection of two partition matroids (this is in turn closely related to
bipartite matchings), and they note the improvement this gives over previous approaches that
cast WAP as an instance of MWM.

A submodular function on a ground set X is defined to be a function f : 2X → R that satis-
fies f (A ∪ B) + f (A ∩ B) 6 f (A) + f (B) for all A, B ⊆ X . For our purposes in this work, we
will instead use the following “diminishing returns” characterization, which is well known to be
equivalent to the definition just given: for all Y ⊆ X ⊂ X and x ∈ X \ X, we have

f (X ∪ {x})− f (X) 6 f (Y ∪ {x})− f (Y) . (1)

The function f is said to be monotone if f (Y) 6 f (X) whenever Y ⊆ X ⊆ X and proper if f (∅) = 0.
An instance of MSM consists of a graph G = (V, E) on vertex set V = [n] := {1, 2, . . . , n} and
a non-negative monotone proper submodular function f whose ground set is the edge set E, i.e.,
f : 2E → R+. The goal is to output a matching M∗ ⊆ E that maximizes f (M∗); we shall refer to
such a matching as an f -MSM of G. For a real number α > 1, an α-approximate f -MSM of G is
defined to be a matching M ⊆ E such that f (M) > α−1 f (M∗).

A non-negative weight function w : E → R+ can be naturally extended to subsets of E via
w(S) = ∑e∈S w(e) for all S ⊆ E; the latter function w is easily seen to be non-negative, mono-
tone, proper, and submodular (it is in fact modular, a.k.a. linear). Therefore MSM generalizes the
more famous MWM problem. Letting w be a constant function gives us the even more special
MCM problem. However, an important threshold is crossed in generalizing from MWM to MSM.
The MWM problem is solvable in polynomial time [5, 10]—a monumental algorithmic triumph
of the 20th century—whereas MSM hits an Ω(1) approximation threshold if it is to be solved in
polynomial time; see Theorem 5 for a formal treatment.

Our concern in this paper is with graph streams: the input graph is described by a stream of
edges {u, v}, with u, v ∈ [n]. We assume that the number of vertices, n, is known in advance
and that each edge in E appears exactly once in the input stream. The order of edge arrivals
is arbitrary and possibly adversarial. We seek algorithms for MSM that use only quasi-linear
working memory—i.e., O(n(log n)O(1)) bits of storage, with O(n log n) being the holy grail—and
process each edge arrival very quickly, ideally in O(1) time. Algorithms with such guarantees
have come to be known as semi-streaming algorithms [7]. Notice that Ω(n log n) bits are necessary
simply to store a matching that saturates Ω(n) vertices.

As with all optimization problems involving submodular functions, a study of MSM requires
special care because the description of the submodular function f needs Ω(2|E|) space in general.
Special cases do allow f to be more compactly represented: such as MWM, where each edge in
the stream arrives together with its weight. Since our goal is to give general algorithms, assuming
no further structure for f , we will instead take the common approach of having f specified by a
value oracle that returns f (S) when presented with S ⊆ E. See Section 2 for a precise explanation.

1.1 Our Results

We give two incomparable approximation algorithms for the MSM problem on graph streams,
formally stated in the two theorems below. Both algorithms are semi-streaming: specifically, each
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stores only O(n) edges, thereby using O(n log n) working memory.1 For brevity, “submodular f ,”
means a non-negative monotone proper submodular function f , presented by a value oracle.

Theorem 1. For every submodular f , there is a one-pass semi-streaming algorithm that outputs a 7.75-
approximate f -MSM of an n-vertex input graph, storing at most O(n) edges at all times.

Theorem 2. For every submodular f , and every constant ε > 0, there is a multi-pass semi-streaming
algorithm that makes O(ε−3) passes over an n-vertex graph stream and outputs a (3 + ε)-approximate f -
MSM of the graph. This algorithm stores only a matching in the input graph at all times; in particular it
stores only O(n) edges.

Perhaps more important than these specific approximation ratios is the technique behind these
results. We identify a general framework for matching algorithms in graph streams. We show
that whenever an MWM algorithm fits this framework, it can be adapted to the broader setting
of MSM. The above theorems then follow by revisiting two recent MWM algorithms—that of
Zelke [21] for Theorem 1 and that of McGregor [18] for Theorem 2—and showing that they fit our
framework. Thus, the main contributions of our work are (1) the identification of the framework
and (2) the novel analysis for the MSM setting.

Naturally, MWM algorithms base their actions on edge weights. A trivial way of giving a
weight to an edge e for the f -MSM problem is to use the quantity f ({e}). As may be expected,
this is too naı̈ve to be useful. Our first insight is that weights can be assigned to edges as they are
encountered in the stream based on how much they improve the “current matching.” Our second
insight, specific to multi-pass algorithms, is that edge weights assigned this way can be calculated
on each pass. Though the resulting weights may change from one pass to another, nevertheless,
our framework and analysis technique allow us to recover a good approximation ratio.

Our framework is not deeply wedded to matchings: it is general enough to capture set maxi-
mization problems constrained to abstract “independent sets,” for a very general notion of inde-
pendence. Taking this view, we obtain two more families of results. The first applies to hypergraphs,
where we obtain approximate MWM and f -MSM algorithms for matchings (a.k.a. hypermatch-
ings) given a bound p on the size of hyperedges. The second applies to maximization over the
intersection of p matroids (for a constant p): the case p = 2 captures matchings in bipartite graphs.
In each family, we have a maximum-submodular problem (MSIS, say—the “IS” stands for “inde-
pendent set”), and a maximum-weight problem (MWIS, say) where the submodular function is
modular. The results are summarized below; details appear in Sections 5 and 6.

Theorem 3. For every submodular f , the MWIS and f -MSIS problems, with independent sets being given
either by a hypermatching constraint in p-hypergraphs or by the intersection of p matroids, there are near-
linear-space streaming algorithms giving the following approximation ratios.

Problem type MWIS MSIS

One pass: p-hypergraphs; p ma-
troids

2(p +
√

p(p− 1))− 1 4p

O(ε−3 log p) passes: p-
hypergraphs; p partition matroids

p + ε p + 1 + ε

1Throughout the paper, we adopt the convention that edge weights in an MWM instance—and analogously, f -
values of singletons in an MSM instance—do not grow with n; this ensures that each weight we store in our algorithms
takes up O(1) storage.
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The one-pass MWIS result for matroids was already known from the work of Badanidiyuru Varadaraja [3];
the remaining results in Theorem 3 are novel.

Our results for f -MSM and f -MSIS as stated above involve approximation ratios that are al-
ways worse than the corresponding ones for MWM and MWIS: therefore they are not generaliza-
tions in the strictest sense. However, such a generalization is possible by considering the curvature
curv( f ) of the submodular function f : 2E → R. This quantity, defined by

curv( f ) := min{c : ∀ A ⊆ E ∀ e ∈ E \ A,
we have f (A ∪ {e})− f (A) > (1− c) f ({e})} , (2)

measures how far f is from being modular. Note that curv( f ) ∈ [0, 1] and curv( f ) = 0 iff f is
modular. For our final result, we give approximation ratios for f -MSM and f -MSIS that gradually
improve to those for Zelke’s MWM algorithm and Badanidiyuru Varadaraja’s MWIS algorithm as
curv( f )→ 0.

Theorem 4. For every submodular f , the approximation ratios for f -MSM in Theorem 1 and the one-pass
approximation ratio for f -MSIS in Theorem 3 can be improved to min{7.75, 5.585/(1− curv( f ))} and
min{4p, (2(p +

√
p(p− 1))− 1)/(1− curv( f ))} respectively.

1.2 Context

To place Theorems 1 and 2 in context, we summarize the most relevant prior work on MWM and
MCM. As noted before, our work is the first to consider MSM.

A one-pass semi-streaming 2-approximation for MCM is trivial, from the observation that a
maximal matching is a 2-approximate MCM. Beating this bound or proving its optimality re-
mains a vexing open problem. Goel, Kapralov, and Khanna [11] showed that for every ε > 0, find-
ing a (3/2− ε)-approximate MCM in one pass requires n1+Ω(1/ log log n) space, and very recently
Kapralov [13] improved this to the best known approximation ratio lower bound of e/(e− 1) ≈
1.582. Using multiple passes, McGregor [18] did obtain a (1 + ε)-approximation algorithm, but
required exp(ε−1) passes to do so.

For the MWM problem, Feigenbaum et al. [7] gave a one-pass semi-streaming 6-approximation
algorithm, which McGregor [18] improved to 3 +

√
8 ≈ 5.828 by tweaking parameters. McGre-

gor also extended his algorithm to multiple passes, where each pass essentially “repeats” the first
pass, gradually improving the approximation ratio to 2 + ε after O(ε−3) passes. Zelke further im-
proved the one-pass approximation factor to ≈ 5.585 (the exact constant is a degree-5 algebraic
number) by using a more involved algorithm. We shall have reason to discuss Zelke’s and Mc-
Gregor’s algorithms in detail in Sections 3 and 4 respectively. Most recently, Epstein et al. [6] gave
the current best approximation ratio of ≈ 4.911 + ε, using O(n log(n/ε)) space. Their algorithm
departs significantly from previous approaches, and falls outside our aforementioned framework.
Very recently, Ahn and Guha [1] gave a (1 + ε) approximation with multiple passes, using a very
different algorithm that falls outside our framework.

It is also worth noting another line of work on MWM that has focused on bipartite graphs,
where it is natural to consider an alternate streaming model in which vertices arrive together
with all their incident edges. The seminal online (randomized) algorithm of Karp, Vazirani, and
Vazirani [14] falls in this setting and gives an e/(e− 1) competitive ratio. Recent work of Goel,
Kapralov, and Khanna [11] gave a deterministic semi-streaming algorithm with the same approxi-
mation ratio. Kapralov’s aforementioned lower bound [13], which holds despite the bipartite and
vertex-arrival restrictions, shows that this ratio is optimal.
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1.3 Other Related Work

Thus far, we have been thinking about MSM as a problem about finding a good matching, gen-
eralizing MWM. Another useful viewpoint is to consider f -MSM as the problem of maximizing
the submodular function f (S) subject to S being a matching. This makes MSM an instance of
constrained submodular maximization, which is a heavily-studied topic in optimization.

Maximizing a submodular function is an important problem even without constraints on the
set if one drops the monotonicity requirement. Even its most famous instance, MAX-CUT, is not
yet fully understood. For monotone functions, maximizing f (S) becomes nontrivial once one
places some sort of “packing” constraint on S, such as an upper bound on |S|. Generalizing this
idea naturally leads one to a matroid constraint, where S is required to be an independent set of a
matroid. One can consider more general “independence systems,” such as the intersection of p
different matroids on the same ground set E (called a p-intersection system) or, even more gener-
ally, a p-system, wherein

∀ A ⊆ E :
max{|S| : S ⊆ A, S maximally independent}
min{|S| : S ⊆ A, S maximally independent} 6 p .

This last generalization finally captures the constraint of S being a matching, because matchings
form a 2-system. All of these classes of problems were studied in the seminal work of Fisher,
Nemhauser and Wolsey [9, 19], who showed among other things that the simple greedy strategy
of growing a set S by adding the element that most improves f (S) subject to S being independent
yields a (p + 1)-approximation for a p-system. In another classical work, Jenkyns [12] showed
that the greedy strategy with a p-system constraint in fact gives a p-approximate solution if the
function f is modular (a.k.a. linear).

Notice that the implication of the above for our f -MSM problem is a (non-streaming) greedy
3-approximation. This should be compared to our Theorem 2.

More recently, Calinescu et al. [4] gave a polynomial time (e/(e− 1))-approximation algorithm
for maximizing a non-negative monotone proper submodular function f subject to a matroid con-
straint. This ratio improves upon the 2 that follows from a matroid being a 1-system, and is
provably optimal if P 6= NP. Lee et al. [15, 16] gave local search algorithms for maximizing f over
a p-intersection system, improving the approximation ratio from the aforementioned p + 1 (for
the more general p-systems) to p + ε. Recently, Feldman et al. [8] proposed a new class of inde-
pendence systems called “p-exchange systems,” stricter than p-systems but more general than p-
intersection systems, for which they gave a local-search-based (p+ ε)-approximation. Their paper
is highly recommended for a concise yet comprehensive summary of relevant work on submodu-
lar maximization. Matchings form a 2-exchange system. Therefore this last result improved—after
a span of over 30 years—the best known approximation ratio for f -MSM from 3 [9] to 2 + ε. We
invite the reader to compare again with our Theorem 2.

1.4 Motivation and Significance of Our Results

In applications such as big data analytics, it is sometimes preferable to compute a good solution
quickly, even if a theoretically stronger guarantee can be achieved by a slower algorithm. Our
algorithms in this work should be seen in this light: they are significant because they are faster
algorithms with slightly worse approximation ratios than best known offline approximation algo-
rithms. Moreover, they are able to handle input presented in streaming fashion, a clear advantage
when handling big data.

Notably, none of the algorithmic strategies discussed in Section 1.3 are suitable for use with a
graph stream. Let us focus just on our problem, f -MSM. For an m-edge graph, a typical step of
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the greedy strategy requires an examination of Ω(m) edges and Ω(m) calls to the f -oracle. The
local search algorithms need to find a “good” local move in each step and in general it is not clear
how a single pass over a graph stream can guarantee more than one such good move. So a local
search algorithm that makes τ moves potentially translates into a τ-pass streaming algorithm, and
the best upper bound for τ in the aforementioned (2 + ε)-approximation algorithm appears to be
O(ε−1n4). In contrast, our algorithms make O(1) calls to the f -oracle per input item per pass, use
a constant number of passes, and use an essentially optimal amount of storage.

Very recently, and concurrent with our work, Badanidiyuru and Vondrák [2] gave a (p+ 1+ ε)-
approximation algorithm for submodular maximization over a p-system that can be thought of as
using O(ε−2 log2(m/ε)) passes, where m = |E|. Our result in Theorem 3 uses fewer passes (for
constant ε), but handles a smaller class of constraints than p-systems.

As noted at the start, the generalization from MWM to MSM has some practical motivation,
such as for the WAP problem from computational linguistics [17]. In addition, we feel that the
MSM problem is a pleasing marriage of submodular maximization, data streaming, and matching
theory; and more generally, MSIS brings together submodularity, streaming, and matroids.

2 Preliminaries

We start by making our model of computation precise. The input is an n-vertex graph stream,
defined as a sequence σ = 〈e1, e2, . . . , em〉 of distinct edges, where each ei = (ui, vi) ∈ [n]× [n] and
ui < vi. We put V = [n], E = {e1, . . . , em}, and G = (V, E). The submodular function f : 2E → R+,
which is part of the problem specification, is given by an entity external to the stream, called the
value oracle for f , or the f -oracle. A data stream algorithm, after reading each edge from the input
stream, is allowed to make an arbitrary number of calls to the f -oracle. (In fact the algorithms we
design here make only O(1) such calls on average.) A call consists of the algorithm sending the
oracle a subset S ⊆ E, whereupon the oracle returns the value f (S) in constant time. The space
required to describe S counts towards the algorithm’s space usage.

Notice that f is only defined on subsets of E, and the most important restriction on the algo-
rithm is that at any time it can only remember a tiny portion of E. To prevent the algorithm from
“cheating” and learning about E indirectly from oracle calls, we say that the algorithm fails or
aborts if it ever tries to obtain f (S) with S 6⊆ E.

2.1 Hardness of MSM

We cannot hope to solve MSM exactly. As noted in Section 1.2, even the very special case MCM
cannot be approximated any better than e/(e− 1) in the semi-streaming setting [13]. But the data
stream model does not adequately capture the vast gulf between MWM and MSM: indeed, we
have the following lower bound that applies to the offline problem.

Theorem 5. For every C < e/(e− 1), there does not exist a polynomial-time C-approximation algorithm
for f -MSM relative to a value oracle for f .

Proof. Given a submodular f , we can view f -MSM as a generalization of the constrained maxi-
mization problem max|S|6k f (S): consider f -MSM on a disjoint union of k star graphs. Nemhauser
and Wolsey [20, Theorem 4.2] show that for the latter problem, given the upper bound on C, a C-
approximation algorithm must make a superpolynomial number of calls to the f -oracle.
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2.2 A Framework for Streaming MSM and MSIS Algorithms

We proceed to describe a generic streaming algorithm for f -MSM, which defines the framework
alluded to in Section 1.1. In fact, as noted towards the end of Section 1.1, our framework applies to
the much more general problem of f -MSIS (Maximum Submodular Independent Set), an instance
of which is given by a submodular f : 2E → R+ and a collection I ⊆ 2E of independent sets such
that ∅ ∈ I . We put m := |E| and n := maxI∈I |I|. We assume that independence (i.e., membership
in I) can be tested easily; we require no other structural property of I . For the special case of MSM,
I is the collection of matchings in a graph with edge set E.

The generic algorithm for f -MSIS starts with a given independent set P (possibly empty) and
then proceeds to make one pass over the input stream σ, attempting to end up with an improved
independent set I by the end of the pass. The algorithm processes the elements in E in a pretend
stream order that consists of an arbitrary permutation of the elements in P, followed by the elements
in E \ P in the same order as σ. Throughout, the algorithm maintains a “current solution” I ∈ I ,
a set S ⊆ E of “shadow elements” (this term is borrowed from Zelke [21]), and a weight w(e) for
each element e it has processed. The intuition behind shadow elements is to have more scope to
improve the current solution. The algorithm bases its decisions on a real-valued parameter γ > 0.
For a set A ⊆ E, we denote w(A) := ∑e∈A w(e). An augmenting pair for a set I ∈ I is a pair of sets
(A, J) such that J ⊆ I and (I \ J) ∪ A ∈ I . For e ∈ E, define A + e to be A ∪ {e}.

Algorithm 1 Generic One-Pass Independent Set Improvement Algorithm for f -MSIS

1: function IMPROVE-SOLUTION(σ, P, γ)
2: I ← ∅, S← ∅
3: foreach e ∈ P in some arbitrary order do w(e)← f (I + e)− f (I), I ← I + e
4: foreach e ∈ σ \ P in the order given by σ do PROCESS-ELEMENT(e, I, S)
5: return I

6: procedure PROCESS-ELEMENT(e, I, S) . Note: Assigns weight w(e) and modifies I and S.
7: w(e)← f (I ∪ S + e)− f (I ∪ S)
8: (A, J)← a well-chosen augmenting pair for I with A ⊆ I ∪ S + e, w(A) > (1 + γ)w(J)
9: S← a well-chosen subset of (S \ A) ∪ J

10: I ← (I \ J) ∪ A . Augment independent set I using A.

Notice that PROCESS-ELEMENT maintains the invariant that w(e) is defined for all e ∈ I ∪ S.
Therefore, Line 8 never tries to access an element weight before defining it. Furthermore, the
algorithm need only remember the weights of elements in I ∪ S. Therefore, the space usage of
the algorithm is bounded by O((|P| + |I| + |S|) log m) = O((n + |S|) log m), since P and I are
independent sets.

To instantiate this generic algorithm, one must specify the precise logic used in Lines 8 and 9. If
the algorithm is for MWIS rather than MSIS, then w(e) values are already given and assignments
to those values (see Lines 3 and 7) should be ignored.

Definition 1. We say that an MWIS algorithm is compliant if each pass instantiates Algorithm 1 in
the above sense, i.e., it starts with some solution P ∈ I computed in the previous pass and calls
IMPROVE-SOLUTION(σ, P, γ). The parameter γ need not be the same for all passes.

Definition 2. For a submodular f , we define an f -extension of a compliant MWIS algorithm A to
be Algorithm 1, with the logic used in Lines 8 to 9 being borrowed from A, and with values of the
parameter γ possibly differing from those used by A.
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Lemma 6 (Modular to submodular). Let A be a one-pass compliant MWIS algorithm that computes
a Cγ-approximate MWIS when run with parameter γ. Then, for every non-negative monotone proper
submodular f , its f -extension with parameter γ computes a (Cγ + 1 + 1/γ)-approximate f -MSIS.

The rest of the paper is organized as follows. Section 3 develops some important properties
of compliant algorithms and proves Lemma 6. Applying this lemma, the f -extension of Zelke’s
one-pass MWM algorithm [21] is easily shown to yield a 7.75-approximation for f -MSM, proving
Theorem 1. Section 4 revisits McGregor’s multi-pass algorithm and analysis [18], extends his
analysis, and obtains a (3 + ε)-approximation for f -MSM, proving Theorem 2. Sections 5 and 6
discuss our results for MWM and MSM in hypergraphs, and MWIS and MSIS for the intersection
of p matroids.

3 A One-Pass Solution via Compliant Algorithms

Consider the f -extension with parameter γ of a particular one-pass compliant algorithm. Let I
denote its output, i.e., the result of invoking IMPROVE-SOLU- TION(σ, ∅, γ) and I∗ be an f -MSIS.
Let Ie, Se denote the contents of the variables I, S in Algorithm 1 just before element e is processed.
Let K = (

⋃
e∈E Ie) \ I denote the set of elements that were added to the current solution at some

point but were killed and did not make it to the final output. Then
⋃

e∈E Se ⊆ I ∪ K, because an
element can become a shadow element only when it was removed from the current solution at
some point (see Line 9 of Algorithm 1). Hence⋃

e∈E(Ie ∪ Se) ⊆ I ∪ K . (3)

Lemma 7. For an f -extension of a compliant algorithm, we have w(K) 6 w(I)/γ.

Proof. Let Ae, Je be the sets A, J chosen at Line 8 when processing e. Each augmentation by
Ae (Line 10) increases the weight of the current solution by w(Ae) − w(Je) > γw(Je). Hence,
w(I)/γ > ∑e∈E w(Je).

The set
⋃

e∈E Je consists of elements that were removed from the current solution at some point.
Thus, it includes K (the inclusion may be proper: K does not contain elements that were removed
from the current solution, reinserted, and eventually ended up in I). Therefore,

w(K) 6 w
(⋃

e∈E Je
)
6 ∑e∈E w(Je) 6 w(I)/γ .

Lemma 8. For an f -extension of a compliant algorithm, we have w(I) 6 f (I).

Proof. Let eI
1, eI

2, . . . , eI
s be an enumeration of I in order of processing, where s = |I|. The logic of

Algorithm 1 ensures that an element once removed from the shadow set can never return to the
current solution (though elements can move between the two arbitrarily). Thus, I ∩ (IeI

i
∪ SeI

i
) =

{eI
1, eI

2, . . . , eI
i−1}. Since I ∩ (IeI

i
∪ SeI

i
) ⊆ (IeI

i
∪ SeI

i
) and f is submodular, Equation (1) gives

f ({eI
1, eI

2, . . . , eI
i })− f ({eI

1, eI
2, . . . , eI

i−1}) > f (IeI
i
∪ SeI

i
+ eI

i )− f (IeI
i
∪ SeI

i
)

= w(eI
i ) .

Summing this over i ∈ [s] gives f (I) = f (I)− f (∅) > ∑s
i=1 w(eI

i ) = w(I).

Lemma 9. For an f -extension of a compliant algorithm, we have f (I∗) 6 (1/γ + 1) f (I) + w(I∗).
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Proof. Let eB
1 , . . . , eB

b be an enumeration of B := I ∪ K in order of processing. The set Bi :=
{eB

1 , . . . , eB
i−1} consists of elements inserted into the current solution before eB

i was processed.
Meanwhile IeB

i
∪ SeB

i
is the subset of these elements that were not removed from S before eB

i was
processed. Thus, Bi ⊇ IeB

i
∪ SeB

i
for all i ∈ [b]. By submodularity of f and Equation (1),

f ({eB
1 , eB

2 , . . . , eB
i })− f ({eB

1 , eB
2 , . . . , eB

i−1}) 6 f (IeB
i
∪ SeB

i
+ eB

i )− f (IeB
i
∪ SeB

i
)

= w(eB
i ) .

Summing this over i ∈ [b] gives f (B) = f (B)− f (∅) 6 w(B). Thus, we have

f (I ∪ K) 6 w(I ∪ K) = w(I) + w(K) 6 f (I) + w(I)/γ = (1/γ + 1) f (I) , (4)

where the last two inequalities use Lemma 8 and Lemma 7 respectively.
Now we bound f (I∗). Let I∗ \ (I ∪ K) = {eI∗

1 , eI∗
2 , . . . , eI∗

t }; this enumeration is in arbitrary
order. Put D0 = I ∪ K, Di = I ∪ K ∪ {eI∗

1 , . . . , eI∗
i } for i ∈ [t]. By Equation (3), Di−1 ⊇ I ∪ K ⊇

IeI∗
i
∪ SeI∗

i
. Appealing to submodularity and Equation (1) again,

f (Di)− f (Di−1) 6 f (IeI∗
i
∪ SeI∗

i
+ eI∗

i )− f (IeI∗
i
∪ SeI∗

i
) = w(eI∗

i ) .

Summing this over i ∈ [t] gives f (Dt) − f (D0) 6 w(I∗ \ (I ∪ K)) 6 w(I∗). In other words,
f (I ∪ K ∪ I∗)− f (I ∪ K) 6 w(I∗). By monotonicity of f and Equation (4), we have

f (I∗) 6 f (I ∪ K ∪ I∗) 6 f (I ∪ K) + w(I∗) 6 (1/γ + 1) f (I) + w(I∗) . (5)

Proof of Lemma 6. Since the compliant algorithm A outputs a Cγ-approximate MWIS, it satisfies
w(I∗) 6 Cγw(I) for any weight assignment; in particular, the weights assigned by its f -extension.
Using Lemma 9 and Lemma 8, we conclude that f (I∗) 6 (Cγ + 1 + 1/γ) f (I).

Proof of Theorem 1. Recall that an “independent set” is just a matching in the setting of MWM
and MSM. Zelke’s algorithm chooses the augmenting pair (A, J) as follows: A is chosen from an
O(1)-sized “neighborhood” of the edge e being processed, and J is set to be M � A: the set of edges
in M that share a vertex with some edge in A. It chooses S so that each shadow edge intersects
some edge in the current matching, thus enforcing |S| = O(n) and a space bound of O(n log n)
bits. For the reader’s convenience we spell out the logic of the algorithm in full in Appendix A.

Zelke’s algorithm is compliant with Cγ = 2(1 + γ) + (1/γ + 1)− γ/(1 + γ)2 [21, Theorem 3].
By Lemma 6, its f -extension yields an approximation ratio of 2(1 + γ)2/γ − γ/(1 + γ)2, which
attains a minimum value of 7.75 at γ = 1. This proves the theorem.

3.1 Approximation Ratio in Terms of Curvature

We now show how to obtain the stronger guarantee for f -MSM given in Theorem 4. The tool we
need is the following strengthening of Lemma 6.

Lemma 10. LetA be a one-pass compliant MWIS algorithm that computes a Cγ-approximate MWIS when
run with parameter γ. Then, for every non-negative monotone proper submodular f , its f -extension with
parameter γ computes a min{Cγ + 1 + 1/γ, Cγ/(1− curv( f ))}-approximate f -MSIS.
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Proof. We can bound f (I∗) as follows.

f (I∗) 6 ∑
e∈I∗

f ({e}) by submodularity of f

6
1

1− curv( f ) ∑
e∈I∗

( f (Ie ∪ Se + e)− f (Ie ∪ Se))

by definition of curvature

=
w(I∗)

1− curv( f )

6
w(I)Cγ

1− curv( f )
by Cγ-approximation guarantee of A

6
f (I)Cγ

1− curv( f )
by Lemma 8.

Thus the f -extension ofA achieves an approximation ratio of at most Cγ/(1− curv( f )). Combin-
ing this with Lemma 6 completes the proof.

Proof of Theorem 4. We appeal to Lemma 10. Recall the expression for Cγ for Zelke’s algorithm,
given in the proof of Theorem 1 above. For f -MSM, the claimed approximation ratio follows by
picking the better of the two solutions obtained by running two f -extensions of Zelke’s algorithm
in parallel: one with γ = 0.717, which minimizes Cγ, and another with γ = 1, which minimizes
Cγ + 1 + 1/γ.

A similar idea applied to the appropriate compliant algorithms (outlined in Sections 5 and 6)
gives the claimed results for f -MSIS on p-hypergraphs and p-intersection systems.

Note that, in all of these cases, we can avoid having to run two parallel f -extensions if we
knew curv( f ) in advance, for we could then simply figure out which value of γ gives the better
approximation ratio. For instance, in the case of f -MSM, we would pick γ = 1 if 5.585/(1 −
curv( f )) > 7.75 and γ = 0.717 otherwise.

4 A Multi-Pass MSM Algorithm

In this section we prove Theorem 2. For this we first review McGregor’s multi-pass MWM algo-
rithm [18], which is compliant. Our algorithm is simply its f -extension, as explained in Section 2.2.

To describe McGregor’s algorithm with respect to our framework (Algorithm 1), we need only
explain the two choices made inside PROCESS-EDGE. These are especially simple. The algorithm
never creates any shadow edges, so we always set S = ∅ in Line 9. In Line 8, we choose the
augmenting pair (A, J) so that A = {e} if possible, and A = ∅ otherwise, and J = M � A. Recall
that M � A denotes the set of edges in matching M that share a vertex with some edge in set A.
This describes a single pass. The overall algorithm starts with an empty matching and repeatedly
invokes IMPROVE-MATCHING with γ = 1/

√
2 for the first pass and γ = 2ε/3 for the remaining

passes. It stops when the multiplicative improvement made in a pass drops below a certain well-
chosen rational function of γ. McGregor analyzes this algorithm to show that it makes at most
O(ε−3) passes and terminates with a (2 + 2ε)-approximate MWM.

In our f -extension, we make the following tweaks to the parameter γ: we use γ = 1 for the
first pass and γ = ε/3 for the remaining passes. For the reader’s convenience, we lay out the logic
of the resulting f -MSM algorithm explicitly in Algorithm 2. The function IMPROVE-MATCHING is
exactly as in Algorithm 1 except that it calls PROCESS-EDGE(e, M), since S is never used.
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Algorithm 2 Multi-Pass Algorithm for f -MSM

1: function MULTI-PASS-MSM(σ)
2: M← IMPROVE-MATCHING(σ, ∅, 1) . See Algorithm 1. Obtains 8-approximate f -MSM.
3: γ← ε/3, κ ← γ3/(2 + 3γ + γ2 − γ3)
4: repeat
5: wprev ← f (M)
6: M← IMPROVE-MATCHING(σ, M, γ)
7: until w(M)/wprev 6 1 + κ
8: return M

9: procedure PROCESS-EDGE(e, M) . Compare with Algorithm 1.
10: w(e)← f (M + e)− f (M)
11: if w(e) > (1 + γ)w(M � {e}) then
12: M← M \ (M � {e}) + e

Let Mi denote the matching M computed by Algorithm 2 at the end of its ith pass over σ.
When an edge e is added to M in Line 12, we say that e is born and that it kills the (at most two)
edges in M � {e}. Notice that during pass i > 1, thanks to the pretend stream order in which edges
are processed, initially all edges in Mi−1 are born without killing anybody2 (cf. the discussion at
the start of Section 2.2); for the rest of the pass these edges are never considered for addition to M.

Let Ki denote the set of edges killed during pass i (some of them may be born during a subse-
quent pass). Then Mi ∪ Ki is exactly the set of edges born in pass i. These edges can be made the
nodes of a collection of disjoint rooted killing trees3 where the parent of a killed edge e is the edge
e′ that killed it. The set of roots of these killing trees is precisely Mi. Let Ti(e) denote the set of
strict descendants of e ∈ Mi in its killing tree. Then Ki =

⋃
e∈Mi Ti(e).

Let Bi = Mi ∩Mi−1 denote the set of edges that pass i retains in the matching from the previous
pass. By the preceding discussion, it follows that Ti(e) = ∅ for all e ∈ Bi.

4.1 Analysis

We now analyze Algorithm 2. As before, let M∗ denote an optimal solution to the f -MSM instance.
We first prove an approximation guarantee for the first pass. It is not the best possible one-pass
result (see Theorem 1), but an O(1)-approximation suffices, so we can use the simpler algorithm.

Lemma 11. The matching M1 is an 8-approximate f -MSM, i.e., f (M1) > f (M∗)/8.

Proof. The first pass of the algorithm is a one-pass compliant algorithm. As shown by McGre-
gor [18, Lemma 3], its approximation factor is Cγ = 1/γ + 3 + 2γ. Applying Lemma 6, we have
f (M∗)/ f (M1) 6 2/γ + 4 + 2γ. This bound is minimized at γ = 1 (explaining the choice made in
Line 2) at which point it evaluates to 8.

Define τ to be the number of passes made by Algorithm 2. Let wi(e) denote the weight as-
signed to edge e in Line 10 during the ith pass. For the rest of this section, γ denotes the pa-
rameter value used by passes 2 through τ, and κ denotes the corresponding value assigned at
Line 3. To analyze the result of those passes, we first borrow three results—stated in the next three
lemmas—from McGregor’s analysis [18, Lemma 3 and Theorem 3], which in turn borrows from
the Feigenbaum et al. analysis [7, Theorem 2].

2This subtlety appears to have been missed in McGregor’s analysis [18] and it creates a gap in his argument. Using
a pretend stream order as we do in this work fixes that gap.

3Feigenbaum et al. [7] and McGregor [18] used the evocative term “trail of the dead” for this concept.
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Lemma 12. For all i ∈ [2, τ] and all e ∈ Mi, we have wi(Ti(e)) 6 wi(e)/γ.

Proof. Directly analogous to Lemma 7.

Lemma 13. We have wτ(Bτ)/wτ(Mτ) > (γ− κ)/(γ + γκ).

Proof sketch. The logic in Lines 11 to 12 ensures that, for all i ∈ [2, τ], we have wi(Mi \ Bi) >
(1 + γ)wi(Mi−1 \ Bi). In particular, this inequality holds at i = τ.

During the initial phase of pass i > 2, the set M is monotonically built up from ∅ to Mi−1 ac-
cording to a pretend stream order and weights are assigned to edges in Mi−1 according to Line 10.
Because of this monotonicity, summing the weights of these edges causes the f terms to telescope,
giving wi(Mi−1) = f (Mi−1). So the stopping criterion in Line 7 ensures that wτ(Mτ)/wτ(Mτ−1) 6
1 + κ. Combining this with the inequality in the last paragraph (at i = τ) yields the lemma after
some straightforward algebra.

Lemma 14 (Charging Scheme Lemma). For all i ∈ [2, τ], we have wi(M∗) 6 (1+γ)∑e∈Mi(wi(Ti(e))+
2wi(e)).

Proof. The proof consists of designing a certain charging scheme wherein the weights of edges in M∗

are charged to edges in Mi ∪Ki using a careful scheme of assigning and subsequently redistributing
charges as the input graph is streamed in. The charging scheme itself is essentially carried over
from Feigenbaum et al. [7]. Details follow.

For this proof it suffices that M∗ is a matching. Its optimality is not used. We shall charge
the weight wi(M∗) to the edges in Mi ∪ Ki in such a way that each edge e ∈ Ki gets at most
(1 + γ)wi(e) charge and each edge e ∈ Mi gets at most 2(1 + γ)wi(e) charge. The lemma will then
follow because Ki is a union of disjoint sets Ti(e) for e ∈ Mi.

For an edge {u, v} ∈ E, write wi(u, v) instead of wi({u, v}). Consider an edge {o, p} ∈ M∗. If
{o, p} was born and killed later by an edge {p, q}, then we charge wi(o, p) to {p, q} and associate
this charge with vertex p. If {o, p} was born and not killed, then it charges itself wi(o, p). If {o, p}
was not born because of one or two edges {x, o}, {p, y} ∈ Mi ∪ Ki then we charge

• wi(o, p)wi(x, o)/(wi(x, o) + wi(p, y)) to {x, o}, associating this charge with vertex o; and

• wi(o, p)wi(p, y)/(wi(x, o) + wi(p, y)) to {p, y}, associating this charge with vertex p.

In all three cases the following holds.
Observation 1 At most (1+ γ)wi(x, y) charge is associated with each of x and y for an edge {x, y} ∈

Mi ∪ Ki.
The redistribution is done as follows. Imagine this happening in the order the edges were pro-

cessed: whenever an edge {x, y} is killed by an edge {y, z}, then we transfer the charge associated
with vertex y from edge {x, y} to {y, z}. Since {y, z} killed {x, y}, we have wi(y, z) > wi(x, y),
hence using Observation 1, {y, z} is charged at most (1 + γ)wi(x, y) and this charge is associated
with vertex y after redistribution, which is at most (1 + γ)wi(y, z).

A charge associated with a vertex v is from an edge, say {u, v} ∈ M∗. Hence, after this redis-
tribution, each edge in Ki has charge associated with at most one vertex, and each edge in Mi has
charge associated with at most two vertices. This bounds the final charge on each edge as claimed
earlier, which completes the proof.

We are now ready to fully analyze the approximation guarantee and complexity of Algo-
rithm 2, thereby proving Theorem 2.
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Proof of Theorem 2. As noted earlier, Ti(e) = ∅ for all e ∈ Bi and Ki =
⋃

e∈Mi Ti(e). Therefore,
Kτ =

⋃
e∈Mτ\Bτ Tτ(e), which gives

wτ(Kτ) = ∑
e∈Mτ\Bτ

wτ(Tτ(e)) 6 ∑
e∈Mτ\Bτ

wτ(e)
γ

=
wτ(Mτ \ Bτ)

γ

=
wτ(Mτ)− wτ(Bτ)

γ
, (6)

where the inequality follows from Lemma 12. Using Equation (6) and relating the first and third
terms in Equation (4), we get

f (Mτ ∪ Kτ) 6 wτ(Mτ) +
wτ(Mτ)− wτ(Bτ)

γ
=

(
1 +

1
γ

)
wτ(Mτ)− 1

γ
wτ(Bτ) . (7)

Using Lemma 14, we now get

wτ(M∗) 6 (1 + γ) ∑
e∈Mτ

(wτ(Tτ(e)) + 2wτ(e))

= (1 + γ)

[(
∑

e∈Mτ\Bτ

wτ(Tτ(e))

)
+ 2wτ(Mτ)

]
since ∀e ∈ Bτ, we have Tτ(e) = ∅

6 (1 + γ)

[(
∑

e∈Mτ\Bτ

wτ(e)
γ

)
+ 2wτ(Mτ)

]
using Lemma 12

=
1 + γ

γ
(wτ(Mτ)− wτ(Bτ)) + (2 + 2γ)wτ(Mτ)

=

(
1
γ
+ 3 + 2γ

)
wτ(Mτ)−

(
1 +

1
γ

)
wτ(Bτ) .

By using Equation (5), we have f (M∗) 6 f (Mτ ∪ Kτ) + wτ(M∗). So using Equation (7) we get

f (M∗) 6
(

1 +
1
γ

)
wτ(Mτ)− 1

γ
wτ(Bτ)

+

(
1
γ
+ 3 + 2γ

)
wτ(Mτ)−

(
1 +

1
γ

)
wτ(Bτ)

= wτ(Mτ)

[
1 +

1
γ
+

1
γ
+ 3 + 2γ

]
− wτ(Bτ)

[
1 +

2
γ

]
6
[

4 +
2
γ
+ 2γ−

(
1 +

2
γ

)
γ− κ

γ + γκ

]
wτ(Mτ) using Lemma 13

= (3 + 3γ)wτ(Mτ) substituting κ =
γ3

2 + 3γ + γ2 − γ3 ,

6 (3 + ε) f (Mτ) using Lemma 8

and this completes the proof that Algorithm 2 computes a (3 + ε)-approximate f -MSM.
Finally we bound the number of passes made by the algorithm. This requires some care. It

is not as immediate as the corresponding analysis in McGregor’s MWM algorithm, because the
weight function wi changes from pass to pass. We proceed as follows.

13



For all i ∈ [2, τ − 1], we have

f (Mi) > wi(Mi) > (1 + κ) f (Mi−1) ,

where the first inequality uses Lemma 8, and the second uses the stopping criterion in Line 7.
Since M∗ is optimal, f (M∗) > f (Mi), and repeated application of the above inequality gives us

f (M∗) > f (Mi) > (1 + κ)i−1 f (M1) > (1 + κ)i−1 f (M∗)/8 ,

where the final step uses Lemma 11. Applying this at i = τ− 1 gives τ 6 2+ log1+κ 8 = O(κ−1) =

O(γ−3) = O(ε−3). Thus, the algorithm finishes in O(ε−3) passes, as claimed.

5 Generalization to Matchings in Hypergraphs

A hypergraph is a pair H = (V, E), where V is a finite set and E is a collection of subsets of V. It
is a p-hypergraph if |e| 6 p for all e ∈ E. A matching in H is a pairwise disjoint subcollection of
E. McGregor’s one-pass and multi-pass algorithms for MWM and its f -extensions we gave above
can be generalized to compute approximate MWMs and f -MSMs in p-hypergraphs. For MWM in
p-hypergraphs, we get approximation ratios of 2(p +

√
p(p− 1))− 1 in one pass and p + ε with

O(ε−3 log p) passes. For MSM, the respective approximation ratios we obtain are 4p and p + 1+ ε.
We define n := |V| and m := |E| 6 np, so the space usage is O(n log n).

To obtain these results, we generalize the charging scheme in the proof of Lemma 14. We use
the same terminology and notation as in Section 4, except that we omit the subscript i that denotes
the pass number.

Lemma 15 (Charging Scheme Lemma for Hypergraphs). We have

w(M∗) 6 ∑
e∈M

(1 + γ) ((p− 1)w(T(e)) + pw(e)) ,

where T(e) is the set of non-roots in the killing tree of e.

Proof. Note that if e ∈ E, then e ⊆ V. Here, we charge the weight w(M∗) to the edges in M ∪ K
such that each edge e ∈ K gets at most (p − 1)(1 + γ)w(e) charge and each edge e ∈ M gets at
most p(1 + γ)w(e) charge. Consider an edge e∗ ∈ M∗. If e∗ was born and killed later, then we
charge w(e∗) to its murderer e† and associate this charge with vertices in e∗ ∩ e†. If e∗ was born
and not killed, then it charges itself. If e∗ is not born because of at most p edges, say e1, . . . , ep,
then we charge w(ei)w(e∗)/ ∑i w(ei) to edge ei and associate these charges with vertices e∗ ∩ ei
correspondingly. In all the cases, an edge e is charged at most (1 + γ)w(e) by a given edge in M∗,
and thus bears at most p(1 + γ) charge.

For redistribution, when an edge e′ is killed by ek, we transfer all the charge associated with
vertices e′ ∩ ek to ek. For example, if an edge e = {a, b, c, d} did not let edges {a, b} and {c} be born,
then e bears w({a, b}) charge associated with a and b, and w({c}) charge associated with c. If in the
future {a} kills e, then we transfer w({a, b}) charge to {a}, or if {a, c, x, y} kills e, then we transfer
w({a, b}) + w({c}) charge from e to {a, c, x, y}. Thus, an edge e not in the final matching bears at
most (p− 1)(1 + γ)w(e) charge, and an edge e in the final matching bears at most p(1 + γ)w(e)
charge. This completes the proof.

Now, Lemma 15 enables us to generalize McGregor’s algorithm for MWM, and its f -extension,
i.e., Algorithm 2, and we get the approximation ratios p + ε and p + 1 + ε for modular and sub-
modular case, respectively, by setting γ = ε/(p + 1) for both linear and submodular case, and
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κ = γ3/((p− 1)(1 + γ)2 − γ3) for linear case and κ = γ3/(p + (2p− 1)γ + (p− 1)γ2 − γ3) for
submodular case.

To get better approximation ratios in terms of curv( f ), as stated in Theorem 4, we again ap-
peal to Lemma 10, applying it to the compliant one-pass hypergraph MWM algorithm. We can
then use the same idea as in Section 3, taking the better of two values of γ, to obtain a one-pass
approximation ratio of min{4p, (2(p +

√
p(p− 1))− 1)/(1− curv( f ))}.

6 Maximization Over (Multiple) Matroids

A matroid is a pair M = (E, I) such that E is a finite set, I is a collection of subsets of E, and the
following conditions hold: (1) ∅ ∈ I ; (2) if I ∈ I and J ⊆ I, then J ∈ I (in other words, I is closed
under the subset operation); (3) if I, J ∈ I and |J| < |I|, then there exists an element e ∈ I − J
such that J + e ∈ I . A set I ∈ I is also called an independent set. A maximally independent set
is a base of the matroid. A set that is not independent is dependent. A minimally dependent set is
a circuit. Since the number of independent sets in a matroid can be exponential, we assume that
access to I is via an oracle. When a set I is passed to this oracle, it returns an empty set if I is
independent, otherwise it returns a circuit in I.

Given p matroids M1 = (E, I1), . . . , Mp = (E, Ip) over the same ground set E, and a nonnega-
tive monotone proper submodular function f : 2E → R+, we consider the corresponding f -MSIS
problem:

Given a stream of elements comprising E, determine argmax
I∈I1∩···∩Ip

f (I) .

We put m := |E| and n := maxI∈I1∩···∩Ip |I|. We shall design algorithms that use O(n(log m)O(1))
memory.

For the corresponding MWIS problem, i.e., for the case of f being a modular function, Badani-
diyuru Varadaraja [3] gave a one-pass (2(p +

√
p(p− 1)) − 1)-approximation algorithm (and a

matching lower bound when the algorithm is only allowed to store a feasible solution). His algo-
rithm, reproduced in Algorithm 3, is compliant. Hence, by Lemma 6, we get an approximation
ratio of 4p when f is submodular (by setting γ = 1). Now, we seek to improve this ratio using
multiple passes.

Algorithm 3 One-Pass Algorithm for Maximization Over Multiple Matroids

1: function FIND-MAX-WEIGHT-IND-SET
2: I ← ∅
3: foreach e ∈ E in the order given by σ do
4: (e1, . . . , ep)← smallest weight elements in C1(I + e), . . . , Cp(I + e)
5: if w(e) > (1 + γ)w({e1, . . . , ep}) then
6: I ← (I \ {e1, . . . , ep}) ∪ {e}
7: return I

Badanidiyuru Varadaraja proved the aforementioned approximation guarantee along similar
lines to Lemma 14, i.e., by using a charging scheme. It is not clear to us if we can extend his
charging scheme to argue that his algorithm can be used in Line 6 of Algorithm 2. Instead, we
give our own (simpler) charging scheme for the case of partition matroids.

We reuse some of the terminology used in Section 4. Further, let (E1, . . . , Er) be a partition of
E, and k1, . . . , kr be positive integers, and

I = {I ⊆ E : |I ∩ Ej| 6 kj for all j ∈ [r]} ,
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then (E, I) is a partition matroid. We say that a set J ⊆ E saturates Es if |J ∩ Es| = ks. We denote the
partition of matroid Mi by E1

i , . . ., and corresponding constraints by k1
i , . . .. For an independent

set I ∈ Ii and an element e ∈ E− I such that I + e /∈ Ii, let Ci(I + e) denote the unique circuit in
I + e.

Lemma 16. We have w(I∗) 6 ∑e∈I(1 + γ) ((p− 1)w(T(e)) + pw(e)), where I∗ is an optimal indepen-
dent set, I is the output of Algorithm 3, and T(e) is the set of non-roots in the killing tree of e.

Proof. When an element e is added to I in Line 6, we say that e is born and that it kills the (at most
p) elements e1, . . . , ep. Let Ie denote the maintained independent set just before e was processed.
Let K = (

⋃
e∈E Ie) \ I denote the set of elements that were added to the maintained independent

set at some point but did not make it to the final output. These elements can be made the nodes
of a collection of disjoint rooted killing trees where the parent of a killed element e is the edge e′

that killed it. The set of roots of these killing trees is precisely I. Let T(e) denote the set of strict
descendants of e ∈ I in its killing tree. Then K =

⋃
e∈I T(e).

We give a charging scheme that is based on the one mentioned in the proof of Lemma 14 but
is slightly different from that used in case of hypergraphs. We charge responsible elements with
respect to a matroid, i.e., if e ∈ I∗ charges e′ ∈ Ie because Ie + e formed a circuit in some Mi,
then we associate this charge to e′ with Mi. Now, if e ∈ I∗ is taken, then it charges itself and this
charge is associated with all p matroids. Suppose e ∈ I∗ was not taken because of the elements
ej1

1 , . . . , ejp
p (see Line 4), where j1, . . . , jp denote the set indices in partitions of M1, . . . , Mp. Then for

all e′ ∈ ((C1(Ie + e) − e) ∪ · · · ∪ (Cp(Ie + e) − e)), we have w(e) < (1 + γ)w(e′). Also, e ∈ Eji
i

for i ∈ [p] and some corresponding ji. Since Ie saturates Eji
i for all i ∈ [p], there exist elements

e′1 ∈ (C1(Ie + e)− e), . . . , e′p ∈ (Cp(Ie + e)− e), such that e′1, . . . , e′p were uncharged with respect to

M1, . . . , Mp, respectively, because for all i ∈ [p], we have |I∗ ∩ Eji
i | 6 kji

i . So, for i ∈ [p], we charge
w(e′i)w(e)/(∑p

j=1 w(e′j)) to e′i. In any case, an element e′ is charged at most (1 + γ)w(e′) and by at
most one optimal element with respect to a particular matroid, i.e., p(1 + γ)w(e′) in total.

The charge redistribution is as follows. Whenever elements ej1
1 , . . . , ejp

p are killed by ek, we

transfer the charge on ej1
1 , . . . , ejp

p associated with M1, . . . , Mp, respectively, to ek keeping the same
association, and the amount of charge transferred is at most (1 + γ)w(ek). Note that after this
transfer, if an ek carried a charge associated with some Mi, then it will not be charged again for that
matroid. Thus, after all the redistribution, an element e′ ∈ K carries at most (p− 1)(1 + γ)w(e′)
charge, and an element e′ ∈ I carries at most p(1 + γ)w(e′) charge. This completes the proof.

Note that our argument above guaranteeing the necessary properties of our charging scheme
used the structure of partition matroids: for each element, we thereby obtained an upper bound
on the number of elements that could charge it. For general matroids there seems to be no such
bound, so we would need a stronger argument to extend our results to that case.

Now, Lemma 16 enables us to extend Algorithm 3 to the multi-pass version based on McGre-
gor’s algorithm for MWM, and its f -extension, i.e., Algorithm 2, and we get the approximation
ratios p + ε and p + 1+ ε for modular and submodular case, respectively, by setting γ = ε/(p + 1)
for both linear and submodular case, and κ = γ3/((p − 1)(1 + γ)2 − γ3) for linear case and
κ = γ3/(p + (2p− 1)γ + (p− 1)γ2 − γ3) for submodular case.

The better, curvature-dependent approximation ratio of Theorem 4 can be obtained using the
same idea as for f -MSM, by appealing to Lemma 10 and applying it to Badanidiyuru Varadaraja’s
one-pass algorithm, which, as we have noted, is compliant.
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A Zelke’s Algorithm for MWM

As mentioned earlier, Zelke’s algorithm is compliant. Therefore, to describe its logic in full, it
suffices to explain what happens in Lines 8 to 9.

For each edge uv ∈ M, the algorithm stores at most two shadow edges associated with each
of u and v, denoted by shadow-edge(uv, u) and shadow-edge(uv, v). When an edge y1y2 arrives
in the stream, it considers the following set of at most seven edges in the vicinity of y1y2, viz.,
T = {y1y2, g1y1, a1g1, a1c1, g2y2, a2g2, a2c2}, where

18

http://doi.acm.org/10.1145/1536414.1536459
http://doi.acm.org/10.1145/1536414.1536459
http://dx.doi.org/10.1287/moor.1100.0463
http://dl.acm.org/citation.cfm?id=2002736.2002773
http://dl.acm.org/citation.cfm?id=2002736.2002773
http://dx.doi.org/10.1007/11538462_15
http://dx.doi.org/10.1007/BF01588971
http://www.jstor.org/stable/3689488


• g1y1, g2y2 are edges in M that intersect with y1y2,

• a1g1 = shadow-edge(g1y1, g1) and a2g2 = shadow-edge(g2y2, g2),

• a1c1 and a2c2 are the edges in M that intersect with a1g1 and a2g2, respectively.

For a set A ⊆ E and a matching M ⊆ E, let M � A denote the set of edges in M that share a
vertex with some edge in A. The algorithm picks an augmenting set A ⊆ T that is a matching and
maximizes the difference w(A)− (1 + γ)w(M � A). If this difference is positive, then A is chosen
in Line 8, i.e., the matching M is updated as follows:

M← (M \ (M � A)) ∪ A .

Then the set of shadow edges S is updated as

S←
(

S \
(

A ∪
⋃

uv∈M�A

{shadow-edge(uv, u), shadow-edge(uv, v)}
))
∪ (M � A) ;

note that since we are removing shadow edges of the edges in M � A, the number of shadow
edges remains at most n. The edges in M � A then become shadow edges associated with
the vertices that it shares with the edges in M. For example, if A = {a1g1}, then M � A =
{g1y1, a1c1}, and after updating M and S as mentioned above, shadow-edge(a1g1, g1) = g1y1, and
shadow-edge(a1g1, a1) = a1c1. This completes the description of Zelke’s algorithm.
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