
A Near-Optimal Algorithm for Computing the Entropy of a Stream

Amit Chakrabarti ∗

ac@cs.dartmouth.edu

Graham Cormode †

graham@research.att.com

Andrew McGregor ‡

andrewm@seas.upenn.edu

Abstract

We describe a simple algorithm for approximating the empirical entropy of a stream of m values
in a single pass, using O(ε−2 log(δ−1) log m) words of space. Our algorithm is based upon a novel
extension of a method introduced by Alon, Matias, and Szegedy [1]. We show a space lower bound of
�(ε−2/ log(ε−1)), meaning that our algorithm is near-optimal in terms of its dependency on ε. This
improves over previous work on this problem [9, 17, 21, 6]. We show that generalizing to kth order
entropy requires close to linear space for all k ≥ 1, and give additive approximations using our algorithm.
Lastly, we show how to compute a multiplicative approximation to the entropy of a random walk on an
undirected graph.

1 Introduction

The problem of computing the frequency moments of a stream [1] has stimulated significant research within
the algorithms community, leading to new algorithmic techniques and lower bounds. For all frequency
moments, matching upper and lower bounds for the space complexity are now known [10, 25, 20, 7]. In
the last year, attention has been focused on the strongly related question of computing the entropy of a
stream. Motivated by networking applications [16, 24, 26], several partial results have been shown on
computing the (empirical) entropy of a sequence of m items in sublinear space [9, 17, 21, 6]. In this paper,
we show a simple algorithm for computing an (ε, δ)-approximation to this quantity in a single pass, using
O(ε−2 log(δ−1) log m) words of space. We also show a lower bound of �(ε−2/ log(ε−1)), proving that our
algorithm is near-optimal in terms of its dependency on ε. We then give algorithms and lower bounds for
kth order entropy, a quantity that arises in text compression, based on our results for empirical (zeroth order)
entropy. We also provide algorithms to multiplicatively approximate the entropy of a random walk over an
undirected graph. Our techniques are based on a method originating with Alon, Matias, and Szegedy [1].
However, this alone is insufficient to approximate the entropy in bounded space. At the core of their method
is a procedure for drawing a uniform sample from the stream. We show how to extend this to drawing a larger
sample, according to a specific distribution, of distinct values from the stream. The idea is straightforward
to implement, and may have applications to other problems. For the estimation of entropy we will show that
keeping a “back-up sample” of a single additional item is sufficient to guarantee the desired space bounds.
In Section 2 we discuss this case and present our algorithm for approximating entropy (along with the lower
bound.) The results pertaining to kth order entropy are in Section 3. The extension to entropy of a random
walk on a graph is in Section 4.

∗Work supported by an NSF CAREER award and by Dartmouth College startup funds.
†Work carried out in part while at Lucent Bell Laboratories.
‡Work partially supported by ONR N00014-04-1-0735.

1

Preliminaries

A randomized algorithm is said to (ε, δ)-approximate a real number Q if it outputs a value Q̂ such that
|Q̂ − Q| ≤ εQ with probability at least (1 − δ) over its internal coin tosses. Our goal is to produce such
(ε, δ)-approximations for the entropy of a stream. We first introduce some notation and definitions.

Definition 1. For a data stream A = 〈a1, a2, . . . , am〉, with each token a j ∈ [n], we define mi := |{ j : a j =

i}| and pi := mi/m, for each i ∈ [n]. The empirical probability distribution of A is p := (p1, p2, . . . , pn).
The empirical entropy of A is defined1 as H(p) :=

∑n
i=1−pi lg pi . The entropy norm of A is FH :=∑n

i=1 mi lg mi .

Clearly FH and H are closely related, since we can write FH = m lg m−m H . However, they differ sig-
nificantly in their approximability: FH cannot be approximated within constant factors in poly-logarithmic
space [9], while we show here an (ε, δ)-approximation of H in poly-logarithmic space.

Prior Work

In the networking world, the problem of approximating the entropy of a stream was considered in Lall et
al. [21]. They focused on estimating FH , under assumptions about the distribution defined by the stream
that ensured that computing H based on their estimate of FH would give accurate results. Guha, McGregor
and Venkatasubramanian [17] gave constant factor as well as (ε, δ)-approximations for H , using space
that depends on the value of H . Chakrabarti, Do Ba and Muthukrishnan [9] gave a one pass algorithm
for approximating H with sublinear but polynomial in m space, as well as a two-pass algorithm requiring
only poly-logarithmic space. Most recently, Bhuvanagiri and Ganguly [6] described an algorithm that can
approximate H in poly-logarithmic space in a single pass. The algorithm is based on the same ideas and
techniques as recent algorithms for optimally approximating frequency moments [20, 7], and can tolerate
streams in which previously observed items are removed. The exact space bound is

O
(

ε−3(log4 m)(log δ−1)
log m + log n + log ε−1

log ε−1 + log log m

)
,

which is suboptimal in its dependency on ε, and has high cost in terms of log m.

2 Computing the Entropy of a Stream

2.1 The Main Algorithm

Consider a data stream A as in Definition 1. For a real-valued function f such that f (0) = 0, let us
define f (A) := 1

m

∑n
i=1 f (mi). We base our approach on the method of Alon, Matias and Szegedy [1]

to estimate quantities of the form f (A): note that the empirical entropy of A is one such quantity with
f (mi) = mi log(m/mi).

Definition 2. Let D(A) be the distribution of the random variable R defined thus: Pick J ∈ [m] uniformly
at random and let R = |{ j : a j = aJ , J ≤ j ≤ m}|.

1Here and throughout we use lg x to denote log2 x .

2

The core idea is to space-efficiently generate a random variable R ∼ D(A). For an integer c, define the
random variable

Est f (R, c) :=
1
c

c∑
i=1

X i , (1)

where the random variables {X i } are independent and each distributed identically to (f (R)− f (R−1)). Ap-
pealing to Chernoff-Hoeffding bounds one can show that by increasing c, Est f (R, c) can be made arbitrarily
close to f (A). This is formalized in the lemma below.

Lemma 1. Let X := f (R)− f (R − 1), a, b ≥ 0 such that −a ≤ X ≤ b, and

c ≥ 3(1+ a/ E[X])2ε−2 ln(2δ−1)(a + b)/(a + E[X]) .

Then E[X] = f (A) and, if E[X] ≥ 0, the estimator Est f (R, c) gives an (ε, δ)-approximation to f (A) using
space c times the space required to maintain R.

Proof. E[X] = f (A) follows by straightforward calculation of the expectation. Consider the random vari-
able Y := (X + a)/(a + b). First note that Y ∈ [0, 1]. Therefore Chernoff-Hoeffding bounds imply
that, if {Yi } are independent and each distributed identically to Y , Est′f (R, c) = c−1∑

i∈[c] Yi is an (ε/(1+
a/ E[X]), δ)-approximation to (f (A) + a)/(a + b). Note that, Est′f (R, c) =

(
Est f (R, c)+ a

)
/(a + b).

This implies that,

Pr
[
|Est f (R, c)− f (A)| > ε f (A)

]
= Pr

[∣∣(a + b) Est′f (R, c)− f (A)− a
∣∣ > ε f (A)

]
= Pr

[∣∣∣∣∣Est′f (R, c)−
f (A)+ a

a + b

∣∣∣∣∣ >
ε

1+ a/ E[X]
f (A)+ a

a + b

]
≤ δ .

Therefore, Est f (R, c) gives an (ε, δ)-approximation to f (A) as claimed.

Overview of the technique

We now give some of the intuition behind our algorithm for estimating H(p). Let A′ denote the substream
of A obtained by removing from A all occurrences of the most frequent token (with ties broken arbitrarily)
and let R′ ∼ D(A′). A key component of our algorithm (see Algorithm Maintain-Samples below) is a
technique to simultaneously maintain R and enough extra information that lets us recover R′ when we need
it. Let pmax := maxi pi . Let λ be given by

λ(x) := x lg(m/x) , where λ(0) := 0 , (2)

so that λ(A) = H(p). Define X = λ(R)− λ(R − 1) and X ′ = λ(R′)− λ(R′ − 1). If pmax is bounded away
from 1 then we can show that 1/ E[X] is “small,” so Estλ(R, c) gives us our desired estimator for a “small”
value of c, by Lemma 1. If, on the other hand, pmax > 1

2 then we can recover R′ and can show that 1/ E[X ′]
is “small.” Finally, by our analysis we can show that Estλ(R′, c) and an estimate of pmax can be combined
to give an (ε, δ)-approximation to H(p). This logic is given in Algorithm Entropy-Estimator below.

Thus, our algorithm must also maintain an estimate of pmax in parallel to Algorithm Maintain-Samples.
There are a number of ways of doing this and here we choose to use the Misra-Gries algorithm [22] with
a sufficiently large number of counters. This (deterministic) algorithm takes a parameter k — the number

3

of counters — and processes the stream, retaining up to k pairs (i, m̂i), where i is a token and the counter
m̂i is an estimate of its frequency mi . The algorithm starts out holding no pairs and implicitly setting each
m̂i = 0. Upon reading a token, i , if a pair (i, m̂i) has already been retained, then m̂i is incremented; else, if
fewer than k pairs have been retained, then a new pair (i, 1) is created and retained; else, m̂ j is decremented
for each retained pair (j, m̂ j) and then all pairs of the form (j, 0) are discarded. The following lemma
summarizes the key properties of this algorithm; the proof is simple (see, e.g., [8]) and we skip it below.

Lemma 2. The estimates m̂i computed by the Misra-Gries algorithm using k counters satisfy m̂i ≤ mi and
mi − m̂i ≤ (m − mi)/k.

We now describe our algorithm more precisely with some pseudocode. By abuse of notation we use
Estλ(r, c) to also denote the algorithmic procedure of running in parallel c copies of an algorithm that
produces r and combining these results as in (1).

Algorithm Maintain-Samples
1. for a ∈ A
2. do Let t be a random number in the range [m3]
3. if a = s0

4. then if t < t0 then (s0, t0, r0)← (a, t, 1) else r0 ← r0 + 1
5. else if a = s1 then r1 ← r1 + 1
6. if t < t0
7. then (s1, t1, r1)← (s0, t0, r0); (s0, t0, r0)← (a, t, 1)

8. else if t < t1 then (s1, t1, r1)← (a, t, 1)

Algorithm Entropy-Estimator
1. c← 16ε−2 ln(2δ−1) lg(me)
2. Run the Misra-Gries algorithm on A with k =

⌈
7ε−1

⌉
counters, in parallel with Maintain-Samples

3. if Misra-Gries retains a token i with counter m̂i > m/2
4. then (imax, p̂max)← (i, m̂i/m)

5. if a0 = imax then r ← r1 else r ← r0

6. return (1− p̂max) · Estλ(r, c)+ p̂max lg(1/ p̂max)

7. else return Estλ(r0, c)

Figure 1: Algorithms for sampling and estimating entropy.

Maintaining Samples from the Stream

We show a procedure that allows us to generate R and R′ with the appropriate distributions. For each token
a in the stream, we draw t , a random number in the range [m3], as its label. We choose to store certain
tokens from the stream, along with their label and the count of the number of times the same token has been
observed in the stream since it was last picked. We store two such tokens: the token s0 that has achieved the
least t value seen so far, and the token s1 such that it has the least t value of all tokens not equal to s0 seen so
far. Let t0 and t1 denote their corresponding labels, and let r0 and r1 denote their counts in the above sense.
Note that it is easy to maintain these properties as new items arrive in the stream, as Algorithm Maintain-
Samples illustrates.

4

Lemma 3. Algorithm Maintain-Samples satisfies the following properties. (i) After processing the whole
stream A, s0 is picked uniformly at random from A and r0 ∼ D(A). (ii) For a ∈ [n], let A \ a denote the
stream A with all occurrences of a removed. Suppose we set s and r thus: if s0 6= a then s = s0 and r = r0,
else s = s1 and r = r1. Then s is picked uniformly from A \ a and r ∼ D(A \ a).

Proof. To prove (i), note that the way we pick each label t ensures that (w.h.p.) there are no collisions
amongst labels and, conditioned on this, the probability that any particular token gets the lowest label value
is 1/m.

We show (ii) by reducing to the previous case. Imagine generating the stream A \ a and running the
algorithm on it. Clearly, picking the item with the smallest t value samples uniformly from A \ a. Now let
us add back in all the occurrences of a from A. One of these may achieve a lower t value than any item
in A \ a, in which case it will be picked as s0, but then s1 will correspond to the sample we wanted from
A \ a, so we can return that. Else, s0 6= a, and is a uniform sample from A \ a. Hence, by checking whether
s0 = a or not, we can choose a uniform sample from A \ a. The claim about the distribution of r is now
straightforward: we only need to observe from the pseudocode that, for j ∈ {0, 1}, r j correctly counts the
number of occurrences of s j in A from the time s j was last picked.

Analysis of the Algorithm

We now analyse our main algorithm, given in full in Algorithm Entropy-Estimator.

Theorem 4. Algorithm Entropy-Estimator uses space O(ε−2 log(δ−1) log m(log m + log n)) bits and gives
an (ε, δ)-approximation to H(p).

Proof. To argue about the correctness of Algorithm Entropy-Estimator, we first look closely at the Misra-
Gries algorithm used within it. By Lemma 2, p̂i := m̂i/m is a good estimate of pi . To be precise, | p̂i− pi | ≤

(1 − pi)/k. Hence, by virtue of the estimation method, if pi > 2
3 and k ≥ 2, then i must be among the

tokens retained and must satisfy p̂i > 1
2 . Therefore, in this case we will pick imax — the item with maximum

frequency — correctly, and pmax will satisfy

p̂max ≤ pmax and | p̂max − pmax| ≤
1− pmax

k
. (3)

Let A, A′, R, R′, X, X ′ be as before. Suppose p̂max ≤
1
2 . The algorithm then reaches Line 7. By Part (i)

of Lemma 3, the returned value is Estλ(R, c). Now (3), together with k ≥ 2, implies pmax ≤
2
3 and a simple

convexity argument shows that H(p) ≥ 2
3 lg 3

2 +
1
3 lg 3

1 > 0.9. Note that − lg e ≤ X ≤ lg m. This follows
because,

d
dx

x lg
(m

x

)
= lg

(m
x

)
− lg e

and, using the Mean Value Theorem,

∀r ∈ [m], inf
x∈[r−1,r]

λ′(x) ≤ λ(r)− λ(r − 1) ≤ sup
x∈[r−1,r]

λ′(x) .

Consequently,

X ≤ max{λ(1)− λ(0), max
x∈{2,...,m}

(λ(r)− λ(r − 1))} ≤ max{lg m, sup
x∈[1,m]

(lg(m/x)− lg e)} ≤ lg m

5

and
X ≥ inf

x∈[0,m]
(lg(m/x)− lg e) = − lg e .

Hence Lemma 1 implies that c is large enough to ensure that the return value is a (3
4ε, δ)-approximation to

H(p).
Now suppose p̂max > 1

2 . The algorithm then reaches Line 6. By Part (ii) of Lemma 3, the return value is
(1 − p̂max) · Estλ(R′, c) + p̂max lg(1/ p̂max), and (3) implies that pmax > 1

2 . Assume, w.l.o.g., that imax = 1.
Then

E[X ′] = λ(A′) =
1

m − m1

n∑
i=2

λ(mi) ≥ lg
m

m − m1
≥ 1 ,

where the penultimate inequality follows by convexity arguments. As before,− lg e ≤ X ≤ lg m, and hence
Lemma 1 implies that c is large enough to ensure that Estλ(R′, c) is a (3

4ε, δ)-approximation to λ(A′).
Next, we show that p̂1 lg(1/ p̂1) is a (2

k , 0)-approximation to p1 lg(1/p1), as follows:

|p1 lg(1/p1)− p̂1 lg(1/ p̂1)|

p1 lg(1/p1)
≤
| p̂1 − p1|

p1 lg(1/p1)
max

p∈[1
2 ,1]

∣∣∣∣ d
dp

(p lg(1/p))

∣∣∣∣ ≤ (1− p1)

k p1 lg(1/p1)
· lg e ≤

2
k

,

where the final inequality follows from the fact that g(p) := (1 − p)/(p ln(1/p)) is non-increasing in the
interval [1

2 , 1], so g(p) ≤ g(1
2) < 2. To see this, note that 1 − p + ln p ≤ 0 for all positive p and that

g′(p) = (1− p + ln p)/(p ln p)2. Now observe that

H(p) = (1− p1)λ(A′)+ p1 lg(1/p1) . (4)

From (3) it follows that (1− p̂1) is an (1
k , 0)-approximation to (1− p1). Setting k ≥

⌈
7ε−1

⌉
, and assuming

ε ≤ 1 ensures that that (1 − p̂1) · Estλ(R′, c) is a (ε, δ)-approximation to (1 − p1)λ(A′), and p̂1 lg(1/ p̂1)

is a (better than) (ε, 0)-approximation to p1 lg(1/p1). Thus, we have shown that in this case the algorithm
returns a (ε, δ)-approximation to H(p), since both terms in (4) are approximated with relative error.

The claim about the space usage is straightforward. The Misra-Gries algorithm requires O(k) = O(ε−1)

counters and item identifiers. Each run of Algorithm Maintain-Samples requires O(1) counters, labels, and
item identifiers, and there are c = O(ε−2 log(δ−1) log m) such runs. Everything stored is either an item from
the stream, a counter that is bounded by m, or a label that is bounded by m3, so the space for each of these
is O(log m + log n) bits.

2.2 Variations on the Algorithm

Randomness and Stream Length

As described, our algorithm requires O(m log m) bits of randomness, since we require a random number in
the range [m3] for each item in the stream. This randomness requirement can be reduced to O(logO(1) m)

bits by standard arguments invoking Nisan’s pseudorandom generator [23]. An alternate approach is to use
a hash function from a min-wise independent family on the stream index to generate t [18]. This requires a
modification to the analysis: the probability of picking any fixed item changes from 1/m to a value in the
interval [(1 − ε)/m, (1 + ε)/m]. One can show that this introduces a 1 + O(ε) factor in the expressions
for expectation and variance of the estimators, which does not affect the overall correctness; an additional
O(log n log ε−1) factor in space would also be incurred to store the descriptions of the hash functions.

The algorithm above also seems to require prior knowledge of m, although an upper bound clearly
suffices (we can compute the true m as the stream arrives). But we only need to know m in order to choose

6

the size of the random labels large enough to avoid collisions. Should the assumed bound be proven too low,
it suffices to extend the length of labels t0 and t1 by drawing further random bits in the event of collisions
to break ties. Invoking the principle of deferred decisions, it is clear that the correctness of the algorithm is
unaffected.

Sliding Window Computations

In many cases it is desirable to compute functions not over the whole semi-infinite stream, but rather
over a sliding window of the last W updates. Our method accommodates such an extension with an
O(log2 W) expansion of space (with high probability). Formally, define the sliding window count of i
as mw

i = |{ j |a j = i, i > m − w}|. The empirical probability is pw
i = mw

i /w, and the empirical entropy is
H(pw) =

∑n
i=1−pw

i lg pw
i .

Lemma 5. We can approximate H(pw) for any w < W in space bounded by O(ε−2 log(δ−1) log3 W)

machine words with high probability.

Proof. We present an algorithm that retains sufficient information so that, after observing the stream of
values, given w < W we can recover the information that Algorithm Entropy-Estimator would have stored
had only the most recent w values been presented to it. From this, the correctness follows immediately.
Thus, we must be able to compute sw

0 , rw
0 , sw

1 , rw
1 , iw

max and pw
max, the values of s0, r0, s1, r1, imax and pmax on

the substreams defined by the sliding window specified by w.
For iw

max and pw
max, it is not sufficient to apply standard sliding window frequent items queries [2]. To

provide the overall accuracy guarantee, we needed to approximate pmax with error proportion to ε′(1− pw
max)

for a parameter ε′. Prior work gives guarantees only in terms of ε′ pw
1 , so we need to adopt a new approach.

We replace our use of the Misra-Gries algorithm with the Count-Min sketch [11]. This is a randomized
algorithm that hashes each input item to O(log δ−1) buckets, and maintains a sum of counts within each
of a total of O(ε−1 log δ−1) buckets. If we were able to create a CM-sketch summarizing just the most
recent w updates, then we would be able to find an (ε, δ) approximation to (1 − pw

max), and hence also find
pw

max with error ε(1 − pw
max). This follow immediately from the properties of the sketch proved in [11]. In

order to make this valid for arbitrary sliding windows, we replace each counter within the sketch with an
Exponential Histogram or Determinsitic Wave data structure [13, 15]. This allows us to (ε, 0) approximate
the count of each bucket within the most recent w < W timesteps in space O(ε−1 log2 W). Combining these
and rescaling ε, one can build an (ε, δ) approximation of (1− pw

max) for any w < W . The space required for
this estimation is O(ε−2 log2 W log δ−1(log m + log n)) bits.

For sw
0 , rw

0 , sw
1 and rw

1 , we can take advantage of the fact that these are defined by randomly chosen tags
tw
0 and tw

1 , and for any W there are relatively few possible candidates for all the w < W . Let t[j] be the
random tag for the j th item in the stream. We maintain the following set of tuples,

S0 = {(j, a j , t[j], r [j]) : j = argmin
m−w<i≤m

t[j], r [j] = |{k|ak = a j , k ≥ j}|, w < W }

This set defines jw
0 = argminm−w<i≤m t[j] for w < W . We maintain a second set of tuples,

S1 = {(j, a j , t[j], r [j]) : j = argmin
i 6= jw0 ,m−w<i≤m

t[j], r [j] = |{k|ak = a j , k ≥ j}|, w < W }

and this set defines jw
1 = argminm−w<i≤m t[j] for w < W . Note that it is straight-forward to maintain S0

and S1. Then, for any w < W , we set,

(sw
0 , rw

0)← (a jw0 , r [jw
0]) and (sw

1 , rw
1)← (a jw1 , r [jw

1]) .

7

We now bound the sizes of S0 and S1. The size of S0 can be bounded by observing that if we build a
treap over the sequence of timestamp, label pairs where we order by timestamp and heapify by label, the
members of S0 correspond to precisely the right spine of the treap. As argued in [3], this approach yields
a strong bound on |S0|, since with high probability the height of a treap with randomly chosen priorities
such as these (i.e. a random binary search tree) is logarithmic. Further, we can observe that members of S1

correspond to nodes in the treap that are left children of members of S0, and their right descendants. Thus, if
the treap has height h, the size of S1 is O(h2). For windows of size at most W , the implicit treap has height
O(log W) with high probability.

Thus, we need to store a factor of O(log2 W) more information for each instance of the basic estimator.
The total space bound is therefore O(ε−2 log(δ−1) log3 W (log m + log n)) bits.

2.3 Extensions to the Technique

We observe that the method we have introduced here, of allowing a sample to be drawn from a modified
stream with an item removed may have other applications. The method naturally extends to allowing us to
specify a set of k items to remove from the stream after the fact, by keeping the k+1 distinct items achieving
the smallest label values. In particular, Lemma 3 can be extended to give the following.

Lemma 6. There exists an algorithm A, using O(k) space, that returns k pairs (si , ri)i∈[k+1] such that si is
picked uniformly at random from A \ {s1, . . . , si−1} and r ∼ D(A \ {s1, . . . , si−1}). Consequently, given a
set S of size at most k and the output of A it is possible to sample (s, r) such that s is picked uniformly at
random from A \ S and r ∼ D(A \ S).

This may be of use in applications where we can independently identify “junk” items or other undesir-
able values which would dominate the stream if not removed. For example, in the case in which we wish
to compute the quantiles of a distribution after removing the k most frequent items from the distribution.
Additionally, the procedure may have utility in situations where a small fraction of values in the stream can
significantly contribute to the variance of other estimators.

2.4 Lower Bound

We now show that the dependence of the above space bound on ε is nearly tight. To be precise, we prove
the following theorem.

Theorem 7. Any one-pass randomized (ε, 1
4)-approximation for H(p) requires �(ε−2/ log(ε−1)) space.

Proof. Let GAP-HAMDIST denote the following (one-way) communication problem. Alice receives x ∈
{0, 1}N and Bob receives y ∈ {0, 1}N . Alice must send a message to Bob after which Bob must answer
“near” if the Hamming distance ‖x − y‖1 ≤ N/2 and “far” if ‖x − y‖1 ≥ N/2 +

√
N . They may answer

arbitrarily if neither of these two cases hold. The two players may follow a randomized protocol that must
work correctly with probability at least 3

4 . It is known [19] that GAP-HAMDIST has one-way communication
complexity �(N).

We now reduce GAP-HAMDIST to the problem of approximating H(p). Suppose A is a one-pass algo-
rithm that (ε, δ)-approximates H(p). Let N be chosen such that ε−1

= 3
√

N lg N and assume, w.l.o.g., that
N is an integer. Alice and Bob will run A on a stream of tokens from [N] × {0, 1} as follows. Alice feeds
the stream 〈(i, xi)〉

N
i=1 into A and then sends over the memory contents of A to Bob who then continues the

8

run by feeding in the stream 〈(i, yi)〉
N
i=1. Bob then looks at the output out(A) and answers “near” if

out(A) < lg N +
1
2
+

1

2
√

N

and answers “far” otherwise. We now prove the correctness of this protocol.
Let d := ‖x − y‖1. Note that the stream constructed by Alice and Bob in the protocol will have N − d

tokens with frequency 2 each and 2d tokens with frequency 1 each. Therefore,

H(p) = (N − d) ·
2

2N
lg

2N
2
+ 2d ·

1
2N

lg
2N
1
= lg N +

d
N

.

Therefore, if d ≤ N/2, then H(p) ≤ lg N + 1
2 whence, with probability at least 3

4 , we will have

out(A) ≤ (1+ ε)H(p) ≤

(
1+

1

3
√

N lg N

)(
lg N +

1
2

)
< lg N +

1
2
+

1

2
√

N

and Bob will correctly answer “near.” A similar calculation shows that if d ≥ N/2+
√

N then, with prob-
ability at least 3

4 , Bob will correctly answer “far.” Therefore the protocol is correct and the communication
complexity lower bound implies that A must use space at least �(N) = �(ε−2/ log(ε−1)).

3 Higher-Order Entropy

The kth order entropy is a quantity defined on a sequence that quantifies how easy it is to predict a character
of the sequence given the previous k characters. We start with a formal definition.

Definition 3. For a data stream A = 〈a1, a2, . . . , am〉, with each token a j ∈ [n], we define

mi1i2...it := |{ j ≤ m − k : a j−1+l = il for l ∈ [t]}| ; pit |i1,i2,...,it−1 := mi1i2...it /mi1i2...it−1 ,

for i1, i2, . . . , it ∈ [n]. The (empirical) kth order entropy of A is defined as

Hk(A) := −
∑

i1

pi1

∑
i2

pi2|i1 . . .
∑
ik+1

pik+1|i1...ik lg pik+1|i1...ik .

Unfortunately, unlike empirical entropy, H0, there is no small space algorithm for multiplicatively ap-
proximating Hk . This is even the case for H1 as substantiated in the following theorem.

Theorem 8. Approximating H1(A) up to any multiplicative error requires �(m/ log m) space.

Proof. Let PREFIX denote the following (one-way) communication problem. Alice has a string x ∈ {0, 1}N

and Bob has a string y ∈ {0, 1}N
′

with N ′ ≤ N . Alice must send a message to Bob, and Bob must answer
“yes” if y is a prefix of x , and “no” otherwise. The one-way probabilistic communication complexity
of PREFIX is �(N/ log N), as the following argument shows. Suppose we could solve PREFIX using C
bits of communication. Repeating such a protocol O(log n) times in parallel reduces the probability of
failure from constant to O(1/n). But by posing O(n) PREFIX queries in response to Alice’s message in
this latter protocol, Bob could learn x with failure probability at most a constant. Therefore, we must have
C log n = �(n).

9

Consider an instance (x, y) of PREFIX. Let Alice and Bob jointly construct the stream A = 〈a1, a2, . . . , aN ,

b1, b2, . . . , bN ′〉, where ai = (i, xi) for i ∈ [N] and bi = (i, yi) for i ∈ [N ′]. Note that,

H1(A) = −
∑

i

pi

∑
j

p j |i lg p j |i = 0

if x is a prefix of y. But H1(A) 6= 0 if x is not a prefix of y. This reduction proves that any multiplicative
approximation to H1 requires �(N/ log N) space, using the same logic as that in the conclusion of the proof
of Theorem 7. Since the stream length m = N+N ′ = 2(N), this translates to an �(m/ log m) lower bound.

Since the above theorem effectively rules out efficient multiplicative approximation, we now turn our
attention to additive approximation. The next theorem (and its proof) shows how the algorithm in Section 2
gives rise to an efficient algorithm that additively approximates the kth order entropy.

Theorem 9. Hk(A) can be ε-additively approximated with O(k2ε−2 log(δ−1) log2 n log2 m) space.

Proof. We first rewrite the kth order entropy as follows.

Hk(A) = −
∑

i1,i2,...,ik+1

pi1 pi2|i1 . . . pik+1|i1i2...ik lg pik+1|i1i2...ik

=

∑
i1,i2,...,ik+1

mi1...ik+1

m − k
lg

mi1...ik

mi1...ik+1

= −

∑
i1,i2,...,ik

mi1...ik

m − k
lg

m − k
mi1...ik

+

∑
i1,i2,...,ik+1

mi1...ik+1

m − k
lg

m − k
mi1...ik+1

= H(pk+1)− H(pk)

where pk is the distribution over nk points with pk
i1i2...ik

= mi1i2...ik /(m − k) and pk+1 is the distribution over
nk+1 points with pk

i1i2...ik+1
= mi1i2...ik+1/(m − k). Since H(pk) is less than k lg n, if we approximate it to a

multiplicative factor of at most (1+ ε/(2k lg n)) then we have an additive ε/2 approximation. Appealing to
Theorem 4 this can be done in O(k2ε−2 log(δ−1) log2(n) log(m)) space. We can deal with H(pk+1) similarly
and hence we get an ε additive approximation for Hk(A). Directly implementing these algorithms, we need
to store strings of k characters from the input stream as a single kth order character; for large k, we can
hash these strings onto the range [m2]. Since there are only m − k substrings of length k, then there are no
collisions in this hashing w.h.p., and the space needed is only O(log m) bits for each stored item or counter.

4 Entropy of a Random Walk

In Theorem 8 we showed that it was impossible to multiplicatively approximate the first order entropy, H1,
of a stream in sub-linear space. In this section we consider a related quantity HG , the unbiased random walk
entropy. We will discuss the nature of this relationship after a formal definition.

Definition 4. For a data stream A = 〈a1, a2, . . . , am〉, with each token a j ∈ [n], we define an undirected
graph G(V, E) on n vertices, where V = [n] and E = {{u, v} ∈ [n]2 : u = a j , v = a j+1 for some j ∈
[m − 1]}. Let di be the degree of node i . Then the unbiased random walk entropy of A is defined as,

HG :=
1

2|E |

∑
i∈[n]

di lg di .

10

Consider a stream formed by an unbiased random walk on an undirected graph G, i.e., if ai = j then
ai+1 is uniformally chosen from the d j neighbors of j . Then HG is the limit of H1(A) as the length of this
random walk tends to infinity:

HG =
1

2|E |

∑
i∈[n]

di lg di = lim
m→∞

∑
i∈[n]

mi

m

∑
j∈[n]

mi j

mi
lg

mi

mi j
= lim

m→∞
H1(〈a1, a2, . . . , am〉) ,

since limm→∞(mi j/mi) = 1/di and limm→∞(mi/m) = di/(2|E |) as the stationary distribution of a random
walk on an undirected graph is (d1/(2|E |), d2/(2|E |), . . . , dn/(2|E |)).

For the rest of this section it will be convenient to reason about a stream E ′ that can be easily transduced
from A. E ′ will consist of m − 1, not necessarily distinct, edges on the set of nodes V = [n], E ′ =
〈e1, e2, . . . , em−1〉 where ei = (ai , ai+1) . Note that E is the set produced by removing all duplicate edges
in E ′.

Overview of the algorithm

Our algorithm uses the standard AMS-Estimator as described in Section 2. However, because E ′ includes
duplicate items which we wish to disregard, our basic estimator is necessarily more complicated. The
algorithm combines ideas from multi-graph streaming [12] and entropy-norm estimation [9] and uses min-
wise hashing [18] and distinct element estimators [4].

Ideally the basic estimator would sample a node w uniformly from the multi-set in which each node u
occurs du times. Then let r be uniformly chosen from {1, . . . , dw}. If the basic estimator were to return
g(r) = f (r)− f (r − 1) where f (x) = x lg x then the estimator would be correct in expectation:∑

w∈[n]

dw

2|E |

∑
r∈[dw]

1
dw

(f (r)− f (r − 1)) =
1

2|E |

∑
w∈[n]

dw lg dw .

To mimic this sampling procedure we use an ε-min-wise hash function h [18] to map the distinct edges in
E ′ into [m]. It allows us to pick an edge e = (u, v) (almost) uniformly at random from E by finding the
edge e that minimizes h(e). We pick w uniformly from {u, v}. Note that w has been chosen with probability
proportional to (1 ± ε) dw

2|E | . Let i = max{ j : e j = e} and consider the r distinct edges among {ei , . . . , em}

that are incident on w. Let e1, . . . , edw be the dw edges that are incident on w and let ik = max{ j : e j = ek
}

for k ∈ [dw]. Then r is distributed as |{k : ik ≥ i}| and hence takes a value from {1, . . . , dw} with probability
(1± ε)/dw.

Unfortunately we cannot compute r exactly unless it is small. If r ≤ ε−2 then we maintain an exact
count, by keeping the set of distinct edges. Otherwise we compute an (ε, δ)-approximation of r using a
distinct element estimation algorithm, e.g. [4]. Note that if this is greater than n we replace the estimate by
n to get a better bound. This will be important when bounding the maximum value of the estimator. Either
way, let this (approximate) count be r̃ . We then return g(r̃). The next lemma demonstrates that using g(r̃)

rather than g(r) only incurs a small amount of additional error.

Lemma 10. Assuming ε < 1/4, |g(r)− g(r̃)| ≤ O(ε)g(r) with probability at least 1− δ.

Proof. If r ≤ ε−2, then r = r̃ , and the claim follows immediately. Therefore we focus on the case where
r > ε−2. Let r̃ = (1+ γ)r where |γ | ≤ ε. We write g(r) as the sum of the two positive terms,

g(r) = lg(r − 1)+ r lg(1+ 1/(r − 1))

11

and will consider the two terms in the above expression separately.
Note that for r ≥ 2, r̃−1

r−1 = 1±2ε. Hence, for the first term, and providing the distinct element estimation
succeeds with its accuracy bounds,

| lg(r̃ − 1)− lg(r − 1)| =

∣∣∣∣lg r̃ − 1
r − 1

∣∣∣∣ = O(ε) ≤ O(ε) lg(r − 1) .

where the last inequality follows since r > ε−2, ε < 1
4 , and hence lg(r − 1) > 1.

Note that for r ≥ 2, r lg
(
1+ 1

r−1

)
≥ 1. For the second term,∣∣∣∣r lg

(
1+

1
r − 1

)
− r̃ lg

(
1+

1
r̃ − 1

)∣∣∣∣ ≤ εr lg
(

1+
1

r̃ − 1

)
+ r

∣∣∣∣∣lg
(

1+ 1
r−1

1+ 1
r̃−1

)∣∣∣∣∣
≤ O(ε)

r
r̃ − 1

+ r

∣∣∣∣∣lg
(

1+
r̃−1
r−1 − 1

r̃

)∣∣∣∣∣
≤ O(ε)+ r O

(
1
r̃

∣∣∣∣ r̃ − 1
r − 1

− 1
∣∣∣∣)

≤ O(ε)+ O(ε)

≤ O(ε)r lg
(

1+
1

r − 1

)
.

Hence |g(r)− g(r̃)| ≤ O(ε)g(r) as required.

Theorem 11. There exists an (ε, δ)-approximation algorithm for HG using2 O(ε−4 log2 n log2 δ−1) space.

Proof. Consider the expectation of the basic estimator:

E[X] =
∑
w∈[n]

(1± O(ε))dw

2|E |

∑
r∈[dw]

(1± O(ε))

dw

(f (r)− f (r − 1))

=
1± O(ε)

2|E |

∑
w∈[n]

dw lg dw .

Note that since the graph G is revealed by a random walk, this graph must be connected. Hence |E | ≥ n−1
and dw ≥ 1 for all w ∈ V . But then

∑
w dw = 2|E | ≥ 2(n − 1) and therefore,

1
2|E |

∑
w∈[n]

dw lg dw ≥ lg
2|E |

n
≥ lg 2(1− 1/n) .

The maximum value taken by the basic estimator is,

max[X] ≤ max
1≤r≤n

(f (r)− f (r − 1))

≤

(
n lg

n
n − 1

+ lg(n − 1)

)
≤

(
n

n − 1
+ lg(n − 1)

)
< (2+ lg n) .

2Ignoring factors of log log n and log ε−1.

12

Therefore, by appealing to Lemma 1, we know that if we take c independent copies of this estimator
we can get a (ε, δ)-approximation to E[X] if c ≥ 6ε−2(2 + lg n) ln(2δ−1)/(lg 2(1 − 1/n)). Hence with
probability 1− O(δ), the value returned is (1± O(ε))HG .

The space bound follows because for each of the O(ε−2 log n log δ−1) basic estimators we require an ε

min-wise hash function using O(log n log ε−1) space [18] and a distinct element counter using O((ε−2 log log n+
log n) log δ−1

1) space [4] where δ−1
1 = O(cδ−1). Hence, rescaling ε and δ at the outset gives the required

result.

Our bounds are independent of the length of the stream, m, since there are only n2 distinct edges, and
our algorithms are not affected by multiple copies of the same edge.

Finally, note that our algorithm is actually correct if the multi-set of edges E ′ arrives in any order, i.e. it is
not necessary that (u, v) is followed by (v, w) for some w. Hence our algorithm also fits into the adversarial
ordered graph streaming paradigm e.g., [5, 14, 12].

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.
Journal of Computer and System Sciences, 58(1):137–147, 1999.

[2] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In Proceedings
of ACM Principles of Database Systems, pages 286–296, 2004.

[3] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data. In
SODA, pages 633–634, 2002.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct elements in
a data stream. In RANDOM, pages 1–10, 2002.

[5] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an application
to counting triangles in graphs. In SODA, pages 623–632, 2002.

[6] L. Bhuvanagiri and S. Ganguly. Estimating entropy over data streams. In ESA, 2006.

[7] L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. Simpler algorithm for estimating frequency mo-
ments of data streams. In SODA, pages 708–713, 2006.

[8] P. Bose, E. Kranakis, P. Morin, and Y. Tang. Bounds for frequency estimation of packet streams. In
SIROCCO, 2003.

[9] A. Chakrabarti, K. Do Ba, and S. Muthukrishnan. Estimating entropy and entropy norm on data
streams. In STACS, pages 196–205, 2006.

[10] A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower bounds on the multi-party communication
complexity of set disjointness. In CCC, pages 107–117, 2003.

[11] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its
applications. J. Algorithms, 55(1):58–75, 2005.

[12] G. Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In PODS, pages
271–282, 2005.

13

[13] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. In
SODA, 2002.

[14] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming
model. Theoretical Computer Science, 348(2-3):207–216, 2005.

[15] P. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows. In ACM Symposium
on Parallel Algorithms and Architectures (SPAA), 2002.

[16] Y. Gu, A. McCallum, and D. Towsley. Detecting anomalies in network traffic using maximum entropy
estimation. In Proc. Internet Measurement Conference, 2005.

[17] S. Guha, A. McGregor, and S. Venkatasubramanian. Streaming and sublinear approximation of entropy
and information distances. In SODA, pages 733–742, 2006.

[18] P. Indyk. A small approximately min-wise independent family of hash functions. Journal of Algo-
rithms, 38(1):84–90, 2001.

[19] P. Indyk and D. P. Woodruff. Tight lower bounds for the distinct elements problem. In FOCS, pages
283–289, 2003.

[20] P. Indyk and D. P. Woodruff. Optimal approximations of the frequency moments of data streams. In
STOC, pages 202–208, 2005.

[21] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang. Data streaming algorithms for estimating entropy
of network traffic. In ACM SIGMETRICS, 2006.

[22] J. Misra and D. Gries. Finding repeated elements. Science of Computer Programming, 2:143–152,
1982.

[23] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12:449–461,
1992.

[24] A. Wagner and B. Plattner. Entropy based worm and anomaly detection in fast IP networks. In 14th
IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enter-
prises (WET ICE), 2005.

[25] D. P. Woodruff. Optimal space lower bounds for all frequency moments. In SODA, pages 167–175,
2004.

[26] K. Xu, Z. Zhang, and S. Bhattacharya. Profiling internet backbone traffic: Behavior models and
applications. In ACM SIGCOMM, 2005.

14

