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Abstract

Gap Hamming Distance is a well-studied problem in communication complexity, in which Alice
and Bob have to decide whether the Hamming distance between their respective n-bit inputs is less than
n/2−

√
n or greater than n/2+

√
n. We show that every k-round bounded-error communication protocol

for this problem sends a message of at least Ω(n/(k2 log k)) bits. This lower bound has an exponentially
better dependence on the number of rounds than the previous best bound, due to Brody and Chakrabarti.
Our communication lower bound implies strong space lower bounds on algorithms for a number of data
stream computations, such as approximating the number of distinct elements in a stream.

∗Department of Computer Science, Dartmouth College, Hanover, NH 03755. Supported in part by NSF Grant CCF-0448277.
Part of this work was done while the author was visiting CWI and Tel Aviv University.
†Department of Computer Science, Dartmouth College, Hanover, NH 03755. Supported in part by NSF Grants CCF-0448277

and IIS-0916565 and a McLane Family Fellowship.
‡Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. Supported by the Israel Science Founda-

tion, by the European Commission under the Integrated Project QAP funded by the IST directorate as Contract Number 015848,
by the Wolfson Family Charitable Trust, and by a European Research Council (ERC) Starting Grant.
§UC Berkeley, vidick@eecs.berkeley.edu. Supported by ARO Grant W911NF-09-1-0440 and NSF Grant CCF-0905626. Part

of this work was done while the author was visiting CWI and Tel Aviv University.
¶CWI Amsterdam, rdewolf@cwi.nl. Supported by a Vidi grant from Netherlands Organization for Scientific Research (NWO).



1 Introduction

1.1 The communication complexity of the Gap Hamming Distance problem

Communication complexity studies the communication requirements of distributed computing. In its sim-
plest and best-studied setting, two players, Alice and Bob, receive inputs x and y, respectively, and are
required to compute some function f(x, y). Clearly, for most functions f , the two players need to com-
municate to solve this problem. The basic question of communication complexity is the minimal amount
of communication needed. By abstracting away from the resources of local computation time and space,
communication complexity gives us a bare-bones but elegant model of distributed computing. It is useful
and interesting for its own sake, but also one of our main sources of lower bounds in many other models of
computation, such as data structures, circuit size and depth, Turing machines, VLSI, and algorithms for data
streams. The basic results are excellently covered in the book of Kushilevitz and Nisan [KN97], but many
more fundamental results have appeared since its publication in 1997.

One of the few basic problems whose randomized communication complexity is not yet well-understood,
is the Gap Hamming Distance (GHD) problem, defined as follows.

GHD: Alice receives input x ∈ {0, 1}n and Bob receives input y ∈ {0, 1}n, with the promise
that |∆(x, y)−n/2| ≥

√
n, where ∆ denotes the Hamming distance. Decide whether ∆(x, y) <

n/2 or ∆(x, y) > n/2.

Mind the gap between n/2−
√
n and n/2 +

√
n, which is what makes this problem interesting and useful.

We will be concerned with the communication complexity of randomized protocols that solve GHD. A gap
size of Θ(

√
n) is the natural choice – it is such that a Θ(1) fraction of the inputs lie inside the promise

area, and as we’ll see below, it is precisely this choice of gap size that has strong implications for streaming
algorithms lower bounds. Moreover, understanding the complexity of the

√
n-gap version can be shown to

imply a complete understanding of the GHD problem for all gaps. The communication complexity of the
gapless version, where there is no promise on the inputs, can easily be seen to be linear (for instance by
a reduction from disjointness). The gap makes the problem easier, and the question is how it affects the
communication complexity: does it remain linear?

Protocols for GHD and more general problems can be obtained by sampling. Suppose for instance that
it is promised that either ∆(x, y) ≤ (1/2 − γ)n or ∆(x, y) ≥ (1/2 + γ)n. Choosing an index i ∈ [n]
at random, the predicate [xi 6= yi] is a coin flip with heads probability ≤ 1/2 − γ in the first case and
≥ 1/2 + γ in the second. It is known that flipping such a coin Θ(1/γ2) times suffices to distinguish these
two cases with probability at least 2/3. Hence if we use shared randomness to choose Θ(1/γ2) indices,
we obtain a one-round bounded-error protocol with communication Θ(1/γ2) bits. In particular, for GHD
(where γ = 1/

√
n), the communication is Θ(n) bits, which is no better than the trivial upper bound of n

when Alice just sends x to Bob.
What about lower bounds? Indyk and Woodruff [IW03] managed to prove a linear lower bound for the

case of one-round protocols for GHD, where there is only one message from Alice to Bob (see also [Woo04,
JKS08]). However, going beyond one-round bounds turned out to be quite a difficult problem. Recently,
Brody and Chakrabarti [BC09] obtained linear lower bounds for all constant-round protocols:

Theorem 1. [BC09] Every k-round bounded-error protocol for GHD communicates at least
n

2O(k2)
bits.

In fact their bound is significant as long as the number of rounds is k ≤ c0
√

log n, for a universal
constant c0. Regarding lower bounds that hold irrespective of the number of rounds, an easy reduction
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gives an Ω(
√
n) lower bound (which is folklore): take an instance of the gapless version of the problem

on x, y ∈ {0, 1}
√
n and “repeat” x and y

√
n times each. This blows up the gap from 1 to

√
n, giving an

instance of GHD on n bits. Solving this n-bit instance of GHD solves the
√
n-bit instance of the gapless

problem. Since we have a linear lower bound for the latter, we obtain a general Ω(
√
n) bound for GHD.1

1.2 Our results

Our main result is an improvement of the bound of Brody and Chakrabarti, with an exponentially better
dependence on the number of rounds:

Theorem 2. Every k-round bounded-error protocol for GHD sends a message of length Ω

(
n

k2 log k

)
.

In fact we get a bound for the more general problem of distinguishing distance ∆(x, y) ≤ (1/2 − γ)n
from ∆(x, y) ≥ (1/2 + γ)n, as long as γ = Ω(1/

√
n): for this problem every k-round protocol sends a

message of Ω
(

1
k2 log k

1
γ2

)
bits.

Like the result of [BC09], our lower bound deteriorates with the number of rounds. Also like their result,
our proof is based on round elimination, an important framework for proving communication lower bounds.
Our proof contains an important insight into this framework that we now explain.

A communication problem usually involves a number of parameters, such as the input size, an error
bound, and in our case the gap size. The round elimination framework consists of showing that a k-round
protocol solving a communication problem for a class C of parameters can be turned into a (k − 1)-round
protocol for an easier class C′, provided the message communicated in the first round is short. This fact
is then applied repeatedly to obtain a 0-round protocol (say), for some nontrivial class of instances. The
resulting contradiction can then be recast as a communication lower bound. Historically, the easier class C′
has contained smaller input lengths2 than those in C.

In contrast to previous applications of round elimination, we manage to avoid shrinking the input length:
the simplification will instead come from a slight deterioration in the error parameter. Here is how this
works. If Alice’s first message is short, then there is a specific message and a large set A of inputs on which
Alice would have sent that message. Roughly speaking, we can use the largeness of A to show that almost
any input x̃ for Alice is close to A in Hamming distance. Therefore, Alice can “move” x̃ to its nearest
neighbor, x, in A: this make her first message redundant, as it is constant for all inputs x ∈ A. Since x and
x̃ have small Hamming distance, it is likely that both pairs (x̃, y) and (x, y) are on the same side of the gap,
i.e. have the same GHD value. Hence the correctness of the new protocol, which is one round shorter, is
only mildly affected by the move. Eliminating all k rounds in this manner, while carefully keeping track of
the accumulating errors, yields a lower bound of Ω(n/(k4 log2 k)) on the maximum message length of any
k-round bounded-error protocol for GHD.

Notice that this lower bound is slightly weaker than the above-stated bound of Ω(n/(k2 log k)). To
obtain the stronger bound, we leave the purely combinatorial setting and analyze a version of GHD on the

1In fact the same proof lower-bounds the quantum communication complexity; a linear quantum lower bound for the gapless
version follows easily from Razborov’s work [Raz02] and the observation that ∆(x, y) = |x|+ |y| − 2|x∧ y|. However, as Brody
and Chakrabarti observed, in the quantum case this

√
n lower bound is essentially tight: there is a bounded-error quantum protocol

that communicates O(
√
n logn) qubits. This also implies that lower bound techniques which apply to quantum protocols, such as

discrepancy, factorization norms [LS07, LS08], and the pattern matrix method [She08], cannot prove better bounds for classical
protocols.

2In fact, C and C′ are often designed such that an instance in C is a “direct sum” of several independent instances in C′.
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unit sphere:3 Alice’s input is a unit vector x ∈ Rn and Bob’s input is a unit vector y ∈ Rn, with the promise
that either x · y ≥ 1/

√
n or x · y ≤ −1/

√
n (as we show below in Section 2, this version and the Boolean

one are essentially equivalent in terms of communication complexity). Alice’s input is now close to the
large, constant-message set A in Euclidean distance. The rest of the proof is as outlined above, but the final
bound is stronger than in the combinatorial proof for reasons that are discussed in Section 2.2. Although this
proof uses arguments from high-dimensional geometry, such as measure concentration, it arguably remains
conceptually simpler than the one in [BC09].

Related work. The round elimination technique was formalized in Miltersen et al. [MNSW98] and dates
back even further, at least to Ajtai’s lower bound for predecessor data structures [Ajt88]. For us, the most
relevant previous use of this technique is in the result by Brody and Chakrabarti [BC09], where a weaker
lower-bound is proved on GHD.

Their proof, as ours, identifies a large subset A of inputs on which Alice sends the same message. The
“largeness” of A is used to identify a suitable subset of (n/3) coordinates such that Alice can “lift” any
(n/3)-bit input x̃, defined on these coordinates, to some n-bit input x ∈ A. In the resulting protocol for
(n/3)-bit inputs, the first message is now constant, hence redundant, and can be eliminated.

The input size thus shrinks from n to n/3 in one round elimination step. As a result of this constant-
factor shrinkage, the Brody-Chakrabarti final lower bound necessarily decays exponentially with the number
of rounds. Our proof crucially avoids this shrinkage of input size by instead considering the geometry of the
set A, and exploiting the natural invariance of the GHD predicate to small perturbations of the inputs.

Remark. After we obtained our results, a subset of the authors independently proved an optimal Ω(n)
lower bound, independent of the number of rounds [CR09]. However, the techniques they introduce are
completely different, and rather involved. In contrast, our result, through its relatively simple and elegant
proof, should be of independent interest to the community.

1.3 Applications to streaming

The study of gapped versions of the Hamming distance problem by Indyk and Woodruff [IW03] was mo-
tivated by the streaming model of computation, in particular the problem of approximating the number of
distinct elements in a data stream. For many data stream problems, including the distinct elements problem,
the goal is to output a multiplicative approximation of some real-valued quantity. Usually, both random-
ization and approximation are required. When both are allowed, there are often remarkably space-efficient
solutions.

As Indyk and Woodruff showed, communication lower bounds for the Gap Hamming Distance problem
imply space lower bounds on algorithms that output the number of distinct elements in a data stream up to
a multiplicative approximation factor 1 ± γ. The reduction from GHD works as follows. Alice converts
her n-bit string x = x1x2 · · ·xn into a stream of tuples σ = 〈(1, x1), (2, x2), . . . , (n, xn)〉. Bob converts
y into τ = 〈(1, y1), (2, y2), . . . , (n, yn)〉 in a similar fashion. Using a streaming algorithm for the distinct
elements problem, Alice processes σ and sends the memory contents to Bob, who then processes τ starting
from where Alice left off. In this way, they estimate the number of distinct elements in σ ◦ τ . Note that each
element in σ is unique, and that elements in τ are distinct from elements in σ precisely when xi 6= yi. Hence,

3The idea of going to the unit sphere was also used by Jayram et al. [JKS08] for a simplified one-round lower bound. As we
will see in Section 2, doing so is perhaps even more natural than working with the combinatorial version; in particular it is then
easy to make GHD into a dimension-independent problem.
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an accurate approximation (γ = Ω(1/
√
n) is required) for the number of distinct elements in σ ◦ τ gives

an answer to the original GHD instance. This reduction can be extended to multi-pass streaming algorithms
in a natural way: when Bob is finished processing τ , he sends the memory contents back to Alice, who
begins processing σ a second time. Generalizing, it is easy to see that a p-pass streaming algorithm gives
a (2p − 1)-round communication protocol, where each message is the memory contents of the streaming
algorithm. Accordingly, a lower bound on the length of the largest message of (2p − 1)-round protocols
gives a space lower bound for the p-pass streaming algorithm.

Thus, the one-round linear lower bound by Indyk and Woodruff [IW03] yields the desired Ω(1/γ2)
(one-pass) space lower bound for the streaming problem. Similarly, our new communication lower bounds
imply Ω(1/(γ2p2 log p)) space lower bounds for p-pass algorithms for the streaming problem. This bound
is Ω(1/γ2−o(1)) for all p = no(1) and improves on previous bounds for all p = o(n1/4/

√
log n).

Organization of the paper. We start with some preliminaries in Section 2, including a discussion of
the key measure concentration results that we will use, both for the sphere and for the Hamming cube, in
Section 2.2. In Section 3 we prove our main result, while in Section 4 we give the simple combinatorial
proof of the slightly weaker result mentioned above.

2 Preliminaries

Notation. For x, y ∈ Rn, let d(x, y) := ‖x − y‖ be the Euclidean distance between x and y. For z ∈ R,
define sgn(z) := 0 if z ≥ 0, and sgn(z) = 1 otherwise. For a set S ⊆ Rn, let d(x, S) be the infimum over
all y ∈ S of d(x, y). The unique rotationally-invariant probability distribution on the n-dimensional sphere
Sn−1 is the Haar measure, which we denote by ν. When we say that a vector is taken from the uniform
distribution over a measurable subset of the sphere, we will always mean that it is distributed according to
the Haar measure, conditioned on being in that subset.

Define the max-cost of a communication protocol to be the length of the longest single message sent
during an execution of the protocol, for a worst-case input. We use Rkε (f) to denote the minimal max-cost
amongst all two-party, k-round, public-coin protocols that compute f with error probability at most ε on
every input (here a “round” is one message). See [KN97] for precise definitions.

2.1 Problem definition

We will prove our lower bounds for the problem GHDd,γ , where d is an integer and γ > 0. In this problem
Alice receives a d-dimensional unit vector x, and Bob receives a d-dimensional unit vector y, with the
promise that |x · y| ≥ γ. Alice and Bob should output sgn(x · y).

We show that GHDn,1/√n has essentially the same randomized communication complexity as the prob-
lem GHD that we defined in the introduction. Generalizing that definition, for any g > 0 define the problem
GHDn,g, in which the input is formed of two n-bit strings x and y, with the promise that |∆(x, y)−n/2| ≥ g,
where ∆ is the Hamming distance. Alice and Bob should output 0 if ∆(x, y) < n/2 and 1 otherwise.

The following proposition shows that for any
√
n ≤ g ≤ n, the problems GHDn,g and GHDd,γ are

essentially equivalent from the point of view of randomized communication complexity (with shared ran-
domness) as long as d ≥ n and γ = Θ(g/n). It also shows that the randomized communication complexity
of GHDd,γ is independent of the dimension d of the input, as long as it is large enough with respect to γ.

Proposition 3. For every ε > 0, there is a constant C0 = C0(ε) such that for every integers k, d ≥ 0 and√
n ≤ g ≤ n, we have Rk2ε(GHDd,C0g/n) ≤ Rkε (GHDn,g) ≤ Rkε (GHDn,2g/n).
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Proof. We begin with the right inequality. The idea is that a GHDn,g protocol can be obtained by applying
a given GHD protocol to a suitably transformed input. Let x, y ∈ {0, 1}n be two inputs to GHDn,g.
Define x̃ = ((−1)xi/

√
n)i=1,...,n and ỹ = ((−1)yi/

√
n)i=1,...,n. Then x̃, ỹ ∈ Sn−1. Moreover, x̃ · ỹ =

1 − 2∆(x, y)/n. Therefore, if ∆(x, y) ≥ n/2 + g then x̃ · ỹ ≤ −2g/n, and if ∆(x, y) ≤ n/2 − g then
x̃ · ỹ ≥ 2g/n. This proves Rkε (GHDn,g) ≤ Rkε (GHDn,2g/n).

For the left inequality, let x and y be two unit vectors (in any dimension) such that |x · y| ≥ γ, where
γ = C0g/n. Note that since g ≥

√
n, we have n = Ω(γ−2). Using shared randomness, Alice and Bob pick

a sequence of vectors w1, . . . , wn, each independently and uniformly drawn from the unit sphere. Define
two n-bit strings x̃ = (sgn(x · wi))i=1,...,n and ỹ = (sgn(y · wi))i=1,...,n. Let α = cos−1(x · y) be the angle
between x and y. Then a simple argument (used, e.g., by Goemans and Williamson [GW95]) shows that the
probability that a random unit vector w is such that sgn(x ·w) 6= sgn(y ·w) is exactly α/π. This means that
for each i, the bits x̃i and ỹi differ with probability 1

π cos−1(x ·y), independently of the other bits of x̃ and ỹ.
The first few terms in the Taylor series expansion of cos−1 are cos−1(z) = π

2 − z −
z3

6 + O(z5). Hence,
for each i, Prwi (x̃i 6= ỹi) = 1/2−Θ(x · y), and these events are independent for different i. Choosing C0

sufficiently large, with probability at least 1− ε, the Hamming distance between x̃ and ỹ is at most n/2− g
if x · y ≥ γ, and it is at least n/2 + g if x · y ≤ −γ.

2.2 Concentration of measure

It is well known that the Haar measure ν on a high-dimensional sphere is tightly concentrated around the
equator — around any equator, which makes it a fairly counterintuitive phenomenon. The original phrasing
of this phenomenon, usually attributed to P. Lévy [Lév51], goes by showing that among all subsets of the
sphere, the one with the smallest “boundary” is the spherical cap Sxγ = {y ∈ Sn−1 : x · y ≥ γ}. The
following standard volume estimate will prove useful (see, e.g., [Bal97], Lemma 2.2).

Fact 4. Let x ∈ Sn−1 and γ > 0. Then ν(Sxγ ) ≤ e−γ2n/2.

Given a measurable set A, define its t-boundary At := {x ∈ Sn−1 : d(x,A) ≤ t}, for any t > 0. At the
core of our results will be the standard fact that, for any not-too-small set A, the set At contains almost all
the sphere, even for moderately small values of t.

Fact 5 (Concentration of measure on the sphere). For any measurable A ⊆ Sn−1 and any t > 0,

Pr(x ∈ A) Pr(x /∈ At) ≤ 4 e−t
2n/4, (1)

where the probabilities are taken according to the Haar measure on the sphere.

Proof. The usual measure concentration inequality for the sphere (Theorem 14.1.1 in [Mat02]) says that for
any set B ⊆ Sn−1 of measure at least 1/2 and any t′ > 0,

Pr(x /∈ Bt′) ≤ 2 e−(t
′)2n/2.

This suffices to prove the fact if Pr(x ∈ A) ≥ 1/2, so assume that Pr(x ∈ A) < 1/2. Let t0 be such that
At0 has measure 1/2; such a t0 exists by continuity. Applying measure concentration to B = At0 gives

Pr(x /∈ At′+t0) ≤ 2 e−(t
′)2n/2, (2)

for all t′ > 0, while applying it to B = At0 yields

Pr(x ∈ At0−t′′) ≤ Pr(x 6∈ Bt′′) ≤ 2 e−(t
′′)2n/2 (3)
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for all t′′ ≤ t0, sinceAt0−t′′ is included in the complement of (At0)t′′ . Taking t′′ = t0 gives us Pr(x ∈ A) ≤
2 e−t

2
0n/2. If t ≤ t0 then this suffices to prove the inequality. Otherwise, set t′ := t− t0 in (2) and t′′ := t0

in (3) and multiply the two inequalities to obtain the required bound, by using that t20 + (t − t0)2 ≥ t2/2
(which holds since 2t20 + t2/2− 2t t0 = (

√
2t0 − t/

√
2)2 ≥ 0).

Why the sphere? In Section 4 we give a proof of a slightly weaker lower bound than the one in our
main result by using measure concentration facts on the Hamming cube only. We present those useful facts
now, together with a brief discussion of the differences, in terms of concentration of measure phenomenon,
between the Haar measure on the sphere and the uniform distribution over the hypercube. These differences
point to the reasons why the proof of Section 4 gives an inferior bound.

On the Hamming cube, the analagous notion of spherical cap is the Hamming ball: let T xc = {y ∈
{0, 1}n : ∆(x, y) ≤ n/2 − c

√
n} be the Hamming ball of radius n/2 − c

√
n centered at x. The analogue

of Fact 4 is given by the Chernoff bound:

Fact 6. For all c > 0, we have 2−n|T xc | ≤ e−2c
2
.

A result similar to Lévy’s, attributed to Harper [Har66], states that among all subsets (of the Hamming
cube) of a given size, the ball is the one with the smallest boundary. Following a similar proof as for Fact 5,
one can get the following statement for the Hamming cube (see e.g. Corollary 4.4 in [Bar05]):

Fact 7 (Concentration of measure on the Hamming cube). Let A ⊆ {0, 1}n be any set, and define Ac =
{x ∈ {0, 1}n : ∃y ∈ A, ∆(x, y) ≤ c

√
n}. Then

Pr(x ∈ A) Pr(x /∈ Ac) ≤ e−c
2
, (4)

where the probabilities are taken according to the uniform distribution on the Hamming cube.

To compare these two statements, embed the Hamming cube in the sphere by mapping x ∈ {0, 1}n to the
vector vx = 1√

n
((−1)xi)i∈[n]. Two strings of Hamming distance c

√
n are mapped to vectors with Euclidean

distance
√

2c/n1/4, so that inequality (4) is much weaker than inequality (1). In particular we see that, while
on the sphere most points are at distance roughly 1/

√
n from any set of measure half, if we are restricted

to the Hamming cube then very few points are at a corresponding Hamming distance of 1 from, say, the
set of all strings with fewer than n/2 1s, which has measure roughly 1/2 in the cube. This difference is
crucial: it indicates that the n-dimensional cube is too rough an approximation of the n-dimensional sphere
for our purposes, perhaps explaining why our combinatorial bound in Section 4 yields a somewhat weaker
dependence on the number of rounds.

3 Main result

Our main result is the following.

Theorem 8. Let 0 ≤ ε ≤ 1/50. There exist constants C, C ′ depending only on ε such that the following
holds for any γ > 0 and any integers n ≥ ε2/(4γ2) and k ≤ C ′/(γ ln(1/γ)): if P is a randomized ε-error
k-round communication protocol for GHDn,γ then some message has length at least C

k2 ln k
· 1
γ2

bits.

Using Proposition 3 we get a lower bound for the Hamming cube version GHD = GHDn,
√
n:

Corollary 9. Any ε-error k-round randomized protocol for GHD communicates Ω(n/(k2 ln k)) bits.

This follows from Theorem 8 when k = o(
√
n/ log n). If k is larger, then the bound stated in the

Corollary is in fact weaker than the general Ω(
√
n) lower bound which we sketched in the introduction.
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3.1 Proof outline

We now turn to the proof of Theorem 8. Let ε, γ and n be as in the statement of the theorem. Since lowering
n only makes the GHDn,γ problem easier, for the rest of this section we assume that n := ε2/(4γ2) is fixed,
and for simplicity of notation we write GHDγ for GHDn,γ .

Measurability. Before proceeding with the proof, we first need to handle a small technicality arising from
the continuous nature of the input space: namely, that the distributional protocol might make decisions
based on subsets of the input space that are not measurable. To make sure that this does not happen, set
δ = γ/4 and consider players Alice and Bob who first round their inputs to the closest vector in a fixed δ-
net, and then proceed with an ε-error protocol for GHDγ/2. Since the rounding changes x ·y by at most γ/2,
provided Alice and Bob are given valid inputs to GHDγ they will succeed with probability 1−ε. Hence any
randomized ε-error protocol for GHDγ/2 can be transformed into a randomized ε-error protocol for GHDγ
with the same communication, but which initially rounds its inputs to a discrete set. We prove a lower bound
on the latter type of protocol. This will ensure that all sets encountered in the proof are measurable.

Distributional complexity. By Yao’s principle it suffices to lower-bound the distributional complexity,
i.e., to analyze deterministic protocols that are correct with probability 1− ε under some input distribution.
As our input distribution for GHDγ we take the distribution that is uniform over the inputs satisfying the
promise |x·y| ≥ γ. Given our choice of n, Claim 11 below guarantees that the ν×ν-measure of non-promise
inputs is at most ε. Hence it will suffice to lower-bound the distributional complexity of protocols making
error at most 2 ε under the distribution ν × ν. We define an ε-protocol to be a deterministic communication
protocol for GHDn,γ whose error under the distribution ν × ν is at most ε, where we say that the protocol
makes an error if P (x, y) 6= sgn(x, y).

We prove a lower bound on the maximum length of a message sent by any ε-protocol, via round elimi-
nation. The main reduction step is given by the following technical lemma:

Lemma 10 (Round Elimination on the sphere). Let ε, γ > 0, n = ε2/(4γ2), and 1 ≤ κ ≤ k. Assume there
is a κ-round ε-protocol P such that the first message has length bounded as c1 ≤ C1

n
k2 ln k

−7 ln(2k) where
C1 is a universal constant. Then there is a (κ − 1)-round ε′-protocol Q (obtained by eliminating the first
message of P ), where ε′ ≤

(
1 + 1

k

)
ε+ 1

16k .

Before proving this lemma in Section 3.2, we show how it implies Theorem 8.

Proof of Theorem 8. We will show that in any k-round (2 ε)-protocol, there is a message sent of length at
least C1n/(k

2 ln k) − 7 ln(2k). The discussion in the “Distributional complexity” paragraph above shows
this suffices to prove the theorem, by setting C = C1ε

2/8, and choosing C ′ small enough so that the bound
on k in the statement of the theorem implies that 7 ln(2k) < C1n/(2k

2 ln k).
Let P be a k-round (2 ε)-protocol, and assume for contradiction that each round of communication

uses at most C1n/(k
2 ln k) − 7 ln(2k) bits. The recurrence εκ = (1 + 1/k)εκ−1 + 1/(16k), ε0 = 2 ε,

is easily solved to εκ = (1 + 1/k)κ(2 ε + 1/16) − 1/16, so that applying Lemma 10 k times leads to a
0-round protocol for GHDγ that errs with probability at most ε′ ≤ e (2 ε + 1/16) − 1/16 ≤ 1/4 over the
input distribution ν × ν. We have reached a contradiction: such a protocol needs communication and hence
cannot be 0-round. Hence P must send a message of length at least C1n/(k

2 ln k)− 7 ln(2k).
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3.2 The main reduction step

Proof of Lemma 10. Let P (x, y) denote the output of the protocol on input x, y. Define x ∈ Sn−1 to be
δ-good if Prν×ν(P (x, y) errs |x) ≤ (1 + 1/k)ε. By Markov’s inequality, at least a 1/(k + 1)-fraction of
x (distributed according to ν) are good. For a given message m, let Am be the set of all good x on which
Alice sends m as her first message. The sets Am, over all messages m ∈ {0, 1}c1 , form a partition of the set
of good x. Define m1 := argmaxmν(Am) and let A := Am1 . We then have ν(A) ≥ e−c1−ln(k+1).

We now define protocol Q. Alice receives an input x̃, Bob receives ỹ, both distributed according to ν.
Alice computes the point x ∈ A that is closest to x̃, and Bob sets y := ỹ. They run protocol P (x, y) without
Alice sending the first message, so Bob starts and proceeds as if he received m1 from Alice.

To prove the lemma, it suffices to bound the error probability ε′ ofQwith input x̃, ỹ distributed according

to ν × ν. Define d1 = 2

√
c1+6 ln(2k)+2

n . We consider the following bad events:

• BAD1 : d(x̃, A) > d1

• BAD2 : P (x, y) 6= sgn(x · y)

• BAD3 : d(x̃, A) ≤ d1 but sgn(x · y) 6= sgn(x̃ · ỹ).

If none of those events occurs, then protocol P outputs the correct answer. We bound each of them sepa-
rately, and will conclude by upper bounding ε′ with a union bound.

The first bad event can be easily bounded using the measure concentration inequality from Fact 5. Since
x̃ is uniformly distributed in Sn−1 and Pr(A) ≥ e−c1−ln(k+1), we get

Pr(BAD1) ≤ 4 e−d
2
1n/4+c1+ln(k+1) ≤ 4 e−5 ln(2k)−2 ≤ 1

32k
.

The second bad event has probability bounded by (1 + 1/k) ε by the goodness of x. Now consider event
BAD3. Without loss of generality, we may assume that x̃ · ỹ = x̃ · y > 0 but x · y < 0 (the other case is
treated symmetrically). In order to bound BAD3, we will use two claims. The first shows that the probability
that x̃ · y is close to 0 for a random x̃ and y is small. The second uses measure concentration to show that, if
x̃ · y is not too close to 0, then moving x̃ to the nearby x is unlikely to change the sign of the inner product.

Claim 11. Let x, y be distributed according to ν. For any real α ≥ 0, we have Pr(0 ≤ x · y ≤ α) ≤ α
√
n.

Proof. With ωn the volume of the n-dimensional Euclidean unit ball, we write (see e.g. [BGK+98], Lemma 5.1)

Pr(0 ≤ x · y ≤ α) =
(n− 1)ωn−1

nωn

∫ α

0
(1− t2)

n−3
2 dt ≤ α

√
n

where we used ωn−1

ωn
<
√

n+1
2π <

√
n.

Claim 12. Let x, x̃ be two fixed unit vectors at distance ‖x− x̃‖ = d ∈ [0, d1], and 0 < α ≤ 1/(4
√
n). Let

y be taken according to ν. Then Pr(x̃ · y ≥ α ∧ x · y < 0) ≤ e−α
2n/(8d21).

Proof. Note that x · x̃ = 1 − ‖x − x̃‖2/2 = 1 − d2/2. Since the statement of the lemma is rotationally-
invariant, we may assume without loss of generality that

x̃ = (1, 0, 0 . . . , 0),

x = (1− d2/2,−
√
d2 − d4/4, 0, . . . , 0),

y = (y1, y2, y3, . . . , yn).
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Therefore, y1 ≥ α when x̃ · y ≥ α. Note that

x · y = x1y1 + x2y2 ≥ (1− d2/2)α−
√
d2 − d4/4 y2.

Hence the event x̃ · y ≥ α ∧ x · y < 0 implies

y2 >
(1− d2/2)α√
d2 − d4/4

≥ α

2d

where we used the fact that d ≤ d1 ≤ 1, given our assumption on c1. By Fact 4, the probability that, when y
is sampled from ν, y2 is larger than α/(2d) is at most e−α

2n/(8d2). Hence the probability that both x̃ · y ≥ α
and x · y < 0 happen is at most as much.

Setting α = 1/(128k
√
n), by Claim 11 we find that the probability that 0 ≤ x̃ · y ≤ α is at most

1/(128k). Furthermore, the probability that x̃ · y ≥ α and x · y < 0 is at most exp
(
− n

219k2(c1+6 ln(2k)+2)

)
by Claim 12. This bound is less than 1/(128k) given our assumption on c1, provided C1 is a small enough
constant. Putting both bounds together, we see that

Pr(x̃ · y ≥ 0 ∧ x · y < 0) < 1/(64k).

The event that x̃ · y < 0 but x · y ≥ 0 is bounded by 1/(64k) in a similar manner. Hence, Pr(BAD3) <
1/(32k). Taking the union bound over all three bad events concludes the proof of the lemma.

4 A simple combinatorial proof

In this section we present a combinatorial proof of the following:

Theorem 13. Let 0 ≤ ε ≤ 1/50. There exists a constant C ′′ depending on ε only, such that the following
holds for any g ≤ C ′′

√
n and k ≤ n1/4/(1024 log n): if P is a randomized ε-error k-round communication

protocol for GHDn,g then some message has length at least n
(512k)4 log2 k

bits.

Even though this is a weaker result than Theorem 8, its proof is simpler and is based on concentration of
measure in the Hamming cube rather than on the sphere (we refer to Section 2.2 for a high-level comparison
of the two proofs). Interestingly, the dependence on the number of rounds that we obtain is quadratically
worse than that of the proof using concentration on the sphere. We do not know if this can be improved
using the same technique.

We proceed as in Section 3.1, observing that it suffices to lower-bound the distributional complexity of
GHDn,g under a distribution uniform over the inputs satisfying the promise |∆(x, y) − n/2| ≥ g. In fact,
as we did before, by taking C ′′ small enough we can guarantee that the number of non-promise inputs is at
most ε 2n. Hence it will suffice to lower-bound the distributional complexity of protocols making error at
most 2 ε under the uniform input distribution. We define an ε-protocol to be a deterministic communication
protocol for GHD whose distributional error under the uniform distribution is at most ε. The following is
the analogue of Lemma 10, from which the proof of Theorem 13 follows as in Section 3.1.

Lemma 14 (Round Elimination on the Hamming cube). Let ε > 0 and κ, k be two integers such that
k ≥ 128 and 1 ≤ κ ≤ k ≤ n1/4/(1024 log n). Assume that there is a κ-round ε-protocol P such that the
first message has length bounded by c1 ≤ n/((512k)4 log2 k). Then there exists a (κ−1)-round ε′-protocol
Q (obtained by eliminating the first message of P ) where ε′ ≤

(
1 + 1

k

)
ε+ 1

16k .
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Proof. Define x ∈ {0, 1}n to be good if Pr(P (x, y) errs |x) ≤ (1 + 1/k)ε. By Markov’s inequality,
at least a 1/(k + 1)-fraction of x ∈ {0, 1}n are good. For a given message m, let Am := {good x :
Alice sends m given x}. The sets Am, over all messages m ∈ {0, 1}c1 , together form a partition of the
set of good x. Define m1 := argmaxm|Am|, and let A := Am1 . By the pigeonhole principle, we have
|A| ≥ 1

k+12n−c1 .
We now define protocol Q. Alice receives an input x̃, Bob receives ỹ, uniformly distributed. Alice

computes the string x ∈ A that is closest to x̃ in Hamming distance, and Bob sets y := ỹ. They run
protocol P (x, y) without Alice sending the first message, so Bob starts and proceeds as if he received the
fixed message m1 from Alice.

To prove the lemma, it suffices to bound the error probability ε′ of Q under the uniform distribution.
Define d1 = 9

√
n/((1024k)2 log k). As in the proof of Lemma 10, we consider the following bad events:

• BAD1 : ∆(x, x̃) > d1
√
n

• BAD2 : P (x, y) 6= GHD(x, y)

• BAD3 : ∆(x, x̃) ≤ d1
√
n but GHD(x̃, y) 6= GHD(x, y)

If none of those events occurs, then protocol P outputs the correct answer. We bound each of them sepa-
rately, and will conclude by a union bound. BAD1 is easily bounded using Fact 7, which implies

Pr(x̃ /∈ Ad1) ≤ e−81n/((1024k)4 log
2 k)2c1+log(k+1) ≤ 2

k2
≤ 1

32k

given our assumptions on c1 and k. The second bad event is bounded by (1 + 1/k) ε, by definition of A.
We now turn to BAD3. The event that GHD(x̃, y) 6= GHD(x, y) only depends on the relative distances

between x, x̃, and y, so we may apply a shift to assume that x = (0, . . . , 0). Without loss of generality, we
assume that ∆(x̃, y) > n/2 and |y| < n/2 (the error bound when ∆(x̃, y) < n/2 and |y| > n/2 is proved
in a symmetric manner). Note that, since y is uniformly random (subject to |y| < n/2), with probability
at least 1 − 1/(128k), we have |y| ≤ n/2 −

√
n/(128k). Hence we may assume that this holds with an

additive loss of at most 1/(128k) in the error. Now

∆(x̃, y) > n/2⇐⇒ |x̃|+ |y| − 2|x̃ ∩ y| > n/2⇐⇒ |x̃ ∩ y| < |x̃|+ |y| − n/2
2

.

It is clear that the worst case in this statement is for |y| = n/2 −
√
n/(128k) and |x̃| = ∆(x, x̃) = d1

√
n.

By symmetry, the probability that this event happens is the same as if we fix any y of the correct weight,
and x̃ is a random string of weight d1

√
n. Since the expected intersection size is |x̃|/2 − d1/(128k), by

Hoeffding’s inequality (see e.g. the bound on the tail of the hypergeometric distribution given in [Chv79]),
for a =

√
n/(256k)− d1/(128k)

Pr

(
|x̃ ∩ y| ≤ |x̃|+ |y| − n/2

2

)
= Pr (|x̃ ∩ y| ≤ E[|x̃ ∩ y|]− a) ≤ e−2a2/(d1

√
n).

Given our choice of d1 we have a ≥ 3
√
n/(4·256k), and hence the upper bound is at most 1/k2 ≤ 1/(128k),

given our assumption on k. Applying the union bound over all bad events then yields the lemma.

Acknowledgments. We thank Ishay Haviv for discussions during the early stages of this work.
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