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Abstract

We prove a lower bound of �(n4/3 log1/3 n) on the randomized decision tree complexity of any non-
trivial monotone n-vertex graph property, and of any nontrivial monotone bipartite graph property with
bipartitions of size n. This improves the previous best bound of�(n4/3) due to Hajnal [Haj91]. Our proof
works by improving a graph packing lemma used in earlier work, and this improvement in turn stems from
a novel probabilistic analysis. Graph packing being a well-studied subject in its own right, our improved
packing lemma and the probabilistic technique used to prove it may be of independent interest.
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AMS Subject Classifications: 68Q17 (Computational difficulty of problems), 68Q25 (Analysis of algorithms and
problem complexity), 68R10 (Graph theory).

1 Introduction
Consider the problem of deciding whether or not a given input graph G has a certain (isomorphism invariant) property
P . The graph is given by an oracle which answers queries of the form “Is (x, y) an edge of G?” A decision tree
algorithm for P makes a sequence of such queries to the oracle, where each query may depend upon the information
obtained from the previous ones, until sufficient information about G has been obtained to decide whether or not P holds
for G, whereupon it either accepts or rejects. Let AP denote the set of decision tree algorithms for P and, for A ∈ AP ,
let cost(A,G) denote the number of queries that A asks on input G. The quantity C(P) = minA maxG cost(A,G) is
called the deterministic decision tree complexity, or simply the deterministic complexity, of P .

A randomized decision tree algorithm for P is a probability distribution µ over AP , and its cost (on input G) is the
expectation of cost(A,G) with A drawn from µ:

costR(µ,G) =

∑
A∈AP

Pr
µ

[A] cost(A,G) .

The randomized decision tree complexity, or simply the randomized complexity, of P is defined to be

CR(P) = min
µ

max
G

costR(µ,G) .

An n-vertex graph property is said to be nontrivial if there is at least one n-vertex graph which has the property
and at least one which does not. It is said to be monotone if addition of edges does not destroy the property. Let Pn
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A shorter preliminary version of this paper appeared in the Proceedings of ICALP 2001, the 28th International Colloquium on
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denote the set of all nontrivial monotone n-vertex graph properties. Since any property can be decided by the brute
force strategy of querying all possible vertex pairs, the following upper bounds clearly hold:

∀ P ∈ Pn : CR(P) ≤ C(P) ≤

(
n
2

)
= O(n2) . (1)

The main result of this paper is the following lower bound.

Theorem 1.1 (Main Theorem) Any property P ∈ Pn satisfies CR(P) = �(n4/3 log1/3 n).

Our proof of this lower bound relies on an important theorem from the pioneering work of Yao [Yao87], as well as
on a framework developed by Hajnal [Haj91]. In this framework we associate with a graph property a special pair of
graphs which cannot be “packed” together. We then argue, using Yao’s results, that if the property has low randomized
complexity, then certain degree upper bounds hold for these special graphs. Finally, we use these degree bounds to
prove that the special graphs can be packed, thereby arriving at a contradiction.

The notion of graph packing, which we shall formally define later, is a well-studied subject in its own right [Bol78,
Chapter 8]. A packing lemma (Lemma 3.10) we establish in this paper is therefore of independent interest since it
improves a packing theorem due to Hajnal and Szegedy [HS92].

The rest of the paper is organized as follows. We quickly survey some related work in Section 2. In Section 3, we
introduce some preliminary notions, describe the framework alluded to above and outline a proof of Theorem 1.1 using
this framework. In Section 4, we prove a couple of technical lemmas to analyze the behavior of hypergraphs under
random vertex deletions. These lemmas are then used in Section 5 to prove our improved packing lemma. The brief
Section 6 wraps up the proof of Theorem 1.1.

2 Related Work
The decision tree complexity of Boolean functions is one of the core areas of complexity theory, and one that has been
studied since the 1970s. Graph properties, being particularly natural and interesting Boolean functions, have been an
important focus of this study. Yet, two very basic conjectures about the decision tree complexity of graph properties
have frustrated about 30 years of attack.

We have already noted the trivial upper bounds given by (1). A classic result of Rivest and Vuillemin [RV76]
gives a lower bound C(P) = �(n2), for all P ∈ Pn , which settles the deterministic complexity of monotone graph
properties up to a constant. However, in the world of deterministic complexity, a far more interesting conjecture is
that any P ∈ Pn has C(P) =

(n
2

)
exactly. Remarkably, this bold conjecture, attributed to Karp, remains open to this

day. Some important special cases of the conjecture have been settled; for example, a seminal result of Kahn, Saks
and Sturtevant [KSS84] proves the truth of the conjecture when n is a prime power, a result of Yao [Yao88] does the
same for bipartite graph properties, and a recent result of Chakrabarti, Khot and Shi [CKS02] settles the conjecture for
properties closed under graph minors. See [CKS02] and the references therein for more details on this line of work.

Returning to randomized complexity (the focus of this paper), the first nonlinear lower bound on CR(P), for general
P ∈ Pn , was an �(n log1/12 n) bound proven by Yao [Yao87]. This was subsequently improved by King [Kin88] to
�(n5/4) and later by Hajnal [Haj91] to �(n4/3). Our main theorem clearly improves on all of the above results.

There are two other significant papers in the area with results incomparable to ours. Gröger [Grö92] established
lower bounds stronger than we do for certain special classes of graph properties, including Hamiltonicity, k-colorability
and subgraph containment. He also established an important link between our problem and that of proving lower
bounds on the randomized complexity of monotone bipartite graph properties, stated as Fact 3.2 in this paper. More
recently, Friedgut, Kahn and Wigderson [FKW02] showed an intriguing connection between the complexity CR(P) of
a property P ∈ Pn and its threshold probability θ(P), defined as the infimum of all p for which the random graph
G(n, p) has property P with probability at least 1

2 . Their result CR(P) = �(n2/max{θ(P)n, log n}) is incomparable
to ours because the bound can be as bad as �(n), though for some natural properties it is as high as the near-optimal
�(n2/ log n).

No property in Pn is known to have randomized complexity below n2/4. Closing this gap between our lower bound
and this upper bound is one of the most important open problems concerning decision tree complexity in general, and
graph properties in particular.

We remark that monotonicity is crucial for our result as well as all of those cited above. There are examples
of nontrivial non-monotone graph properties with C(P) = O(n), the most famous being the “scorpion” property;
see [Bol78] or [DK00, Exercise 5.15] for details.
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3 Preliminaries and Proof Outline
We now describe several concepts and earlier results (stated here as “facts”) that are used in the proof of the main
theorem. We also give an outline of that proof.

The first step is to change the objects of study from graph properties to bipartite graph properties, which we now
define.

Definition 3.1 (Bipartite graphs, degrees, complements) An (m, n)-bipartite graph G is a graph whose vertices are
partitioned into two independent sets, denoted VL(G) and VR(G) respectively, of sizes m and n respectively. The edge
set of G is denoted E(G). For such a graph we define

1L(G) = max
v∈VL (G)

degG(v) , δL(G) =
1

|VL(G)|

∑
v∈VL (G)

degG(v) =
|E(G)|
|VL(G)|

.

1R(G) and δR(G) are defined similarly. When |VL(G)| = |VR(G)| we define δ(G) = δL(G) = δR(G). We define
the bipartite complement Ḡ of G to be the (m, n)-bipartite graph with the same bipartition and with edge set VL(G)×
VR(G)− E(G).

Let Pn,n denote the set of all nontrivial monotone properties of (n, n)-bipartite graphs. The randomized complexity
CR(P) of a property P ∈ Pn,n is defined analogously to that of a property in Pn . A result of Gröger [Grö92,
Theorem 3.5] provides a vital link between the two notions.

Fact 3.2 ([Grö92]) Let f (n) be a function satisfying f (n) = O(n3/2) and suppose any P ∈ Pn,n satisfies CR(P) =

�( f (n)). Then any Q ∈ Pn satisfies CR(Q) = �( f (n)).

Since our main theorem claims a lower bound of only �(n4/3 log1/3 n), we may therefore safely concentrate on
monotone bipartite graph properties alone. We need some further definitions.

Definition 3.3 (Dual) The dual of a property P ∈ Pn,n is defined to be the property P∗
∈ Pn,n such that a graph G

satisfies P∗ iff Ḡ does not satisfy P.

Definition 3.4 (Minterms) An (n, n)-bipartite graph G is called a minterm of P ∈ Pn,n if G satisfies P but removing
any edge from G yields a graph which does not.

Definition 3.5 (Sparseness) The bipartite graph G is said to be L-sparse if VL(G) contains at least 1
2 |VL(G)| isolated

vertices, i.e., vertices of degree 0. The notion of R-sparseness is defined analogously.

Sparse minterms play a very crucial role in our argument. Suppose we associate with G an n-tuple (d1, d2, . . . , dn)
with d1 ≥ . . . ≥ dn , where the di are the degrees of the vertices in VL(G); we then say that G is an L-first minterm
of P if it is a minterm and its associated n-tuple is lexicographically smallest amongst all minterms. We say that G is
an L-first sparse minterm of P if it is a minterm, is L-sparse, and its associated n-tuple is lexicographically smallest
amongst all L-sparse minterms. We define R-first minterms and R-first sparse minterms analogously.

Lemma 3.6 For all P ∈ Pn,n , with n even, either P or P∗ has an R-sparse minterm.

Proof: Let G be the graph obtained by adding n/2 isolated vertices to the complete bipartite graph Kn,n/2. By appro-
priate labeling, G can be made an R-sparse (n, n)-bipartite graph. Note that Ḡ is isomorphic to G. Therefore G must
satisfy either P or P∗ and the lemma follows.

It is easy to see that any decision tree algorithm for P can be converted into one for P∗; this gives CR(P) = CR(P∗).
Therefore, from now on we shall assume, without loss of generality, that P has an R-sparse minterm. We now state the
key result of Yao [Yao87] and an extension of the result due to Hajnal [Haj91].

Fact 3.7 ([Yao87, Haj91]) For P ∈ Pn,n , the following hold
(1) If G is a minterm of P then CR(P) = �(|E(G)|).
(2) If G is either an L-first minterm or an L-first sparse minterm, then

CR(P) = �(n1L(G)/δL(G)) ,

and a similar statement holds for R-first minterms and R-first sparse minterms.
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Let us say that graphs G and H can be packed if there is a way to identify their vertices without identifying any
edge of G with an edge of H . Such an identification, when it exists, shall be called a packing of G and H . To see the
relevance of this concept, consider the case when G and H are minterms of P and P∗ respectively, for some property
P ∈ Pn,n . To say that G and H can be packed is equivalent to saying that G is isomorphic to a subgraph of H̄ . Since
G is a minterm of P and P is monotone, this means H̄ satisfies P . However, H is a minterm of the dual P∗, so H̄ does
not satisfy P . This contradiction shows that G and H cannot be packed.

These ideas are formalized in the next definition1 and the following fact.

Definition 3.8 (Packing) Let G and H be (m, n)-bipartite graphs. A packing of G and H is a pair of bijections
σL : VL(G) → VL(H) and σR : VR(G) → VR(H) such that, for all (x, y) ∈ VL(G)× VR(G), either (x, y) /∈ E(G)
or (σL(x), σR(y)) /∈ E(H). We say that G and H can be packed if there exists such a packing.

Fact 3.9 ([Yao87]) For P ∈ Pn,n , let G be a minterm of P and H be a minterm of P∗. Then G and H cannot be
packed.

Finally, we outline the proof of Theorem 1.1. Let P ∈ Pn,n and let q = q(n) be a parameter to be fixed later. We
wish to prove that CR(P) = �(nq). Suppose this is not the case. Let G be an R-first sparse minterm of P and H be an
L-first minterm of P∗. By part (1) of Fact 3.7, the following conditions hold:

δ(G) ≤ q , δ(H) ≤ q .

Using these in part (2) of Fact 3.7 gives us the following additional conditions:

1R(G) ≤ q2 , 1L(H) ≤ q2 .

We would like to show that for an appropriate choice of q, these conditions imply that G and H can be packed, which
would contradict Fact 3.9.

The above framework is the same as that used by Hajnal [Haj91]. Our improvement is in the parameters of the
packing lemma. Our improved lemma says:

Lemma 3.10 (Packing Lemma) Set q = (αn ln n)1/3. Let G and H be (n, n)-bipartite graphs with δ(G) ≤ q,
δ(H) ≤ q, 1R(G) ≤ q2 and 1L(H) ≤ q2. Furthermore, suppose G is R-sparse. Then, if α is a small enough
constant, G and H can be packed.

The above result is stronger than all earlier bipartite graph packing results in the following sense. All earlier results,
including the theorem of Hajnal and Szegedy [HS92] that was used in Hajnal’s work on graph properties [Haj91],
require conditions at least as strong as 1R(G)δL(H) ≤ O(n) and δR(G)1L(H) ≤ O(n). However, we allow these
products to exceed n and go up to 2(n log n). This makes Lemma 3.10 interesting on its own.

As noted above, this lemma eventually implies a lower bound of �(nq) = �(n4/3 log1/3 n) on the randomized
complexity of graph properties, as claimed by the Main Theorem. Thus, our new goal is to prove Lemma 3.10. Our
proof will use a probabilistic technique that requires an understanding of the following question: how many hyperedges
does a hypergraph lose when a random subset of its vertices is deleted? The next section provides two answers to this
question, both of which will be useful later.

4 Random Vertex Deletion in Hypergraphs
Definition 4.1 (Hypergraphs, degrees, squarishness) A hypergraph H consists of a finite set V (H) of vertices and a
collection E(H) of subsets of V (H), called hyperedges; E(H) may contain multiple copies of the same subset of V (H)
and may contain the empty set. For a vertex v, its degree degH(v) is defined to be the number of hyperedges (counting
multiplicities) that contain v. The hypergraph H is said to be squarish if 1

2 |V (H)| ≤ |E(H)| ≤ |V (H)|.

For readers familiar with hypergraphs in other contexts, we note that our hypergraphs, as defined above, are not
necessarily uniform or simple.

1We have defined the notion of packing only for bipartite graphs here because that is all we need. In the literature, packing has
been studied both for general graphs as well as bipartite graphs.
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Definition 4.2 (Vertex deletion) LetH be a hypergraph and T ⊆ V (H). The hypergraph obtained by deleting T from
H, denoted H \ T , is defined by

V (H \ T ) = V (H) \ T ,

E(H \ T ) = {A ∈ E(H) : A ⊆ V (H) \ T } .

Definition 4.3 (Favorable hypergraphs) A hypergraph on a nonempty vertex set is said to be (r, s, s̄)-favorable if

• every hyperedge has size at most r ,

• every vertex has degree at most s, and

• the average degree of a vertex is at most s̄.

Now consider deleting, from an (r, s, s̄)-favorable hypergraphH, a randomly chosen subset of t of its vertices. We
would like to provide sufficient conditions that ensure that, with high probability, a large number of hyperedges will
survive this deletion. It is easy to see that suitable upper bounds on r and t ensure that the expected number of surviving
hyperedges is large. But the high probability results we seek need more conditions, such as upper bounds on s and s̄,
in order to avoid situations where the hyperedges are all concentrated on just a few vertices. We now state two such
results precisely.

Lemma 4.4 Let H be an (r, s, s̄)-favorable hypergraph on n vertices, where n is sufficiently large. Let T be a random
subset of V (H) of size t , chosen uniformly from amongst all such subsets. Suppose s ≤ n1−3ε and t s̄ ≤ n1−3ε, for some
constant ε > 0. Then

Pr
[
|E(H \ T )| < |E(H)| − n1−2ε

]
≤

1
n2 .

Proof: Suppose V (H) = {1, 2, . . . , n}. Define the Boolean random variable X i by X i = 1 iff i ∈ T . Let di be the
degree of vertex i . Since the deletion of vertex i can kill at most di hyperedges not already killed by other vertex
deletions,

|E(H \ T )| ≥ |E(H)| −

n∑
i=1

di X i .

Note that the expectation E
[∑n

i=1 di X i
]

=
∑n

i=1 di t/n = t s̄. Note also that the random variables di X i/s are dis-
tributed in the interval [0, 1]. Thus, for any λ > 0, the Chernoff-Hoeffding bound for the hypergeometric distribu-
tion [Hoe63, Theorems 1 and 4] gives us

Pr

[
n∑

i=1

di X i > (1 + λ)t s̄

]
= Pr

[
n∑

i=1

di X i

s
>
(1 + λ)t s̄

s

]
≤

(
eλ

(1 + λ)1+λ

)t s̄/s

.

Set 1+λ = n1−2ε/(t s̄). The condition t s̄ ≤ n1−3ε ensures that this λ is large enough to imply eλ/(1+λ)1+λ
≤ e−(1+λ).

Therefore

Pr

[
n∑

i=1

di X i > n1−2ε

]
≤ exp

(
−
(1 + λ)t s̄

s

)
= exp

(
−

n1−2ε

s

)
.

The condition s ≤ n1−3ε ensures that this is at most exp(−nε) ≤ n−2, for sufficiently large n.

Lemma 4.5 Let H be an (r, s, s̄)-favorable squarish hypergraph on n vertices, where n is sufficiently large. Let T be
a random subset of V (H) of size t , chosen uniformly from amongst all such subsets. Suppose s ≤ n1−2ε, r t ≤

1
8εn ln n

and tss̄ ≤ n2−3ε, for some constant ε > 0. Then

Pr
[∣∣E(H \ T )

∣∣ < n1−2ε
]

≤
1
n2 .

The proof of Lemma 4.5 turns out to be surprisingly tricky, and involves a rather delicate tuning of parameters. It
also requires a nontrivial tail estimate for a sum of dependent random variables, given by the following lemma.
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Lemma 4.6 Let d1, . . . , dn be non-negative integers, δ =
1
n
∑n

i=1 di and 1 = max{d1, . . . , dn}. Suppose Z1, . . . , Zn
are independent and identically distributed Boolean random variables with Pr[Zi = 1] = p. Then, for any choice of
functions ψi : {0, 1}

i−1
→ [0, di ] and any a > 0, we have

Pr

[
n∑

i=1

(p − Zi )ψi (Z1, . . . , Zi−1) < − a

]
≤ exp

(
pnδ
1

(
a

pnδ
−

(
1 +

a
pnδ

)
ln
(

1 +
a

pnδ

)))
.

Proof: Let Xk =
∑n

i=k+1(p − Zi )ψi (Z1, . . . , Zi−1). Note that E[X0] = 0; thus, the lemma can be thought of as
asserting that X0 is unlikely to drop far below its expectation. Although X0 is a sum of dependent random variables,
the nature of the dependencies is such that we can mimic large parts of the proof of standard Chernoff bounds (e.g.,
see [AS00, Theorems A.11 and A.12]).

Let θ > 0 be a parameter to be fixed later. Let us define the function f p : R → R by f p(x) = pe(1−p)x
+ (1 −

p)e−px . We claim that for all k, 0 ≤ k ≤ n, and all ζ ∈ {0, 1}
k , the following inequality holds.

E
[
e−θXk

∣∣ Z1 · · · Zk = ζ
]

≤

n∏
i=k+1

f p(θdi ) . (2)

We prove (2) by reverse induction on k. For k = n it is trivially true: the empty sum defaults to zero and the empty
product to unity. For a particular k < n, we proceed as follows.

E
[
e−θXk

∣∣ Z1 · · · Zk = ζ
]

= E
[
e−θ(p−Zk+1)ψk+1(Z1,...,Zk )e−θXk+1

∣∣ Z1 · · · Zk = ζ
]

= pe−θ(p−1)ψk+1(ζ ) · E
[
e−θXk+1

∣∣ Z1 · · · Zk+1 = ζ ◦ 1
]

+ (1 − p)e−θpψk+1(ζ ) · E
[
e−θXk+1

∣∣ Z1 · · · Zk+1 = ζ ◦ 0
]

≤ f p(θψk+1(ζ ))
n∏

i=k+2

f p(θdi ) (3)

≤

n∏
i=k+1

f p(θdi ) , (4)

where (3) follows from the inductive hypothesis and (4) follows from the fact that f p is non-decreasing on R+ because
its derivative f ′

p(x) = p(1 − p)e−px (ex
− 1) is non-negative on R+. This proves (2) for all k. Setting k = 0 gives

E
[
e−θX0

]
≤

n∏
i=1

f p(θdi ) =

n∏
i=1

e−θpdi ·

n∏
i=1

(
peθdi + 1 − p

)
= e−θpnδ

n∏
i=1

(
peθdi + 1 − p

)
.

This latter product, under the constraints
∑n

i=1 di = nδ and max{d1, . . . , dn} = 1, is maximized when nδ/1 of the
di ’s are equal to 1 and the rest are equal to 0. This can be proved using a straightforward argument that considers
varying exactly two of the di ’s at a time; we omit the details. Using this, we obtain

E
[
e−θX0

]
≤ e−θpnδ (peθ1 + 1 − p

)nδ/1
.

An application of Markov’s inequality gives

Pr[X0 < −a] = Pr
[
e−θX0 > eθa]

≤ e−θpnδ−θa (peθ1 + 1 − p
)nδ/1

.

Setting θ = (1/1) ln(1 + a/(pnδ)) and using the fact (1 + a/nδ)nδ ≤ ea , we obtain

Pr[X0 < −a] ≤ exp
(

−
a + pnδ
1

ln
(

1 +
a

pnδ

))
·

(
1 +

a
nδ

)nδ/1

≤ exp
(

pnδ
1

(
a

pnδ
−

(
1 +

a
pnδ

)
ln
(

1 +
a

pnδ

)))
,

which is the desired bound.
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We shall now use this tail inequality to prove Lemma 4.5.

Proof of Lemma 4.5: Let the random variable X (u) count the number of hyperedges that remain when we delete from
H a random set of u vertices; the lemma gives an upper bound on Pr[X (t) < n1−2ε]. Let the random variable Y (p)
count the same number when we delete each vertex with probability p, independently. We begin by showing that

Pr[X (u) < a] ≤ 2 · Pr[Y (2u/n) < a] (5)

for any real a. The proof is simple and is adapted from a similar observation by Hajnal [Haj91]. For 0 ≤ k ≤ n, let
πk = Pr[X (k) < a]. Observe that π0 ≤ π1 ≤ · · · ≤ πn . Let p = 2u/n, A = b

1
2 npc = u and B = b

3
2 npc. We have

Pr[Y (p) < a] =

n∑
k=0

(
n
k

)
pk(1 − p)n−kπk ≥

B∑
k=A

(
n
k

)
pk(1 − p)n−kπA ≥

1
2
πA =

1
2
πu ,

which proves (5). For the rest of the proof, fix p = 2t/n. Let us first estimate the expectation E[Y (p)]. Any hyperedge
of H has size at most r , so it survives after the vertex deletions with probability at least (1 − p)r . Since H is squarish,
it has at least 1

2 n hyperedges. Therefore,

E[Y (p)] ≥
1
2 n(1 − p)r

=
1
2 n
(
(1 − p)1/p)2r t/n

≥
1
2 ne−4r t/n (6)

≥ n1−ε , (7)

where (6) follows because (1 − p)1/p
≥ e−2 when n is large enough (and therefore p is small enough), and (7) follows

from the given condition r t ≤
1
8εn ln n.

Having established that Y (p) has a high expected value, we now show that it does not drop below that value too
often. Let V (H) = {1, 2, . . . , n}. For 1 ≤ i ≤ n, let Zi be the indicator random variable for the event that vertex i
is deleted. Then Pr[Zi = 1] = p. Define the functions φi : {0, 1}

i
→ R for 0 ≤ i ≤ n and ψi : {0, 1}

i−1
→ R for

1 ≤ i ≤ n as follows:

φi (z1, . . . , zi ) = E[Y (p) | Z1 = z1, . . . , Zi = zi ] ,
ψi (z1, . . . , zi−1) = φi (z1, . . . , zi−1, 0)− φi (z1, . . . , zi−1, 1) ,

where each z j ∈ {0, 1}. It is clear that φi−1(z1, . . . , zi−1) = (1 − p)φi (z1, . . . , zi−1, 0) + pφi (z1, . . . , zi−1, 1).
Therefore,

φi (Z1, . . . , Zi ) =

{
φi−1(Z1, . . . , Zi−1)+ pψi (Z1, . . . , Zi−1) , if Zi = 0
φi−1(Z1, . . . , Zi−1)− (1 − p)ψi (Z1, . . . , Zi−1) , if Zi = 1

= φi−1(Z1, . . . , Zi−1)+ (p − Zi )ψi (Z1, . . . , Zi−1) .

Using this equation repeatedly, and noting that φn(Z1, . . . , Zn) = Y (p) and that φ0 = E[Y (p)], we get

Y (p) = E[Y (p)] +

n∑
i=1

(p − Zi )ψi (Z1, . . . , Zi−1) .

We would like to bound the ranges of the functions ψi . To this end, we note that for any fixed z1, . . . , zi−1, the quantity
ψi (z1, . . . , zi−1) is a convex combination of the quantities

φn(z1, . . . , zi−1︸ ︷︷ ︸
fixed

, 0, zi+1, . . . , zn︸ ︷︷ ︸
variable

)− φn(z1, . . . , zi−1, 1, zi+1, . . . , zn) (8)

where (zi+1, . . . , zn) varies over all tuples in {0, 1}
n−i . The quantity (8) is the difference between the number of edges

of two subhypergraphs of H which disagree only at vertex i ; clearly, it lies between 0 and di , where di is the degree
of vertex i . Therefore, any convex combination of the quantities (8) also lies between 0 and di . Thus, the range of the
function ψi is contained in [0, di ].
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We would now like to apply Lemma 4.6. Note that 1
n
∑n

i=1 di = s̄, max{d1, . . . , dn} = s, and pn = 2t . Thus,
Lemma 4.6 gives us

Pr[Y (p)− E[Y (p)] < −a] ≤ exp
(

2t s̄
s

( a
2t s̄

−

(
1 +

a
2t s̄

)
ln
(

1 +
a

2t s̄

)))
, (9)

We now consider two cases. First, suppose 2t s̄ ≤ 36s ln n. In this case, set a = 36(e2
− 1)s ln n, which ensures

that ln(1 + a/(2t s̄)) ≥ 2. Therefore, (9) simplifies to

Pr[Y (p)− E[Y (p)] < −36(e2
− 1)s ln n] ≤ exp

(
2t s̄
s

(
−

a
2t s̄

))
= e−a/s

= n−36(e2
−1)

≤ n−9/4 .

Using the condition s ≤ n1−2ε and (7), we obtain Pr[Y (p) < n1−2ε] ≤ n−9/4.
For the other case, suppose 2t s̄ > 36s ln n. Note that ln(1 + u) ≥ u − u2/2, for any u ≥ 0. We use this inequality,

together with the substitution u = a/(2t s̄), to simplify (9). After some routine algebra we get

Pr[Y (p)− E[Y (p)] < −a] ≤ exp

(
−

a2

4tss̄

(
1 −

a
2t s̄

))
.

Now we set a = 3
√

2tss̄ ln n. This makes a/(2t s̄) < 3
√

1/36 = 1/2. So,

Pr[Y (p)− E[Y (p)] < −3
√

2tss̄ ln n] ≤ exp

(
−

a2

8tss̄

)

≤ exp
(

−
9 ln n

4

)
= n−9/4 .

Using the condition tss̄ ≤ n2−3ε and (7), we again obtain Pr[Y (p) < n1−2ε] ≤ n−9/4.
Thus, in both cases, we have Pr[Y (p) < n1−2ε] ≤ n−9/4. Using (5), we get Pr[X (t) < n1−2ε] ≤ 2n−9/4

≤ n−2,
which is the desired bound.

5 Proof of the Packing Lemma
We now return to proving Lemma 3.10, our improved packing lemma. Recall that from the hypotheses we already have
the following degree conditions on the bipartite graphs G and H we wish to pack:

δ(G) ≤ q , δ(H) ≤ q , 1R(G) ≤ q2 , 1L(H) ≤ q2 , (10)

where we have set q = (αn ln n)1/3, where α is a small constant to be fixed later. Let us write

q =

( ε
32

n ln n
)1/3

, where ε := 32α . (11)

We shall assume throughout this section that n is even and large enough.

Definition 5.1 For a subset W of the vertex set of a graph and integer k ≤ |W |, let N (W ) denote the neighborhood of
W . Let top(W, k) and bot(W, k) denote the subsets of W consisting of, respectively, the k highest and k lowest degree
vertices in W . For a vertex x, let N (x) be defined as N ({x}).

Following Hajnal [Haj91], our first step will be to modify G and H suitably so that even stronger degree conditions
hold. Let

k = min
{

n
2
,

n
4δ(H)

}
. (12)
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From the hypotheses of the packing lemma, we know that VR(G) has at least n/2 isolated vertices; let V1 be a set of
size n/2 of these. Let V0 = top(VL(G), k), V2 = bot(VL(H), k) and V3 = N (V2)∪ top(VR(H), n

2 − |N (V2)|). Let us
define graphs G ′ and H ′ as follows:

G ′
= G \ (V0 ∪ V1) ; H ′

= H \ (V2 ∪ V3) .

It follows from the construction above that if G ′ and H ′ can be packed then so can G and H . This is because having
packed G ′ and H ′ we may arbitrarily identify the vertices in V0 with those in V2 and the vertices in V1 with those in V3.
Now, to show that G ′ and H ′ can be packed, we shall need the degree conditions guaranteed by the following lemma.

Lemma 5.2 The graphs G ′ and H ′ are (n − k, n/2)-bipartite graphs with the following properties:

δL(G ′) ≤ 2q , δR(G ′) ≤ 2q , δL(H ′) ≤ 2q , δR(H ′) ≤ 2q ,

1L(G ′) ≤ 4q2 , 1R(G ′) ≤ q2 ,

1L(H ′) ≤ q2 , 1R(H ′) ≤ 4q .

Proof: The first four inequalities are obvious from (10) and (12), as are the bounds on 1R(G ′) and 1L(H ′). By
construction, |N (V2)| ≤

∑
v∈V2

degH (v) ≤ δ(H)·n/(4δ(H)) = n/4; therefore V3 contains at least n/4 of the highest
degree vertices in VR(H). Since these vertices are removed to obtain H ′ we have 1R(H ′) ≤ 4δ(H) ≤ 4q. Similarly,
we have 1L(G ′) ≤ 4δ(H)δ(G) ≤ 4q2.

We prove that G ′ and H ′ can be packed using the probabilistic method: let σL : VL(G ′) → VL(H ′) be a uniform
random bijection; we shall show that with positive probability there exists a bijection σR : VR(G ′) → VR(H ′) such
that (σL , σR) is a packing. Let 0 = 0(σL) be a bipartite graph on vertex set (VR(G), VR(H)) defined as follows: for
x ∈ VR(G ′), y ∈ VR(H ′) we have (x, y) ∈ E(0) iff σL(N (x)) ∩N (y) = ∅. It is clear that the required bijection σR
exists iff the graph 0 has a perfect matching. Our task now is to show that the (random) bipartite graph 0 has a perfect
matching with positive probability. The most straightforward way of doing this is to use the following fact, attributed
to König, and easily proven using Hall’s marriage theorem:

Fact 5.3 Let K be an (m,m)-bipartite graph such that for every (x, y) ∈ VL(K ) × VR(K ), we have degK (x) +

degK (y) ≥ m. Then K has a perfect matching.

Accordingly, we would like to establish lower bounds on the degrees of vertices in 0. Hajnal [Haj91] used a similar
approach but did not exploit the asymmetry between G ′ and H ′. We, however, shall exploit this asymmetry in a crucial
way.

Lemma 5.4 Let x ∈ VR(G ′) and y ∈ VR(H ′) be arbitrary vertices and let σL and 0 be as defined above. Let m =
1
2 n.

Then, for α (and hence, ε) small enough, Pr[deg0(x) < m1−2ε] ≤ m−2, and Pr[deg0(y) < m − m1−2ε] ≤ m−2.

Proof: Any bipartite graph K can be recast as a hypergraph HK in the following natural way: we let the vertices in
VL(K ) be the vertices of HK and the neighborhoods of vertices in VR(K ), possibly repeated, form the multiset of
hyperedges. Formally, V (HK ) = VL(K ), and E(HK ) = {{N (x) : x ∈ VR(K )}}. Construct the hypergraphs HG ′ and
HH ′ , from G ′ and H ′ respectively, in this manner. Then each of these hypergraphs has n − k vertices and m =

1
2 n

hyperedges, and is squarish, because k ≤
1
2 n. It is clear from Lemma 5.2 that HG ′ is (q2, 4q2, 2q)-favorable and that

HH ′ is (4q, q2, 2q)-favorable.
Let S(y) = σ−1

L (N (y)) ⊆ VL(G ′). The neighbors of y in 0 are precisely those vertices in VR(G ′) whose
neighborhoods in G ′ do not intersect S(y). Thus, deg0(y) is the number of hyperedges that survive upon deleting
the vertices in S(y) from the hypergraph HG ′ , i.e., |E(HG ′ \ S(y))|. But S(y) is a uniform random subset of VL(G ′)
of size |N (y)| ≤ 1R(H ′) ≤ 4q . Choose α (and hence, ε) small enough so that the conditions of Lemma 4.4 hold:
4q2

≤ n1−3ε and 4q ·2q ≤ n1−3ε; our choice of q in (11) ensures that this can be done. That lemma then implies
Pr[deg0(y) < m − m1−2ε] ≤ m−2.

Let T (x) = σL(N (x)) ⊆ VL(H ′). Reasoning as above, deg0(x) = |E(HH ′ \ T (x))|. But T (x) is a uniform
random subset of VL(H ′) of size |N (x)| ≤ 1R(G ′) ≤ q2. Choose α small enough so that the conditions of Lemma 4.5
hold: q2

≤ n1−2ε, 4q ·q2
≤

1
8εn ln n, and q2

·q2
·2q ≤ n2−3ε; our choice of q in (11) ensures that this can be done.

We remark that the second of these three conditions is the bottleneck that limits the strength of the packing lemma, and
thus, of the main theorem. Lemma 4.5 then implies that Pr[deg0(x) < m1−2ε] ≤ m−2.
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Corollary 5.5 Let σL and 0 be as defined above and α be as small as required in Lemma 5.4. Then, with positive
probability, 0 has a perfect matching. Therefore, G ′ and H ′ can be packed.

Proof: Let m = n/2. Then 0 is an (m,m)-bipartite graph. Lemma 5.4 implies that any one of the 2m “bad” events
deg0(x) < m1−2ε for x ∈ VR(G ′) = VL(0) and deg0(y) < m − m1−2ε for y ∈ VR(H ′) = VR(0) happens with
probability at most m−2. Applying the union bound, the probability that no bad event occurs is at least 1−(2m)/m2 > 0.
Thus, with positive probability, 0 is such that for every choice of x ∈ VL(0) and y ∈ VR(0),

deg0(x)+ deg0(y) ≥ m1−2ε
+ (m − m1−2ε) = m .

Therefore, by Fact 5.3, 0 has a perfect matching.

This concludes the proof of Lemma 3.10, the packing lemma.

6 Proof of the Main Theorem
We wrap up by putting together the complete chain of reasoning that establishes Theorem 1.1, the main theorem.

Proof of Theorem 1.1: Let P ∈ Pn,n be a bipartite graph property. Set q = (αn ln n)1/3, where α is chosen small
enough for the packing lemma to hold. We claim that CR(P) = �(nq).

Suppose not. Assume n to be even, without loss of generality. Let G be an R-first sparse minterm of P (essentially
guaranteed to exist by Lemma 3.6) and H be an L-first minterm of P∗. As explained in Section 3, Fact 3.7 then implies
δ(G) ≤ q, δ(H) ≤ q,1R(G) ≤ q2, and 1L(H) ≤ q2. Therefore, by Lemma 3.10 (our improved packing lemma), G
and H can be packed. This contradicts Fact 3.9, which says that G and H cannot be packed.

Thus, we have proved by contradiction that CR(P) = �(nq), for all P ∈ Pn,n . Since nq = O(n3/2), Fact 3.2
implies that CR(Q) = �(nq) = �(n4/3 log1/3 n) for any Q ∈ Pn .

As a concluding remark, we note that there is plenty of slackness in the parameters of Lemmas 4.4 and 4.5, the
hypergraph vertex deletion lemmas. It is only Hajnal’s framework, which we use here, that constrains the parameters
we are forced to use those lemmas with. This raises the open question of whether the vertex deletion lemmas have
other interesting applications in graph packing. It also suggests that further improvement of our �(n4/3 log1/3 n) lower
bound will require breaking out of Hajnal’s framework.
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