
Tight Lower Bounds for Selection in Randomly Ordered Streams
(Extended Abstract)

Amit Chakrabarti∗

ac@cs.dartmouth.edu

T. S. Jayram
jayram@almaden.ibm.com

Mihai Pǎtraşcu∗

mip@mit.edu

Abstract
We show that any algorithm computing the median of a
stream presented in random order, using polylog(n) space,
requires an optimal Ω(log log n) passes, resolving an open
question from the seminal paper on streaming by Munro
and Paterson, from FOCS 1978.

1 Introduction
Finding order statistics in a data stream has been studied
since the classic work of Munro and Paterson from FOCS
1978 [MP80], which is often cited as a paper introducing
the streaming model. Since then, much ink has been spilled
over this problem [MRL98, MRL99, GK01, GKMS02,
GZ03, CM05, SBAS04, CKMS06, GM06, GM07]. In-
deed, this is likely one of the most studied problems in the
streaming model, comparable only to the question of esti-
mating frequency moments. Order statistics (a.k.a. quan-
tiles, percentiles, median) are one of the most natural
and frequently used summaries of a data set, making the
streaming problem arise constantly in practical settings,
such as large databases. (Indeed, most of the works ref-
erenced have appeared in “practical” conferences.)

Munro and Paterson [MP80] study the problem under
two assumptions about the stream order: adversarial and
random order. In the case of random order, any permuta-
tion of the input values is equally likely to appear in the
stream. However, multiple passes through the stream read
items in the same order. They give algorithms that make
p passes, and require Õ(n1/p) memory1 for adversarial or-
der, and Õ(n1/2p) memory for random order. They also
prove some lower bounds under assumptions about what
the algorithm can store in its internal memory. In the adver-
sarial model, an unrestricted tight lower bound of Ω̃(n1/p)
was shown by Guha and McGregor [GM07]. Their bounds
are also tight for the well-studied problem of approximate

∗Part of this work was done while the authors were visiting IBM
Almaden Research Center. The first author is supported in part by NSF
CAREER Award CCF-0448277 and a Dartmouth College Junior Faculty
Fellowship.

1We let eO(·) ignore polylog(n) factors. For simplicity, we assume
the universe [U] = {1, . . . , U} for the numbers in the stream satisfies
U = poly(n), so that items in the stream can be stored in O(log n) bits.

selection, where given a rank r one must return a value of
rank r ±∆.

The random order model is highlighted in the conclu-
sion of [MP80] as an important challenge for future re-
search. Munro and Paterson conjecture that selection with
polylog(n) space requires Θ(log log n) passes. In PODS
2006, Guha and McGregor [GM06] show the upper-bound
side of this conjecture. In general, they show that an al-
gorithm using p passes can return an element with rank
r±Õ(n2−p

). It follows immediately that with O(p) passes
one can perform exact selection using space Õ(n2−p

).
The only lower bound for random order comes from

[GM07], where it is shown that a one pass algorithm re-
quires space Ω̃(

√
n). The nature of this proof prevents it

from generalizing to more than one pass, due to fundamen-
tal technical reasons; see the discussion on technical con-
tributions below.

In this paper, we show the following tight lower
bounds, addressing the 30-year-old question of Munro and
Paterson:

THEOREM 1.1. Consider a stream of n numbers, chosen
from [2n] uniformly at random, without replacement, and
ordered uniformly at random. If an algorithm uses memory
O(n2−p

) and can, with error probability 1/3, approximate
the median by outputting a value with rank n

2 ±n2−p

, then
the algorithm must use Ω(p) passes. In particular, finding
the median with polylog(n) space requires Ω(log log n)
passes.

1.1 The Random-Order, Multipass Model. Histori-
cally, the model that we are considering has found a place
in both the theoretical and practical worlds; see the sem-
inal paper of Munro and Paterson [MP80], as well as the
very thorough justification in [GM06]. However, we find
it worthwhile to reiterate why the model is appealing.

Streaming algorithms are designed with two classes
of applications in mind: scenarios where data passes by
and one cannot remember it all (e.g. in a network router),
and scenarios where the data is on secondary storage and
a memory-limited algorithm examines it sequentially. The
second application allows multiple passes and is common

in very large databases; this is the case where our lower
bound is relevant.

While streaming is the only possible model for a
router, any doubts as to whether it is a model worth study-
ing for large databases have been erased by recent pro-
gramming platforms like Google’s Map-Reduce [DG04].
Forced by the massive, hugely distributed nature of data,
these platforms essentially define streaming as the primi-
tive for accessing data.

We now switch our attention to the random-order
assumption of our model. Though worst-case order is the
model of choice for theory, we believe the random-order
model is an important link to the practical world which
cannot be marginalized. The following are common cases
in which random order is realized. While pondering these
cases, the reader may want to consider a realistic example
of a database query like “find quantiles for the salary of
people hired between 2001 and 2004, and with the work
location being India”.

• random by assumption: if the values in the data
set are assumed to come from some random source
(e.g. salaries obey a distribution), the stream will have
uniform ordering. This is an instance of average-
case analysis, which is quite common in the realm of
databases.

• random by heuristic: if the records in the database are
ordered by some other keys (say, last name), then the
order in which we read the interesting values (salary)
is sufficiently arbitrary to be assumed random. This
assumption is well-known in databases, as it is usually
made by query optimizers.

• random by design: if we do not know enough about the
query to build a useful data structure, we can decide to
store records in a random order, hoping to avert worst-
case behavior. This is the common playground for
theory, which assumes worst-case data, but looks at the
expected behavior over the algorithm’s randomness.

The perspective of lower bounds. We believe the
value of the random-order model for lower bounds is
strictly higher that for upper bounds. A rather common
objection to lower bounds in adversarial models are claims
that they are irrelevant in real life, where heuristics do
better since “data is never so bad in practice”. Based on
the real-world examples above, one may not be fully con-
vinced that streams are truly random-ordered. However,
the examples cast serious doubt that a very intricate worst-
case order constructed by a lower bound is sufficiently
plausible to mean anything in practice. The relevance of
our lower bound is much harder to question, since it shows
that even under the nicest assumptions about the data, an
algorithm cannot do better.

1.2 Technical Contribution. For simplicity, define
STAT(i, S) to be the ith order statistic of the set S.
Then, MEDIAN(S) = STAT

(⌊
1
2 |S|

⌋
, S

)
. Also define

RANK(x, S) = |{y ∈ S : y ≤ x}|, where it is not nec-
essary that x ∈ S.

We first explain a very high-level intuition for the
lower bound. When proving a lower bound for p passes, we
break the stream into p + 1 parts. We assign each part to a
player and consider a communication game between these
players. For example, we can say Player 1 receives the last√

n items, Player 2 the preceding n7/8 items, Player 3 the
preceding n31/32 and so on, up to player p+1 who receives
the remaining Ω(n) items at the beginning. Let Ti be the
elements of player i, and T≥i =

⋃
j≥i Tj .

Assume the median occurs in Tp+1, i.e. the first part of
the stream, which happens with constant probability. Then,
let ri = RANK(MEDIAN(T), T≥i+1). After learning ri,
players i + 1, . . . , p + 1 actually want to solve the ri order
statistic problem on their common input T≥i+1.

The hardness of the problem comes from the fact that
ri depends quite heavily on Ti. For example, if Player
1 sees the last

√
n elements of the stream, an expected√

n/2 of these elements are below the median. However,
the number of elements below is actually a binomially dis-
tributed random variable with standard deviation O(n1/4).
Then, Player 1’s input can shift r1 anywhere in a O(n1/4)
range with roughly uniform probability. In this uncertainty
range, Player 2 has an expected |T2|/Θ(n3/4) = n1/8 el-
ements. Even when r1 is known, these elements shift r2

around by a binomial with standard deviation Θ(n1/16),
etc.

The intuition for the hardness of tracing this sequence
of r1, r2, . . . , is a standard pointer chasing intuition. Re-
member that in each pass, the players speak in the order
p + 1, p, . . . , 1. If r1 has an uncertainty range of O(n1/4),
it means players p + 1, . . . , 2 must prepare to solve on the
order of n1/4 different order statistic problems, without
having any idea which one until Player 1 speaks. Then, if
they only communicate polylog(n) bits each, they cannot
in expectation gain significant knowledge about the order-
statistic problem that turns out to be relevant. Then, in the
second round we have the same intuition, with Player 2’s
input deciding r2, and so on.

Problem structure. The hardness intuition presented
above presumably dates back to Munro and Paterson, who
conjectured that Θ(log log n) was the correct bound with-
out having an upper bound. However, there are significant
obstacles in the road to a lower bound, which accounts for
why the conjecture has remained unresolved despite very
significant progress in streaming lower bounds.

The challenges faced by the proof fall in two broad
categories: understanding the structure of the problem
correctly, and developing the right ideas in communication

complexity to show that this structure is hard. With regard
to the former, it should be noted that the intuition is shaky
in many regards. For example, while it is true that players
≥ 2 are trying to compute STAT(r1, T≥2), the value of
r1 cannot be defined without reference to MEDIAN(T).
This defeats the purpose, since knowing r1 may reveal
significant information about the median.

We circumvent problems of this nature by identifying
a more subtle and loose structure that makes the problem
hard, while not deviating too far from the pointer chasing
intuition. To demonstrate the obstacles that need to be sur-
mounted, we mention that at a crucial point, our argument
needs to invoke a nondeterministic prover that helps the
players see the hard structure, while allowing the prover to
communicate little enough to not make the problem easier.

Communication complexity. Still, the challenges re-
garding communication complexity are the more serious
ones. At a high level, our proofs have the same flavor as
the round elimination lemma [MNSW98, Sen03]. In the
simplest incarnation of this lemma, Alice has a vector of
B inputs (x1, . . . , xB), and Bob has an input y and an in-
dex i ∈ [B]. The players are trying to determine some
f(xi, y). Alice speaks first, sending a message of S � B
bits. Then, this message is essentially worthless and can
be eliminated, because it is communicating almost no in-
formation about the useful xi, for random i.

Our situation is similar: ri selects the next problem
among nΩ(1) choices, and players≥ i+1 don’t know what
to communicate that would be useful to the ri problem.
However, our setting is much more difficult because the
random order of the stream forces a very particular distri-
bution on the problem. Not only is the index ri not uniform
in its range (rather, it obeys a binomial distribution), but the
problems xi are heavily correlated. To see that, note for
example the strong correlation between STAT(ri, T≥i+1)
and STAT(ri + 1, T≥i+1).

The usual proofs of round elimination, based on man-
ufacturing inputs to match a random message, cannot work
here because of these correlations. At a technical level,
note that round elimination normally imposes a nonprod-
uct distribution on the problem, whereas we will need to
have a product distribution.

By contrast, the only previous lower bound for our
problem [GM07] was not based on understanding this
unusual setting for round elimination, but on reducing a
simple case of round elimination (indexing) to finding the
median with one pass. While this is possible (with a lot of
technical effort) for one pass, it fails entirely for multiple
passes.

Our effort is part of a larger trend in recent litera-
ture. While the basic round elimination lemma is under-
stood, many variants with peculiar requirements are stud-
ied, motivated by fundamental algorithmic questions for

which we need lower bounds. For example, in FOCS
2004, Chakrabarti and Regev [CR04] study a variant tai-
lored for approximate nearest neighbor; in SODA 2006,
Adler et al. [ADHP06] study a variant tailored for dis-
tributed source coding and sensor networks; in STOC
2006 and SODA 2007 Pǎtraşcu and Thorup [PT06, PT07]
study a variant tailored for predecessor search; Chakrabarti
in CCC 2007 [Cha07] and Viola and Wigderson in
FOCS 2007 [VW07] study variants tailored for multiparty
number-on-the-forehead pointer chasing.

These papers, as well as the present one, push the
theory of round elimination in very different directions,
making it applicable to natural and interesting problems.
Since round elimination has become a staple of modern
communication complexity, one cannot help but compare
this line of work to another well-developed area: the study
of PCPs with different properties, giving inapproximability
results for various problems.

2 Preliminaries
In this section, we boil down the task of proving our
streaming lower bound to that of lower bounding the
communication complexity of a related problem under a
specific product distribution on its inputs.

2.1 Hard Instance.

DEFINITION 2.1. The stream problem RANDMEDIAN is
defined as follows. The input is a stream of n integers in
[2n] ordered uniformly at random. The desired output is
any integer from the stream with rank between n

2 −∆ and
n
2 + ∆.

DEFINITION 2.2. For a permutation π ∈ S2n, we define
the stream problem MEDπ as follows. The input is a set
T ⊂ [2n] with |T | = n that is presented as follows.
Let x ∈ {0, 1}2n be the characteristic vector of T . The
input stream is 〈xπ(1), xπ(2), . . . , xπ(2n)〉, i.e., the bits of x
ordered according to π. The desired output is any value A
such that |RANK(A, T) − n

2 | ≤ ∆, i.e., a ∆-approximate
median of T . A random instance of MEDπ is defined to be
one where T is chosen uniformly at random amongst all
subsets of size n. Note that π continues to be fixed a priori
and parametrizes the problem.

We will construct a family F ⊂ S2n of permutations
that consists of almost all of S2n (F is to be thought of
as a family of “typical permutations”). We shall then
show a lower bound for MEDπ for any π ∈ F . Then,
by contradiction with following lemma, we obtain a lower
bound for RANDMEDIAN.

LEMMA 2.3. Let F ⊂ S2n be a family of permutations
with |F| ≥ (1 − o(1)) · (2n)!. If RANDMEDIAN admits
an ε-error p-pass streaming algorithm with space s, then

there exists π ∈ F such that a random instance of MEDπ

admits a p-pass streaming algorithm with distributional
error ε + o(1) and space s + O(log n).

Proof. Let A be the algorithm for RANDMEDIAN in the
hypothesis. We propose the following algorithm Bπ for
MEDπ: the input stream of bits 〈xπ(1), . . . , xπ(2n)〉 is
transformed into the stream of integers 〈π(i) : xπ(i) = 1〉,
using O(log n) additional space, and fed to A as input.
The output of Bπ is the same as that of A. Clearly, Bπ

is correct whenever A is. The key observation is that if π
is distributed uniformly at random in S2n, then the input to
A constructed byBπ is ordered uniformly at random. (This
holds for every fixed x ∈ {0, 1}2n and hence for a random
x.) Therefore, the expected distributional error of Bπ for
such random π is at most ε. An averaging argument now
shows that there exists π ∈ F such that the distributional
error of Bπ is at most ε|S2n|/|F| = ε + o(1).

2.2 Communication Complexity. We now transform
MEDπ into a multiparty number-in-hand communication
game MEDCOMMπ,`,t that is additionally parametrized by
an integer p̃, a vector ` = (`1, . . . , `ep) ∈ Nt and a vector
t = (t1, . . . , tep) ∈ Nt. These parameters are required to
satisfy:

p̃ ≥ 2 ,

ep∑
i=1

`i = 2n ,

ep∑
i=1

ti = n ,

and ∀ i ∈ [p̃] :
(

`i

ti

)
≥ 2`i

n2
.

(2.1)

Recall that the input to the stream problem is a bitvec-
tor x ∈ {0, 1}2n ordered according to π. In the com-
munication game, there are p̃ players and Player i re-
ceives `i of the bits of x. Player 1 receives the last `1
bits of x according to π, Player 2 the `2 bits before that,
etc. In other words, Player i receives the bits xk for
k ∈ Pπ

i , where Pπ
1 := {π(n − `1 + 1), . . . , π(n)},

Pπ
2 := {π(n− `1 − `2 + 1), . . . , π(n− `1)}, etc.

The players communicate by writing s-bit messages
on a blackboard, i.e. all messages are visible to all players.
The games consists of p rounds. In each round, the players
communicate in the fixed order p̃, (p̃ − 1), . . . , 2, 1. The
desired output is the same as that for MEDπ and must be
written by Player 1 at the end of round p.

DEFINITION 2.4. For an input x ∈ {0, 1}2n to
MEDCOMMπ,`,t, define yi ∈ {0, 1}`i to be Player i’s in-
put, i.e., the projection of x on to the co-ordinates in Pπ

i .
Define the sets Ti := {k ∈ Pπ

i : xk = 1}, T :=
⋃

i Ti and
T≥i :=

⋃
j≥i Tj .

DEFINITION 2.5. A random instance of MEDCOMMπ,`,t is
one where, for each i, yi is chosen uniformly at random
from the set Xi := {y ∈ {0, 1}`i : |y| = ti}.

LEMMA 2.6. Suppose ` is such that `i = Ω(log n) for all
i. If, for a particular π, a random instance of MEDπ has
an ε-error p-pass streaming algorithm with space s, then
there exists a suitable t satisfying conditions (2.1) such that
a random instance of MEDCOMMπ,`,t has an (ε + o(1))-
error p-round communication protocol with message size
s.

Proof. A streaming algorithm for MEDπ translates in
an elementary way into a communication protocol for
MEDCOMMπ,`,t: the players simulate the streaming algo-
rithm on their respective portions of the input, with each
pass being simulated by one round of communication.
They ensure continuity by communicating the memory
contents of the streaming algorithm. This transformation
incurs no additional error, but it only gives low expected
distributional error for a suitably random t. To be precise,
suppose x ∼ U ′, where U ′ denotes the uniform distribu-
tion on weight-n bitvectors in {0, 1}2n. Let yi be as in
Definition 2.4. Define the random variables t̂i(x) = |yi|
and the random vector t̂(x) = (t̂1(x), . . . , t̂ep(x)). For a
vector t in the support of t̂(x), let ρ(t) be the distribu-
tional error of the above protocol for a random instance of
MEDCOMMπ,`,t. Then, by the correctness guarantee of the
streaming algorithm, we have Ex∼U ′ [ρ(t̂(x))] ≤ ε. (The
reader may want to carefully compare the definition of a
random instance of MEDπ with that of MEDCOMMπ,`,t.)

To prove the lemma, we must show the existence of
a vector t such that t satisfies the conditions (2.1) and
ρ(t) ≤ ε + o(1). Let us call a particular t in the support of
t̂(x) good if it satisfies the final condition in (2.1) and bad
otherwise. Let U be the uniform distribution on {0, 1}2n.
Then,

Pr
x∼U ′

[t̂(x) is bad] = Pr
z∼U

[t̂(z) is bad | |z| = n]

≤ Prz∼U [t̂(z) is bad]
Prz∼U [|z| = n]

= Pr
z∼U

[t̂(z) is bad] ·O(
√

n) .

For i ∈ [p̃] and z ∼ U , t̂i(z) is the weight of a uniformly
random bitvector in {0, 1}`i . Define the sets Ii :=

{
t ∈

{0, 1, . . . , `i} :
(
`i

t

)
< 2`i

n2

}
. Then, by a union bound,

Pr
z∼U

[t̂(z) is bad] ≤
ep∑

i=1

∑
t∈Ii

Pr[t̂i(z) = t]

=
ep∑

i=1

∑
t∈Ii

2−`i

(
`i

t

)
≤

ep∑
i=1

`i

n2
=

2
n

.

So, E
x∼U ′

[ρ(t̂(x)) | t̂(x) is good] ≤ Ex∼U ′ [ρ(t̂(x))]
Prx∼U ′ [t̂(x) is good]

≤ ε

1− 1
n ·O(

√
n)

= ε + o(1) .

Thus, there exists a good t such that ρ(t) ≤ ε + o(1).

2.3 The Permutation Family. We are now ready to
define the permutation family F for which we prove the
lower bound. Informally, F is the set of all permutations
π for which each Pπ

i is rather uniformly distributed in
the range [2n]. Specifically, we break the range [2n] into
`i equal-sized buckets and insist that any k consecutive
buckets contain Θ(k) elements of Pπ

i for k = Ω(log n).
Formally:

F =
{

π ∈ S2n : ∀ i ∈ [p̃], k = Ω(log n), j ≤ `i − k,

we have
k

2
≤

∣∣∣Pπ
i ∩

[
j · n

`i
, (j + k) · n

`i

]∣∣∣ ≤ 2k
}

LEMMA 2.7. Suppose `i = Ω(log n) for all i. Then
Prπ∈Sn [π ∈ F] = 1− o(1).

Proof. Pick π ∈ Sn uniformly at random, so that Pπ
i is

a random subset of [n] of size `i. Let Aijk = Pπ
i ∩

[jn/`i, (j + k)n/`i]. Clearly, for all (i, j, k), we have
E[|Aijk|] = k. Applying a Chernoff-Hoeffding bound for
the hypergeometric distribution, we have

αijk := Pr[|Aijk| /∈ [k/2, 2k]] < e−Ω(k) ≤ n−4 ,

where the latter inequality holds for k = Ω(log n). A
union bound over all O(n2p̃) = O(n3) triples (i, j, k)
shows that Pr[π /∈ F] ≤

∑
i

∑
j

∑
k αijk = o(1).

3 Warm-up: One Pass
In this section, we show that a one-pass algorithm for
RANDMEDIAN either uses space Ω(n1/12), or requires
approximation ∆ = Ω(n1/12). While this result is weaker
than the previous lower bound for one pass [GM07], it
demonstrates the basic structure of our argument in a
simple case, and introduces some lemmas that will be
required later.

By Lemmas 2.3 and 2.6, and Yao’s minimax princi-
ple [Yao77], it suffices to show the following for some
choice of p̃ and `: for all π ∈ F and t ∈ Nep satisfying
condition (2.1), a 1

3 -error 1-round deterministic commu-
nication protocol for MEDCOMMπ,`,t with message size s
must have s = Ω(n1/12). For the rest of this section, let us
fix such a protocol. We also fix p̃ = 2. Let T and Ti be as
in Definition 2.4 and chosen at random as in Definition 2.5.
Let A be the random variable indicating the output of the
protocol (which is an element of T).

Here is an outline of our proof. The protocol’s guar-
antee is that Pr[|RANK(A, T) − n

2 | > ∆] ≤ 1
3 . We first

fix Player 2’s message, thereby restricting T2 within some
large subset X2 ⊂ X2, and adding o(1) error (Lemma 3.2).
At this point A is a function of T1 alone. Next, we define
a quantity r1(T1) that estimates RANK(A, T2) to within
about ±∆, provided s is small (Corollary 3.4) and that
takes on a large number Ω(

√
`1) of distinct values as we

vary T1 (Lemma 3.5). It then follows that we can find a
large number, B = Ω(

√
`1/∆2), of instantiations of T1

such that the corresponding r1 values are Ω(∆2) apart. Us-
ing the estimator property of r1(T1), we then show that the
corresponding values of A must also be Ω(∆2) apart. This
gap is large enough that if B � s, the corresponding ran-
dom variables RANK(A, T2) are “nearly independent” and
have sufficient variance that they are unlikely to be con-
fined within intervals of length at most 2∆; the precise ver-
sion of this statement is a key probabilistic fact that we call
the Dispersed Ranks Lemma (Lemma 4.1). However, by
the correctness guarantees, it is quite likely that the values
of RANK(A, T2) are so confined. This contradiction shows
that B = O(s), yielding the desired lower bound.

We now fill in the details, starting with the precise
definition of r1.

DEFINITION 3.1. For S ⊂ [2n], define r1(S) := n
2 −

|{x ∈ S : x ≤ n}| = n
2 − RANK(n, S). Note that

n = E[MEDIAN(T)].

LEMMA 3.2. If s ≥ log n, there exists X2 ⊂ X2 such
that the message sent by Player 2 is constant over X2,
|X2| ≥ |X2|/22s, and Pr[|RANK(A, T) − n

2 | > ∆ | T2 ∈
X2] ≤ 1

3 + 1
n .

Proof. Since Player 2’s message is s bits long, it partitions
X2 into 2s subsets X (1)

2 , . . . ,X (2s)
2 such that the message

is constant on each X (i)
2 . Define

pi := Pr
[∣∣∣RANK(A, T)− n

2

∣∣∣ > ∆ | T2 ∈ X (i)
2

]
.

The protocol’s guarantee implies
∑2s

i=1 pi|X (i)
2 |/|X2| ≤

1
3 . Call an integer i ∈ [2s] good if pi ≤ 1

3 + 1
n and bad

otherwise. By Markov’s inequality,

∑
i bad

|X (i)
2 |

|X2|
≤

1
3

1
3 + 1

n

= 1− 3
n + 3

≤ 1− 1
n

;

whence
∑
i good

|X (i)
2 |

|X2|
≥ 1

n
.

Therefore, there exists a good i such that |X (i)
2 |/|X2| ≥

2−s · 1
n ≥ 4−s, where we used s ≥ log n. Setting X2 to be

this particular X (i)
2 completes the proof.

For the rest of this section, we fix an X2 with the properties
guaranteed by the above lemma.

LEMMA 3.3. If s ≥ log n and `1 ≤
√

n, then
Pr

[
|RANK(MEDIAN(T), T2) − r1(T1)| > 10s | T2 ∈

X2

]
≤ 1

n .

Proof. Note that |RANK(MEDIAN(T), T2) − r1(T1)| =
|RANK(MEDIAN(T), T2) + RANK(n, T1) − n

2 | =
|RANK(n, T1) − RANK(MEDIAN(T), T1)| = |T1 ∩ I|,
where I is the interval between n and MEDIAN(T). We
now study the quantity pλ := Pr[|n − MEDIAN(T)| >
λ
√

n | T2 ∈ X2], where λ > 0 is a real parameter.
To this end, let U be a uniform random subset of

[2n]. Then, a simple Chernoff bound shows that Pr[|n −
MEDIAN(U)| > λ

√
n] ≤ e−λ2/20. Note that the distri-

bution of T is the same as that of U conditioned on the
event E := “∀ i ∈ {1, 2} : |U ∩ Pπ

i | = ti.” Clearly
Pr[E] =

∏2
i=1 2−`i

(
`i

ti

)
≥ n−4 , where we used the fact

that the vector (t1, t2) satisfies condition (2.1). Further-
more, Pr[T2 ∈ X2] ≥ 2−2s, by Lemma 3.2. Therefore

pλ = Pr
[
|n− MEDIAN(U)| > λ

√
n | E , T2 ∈ X2

]
≤ e−λ2/20

n−42−2s
.

Now, set λ = 10
√

s. This gives pλ ≤ n422se−5s ≤
n42−5s ≤ 1

n , for s ≥ log n. Therefore, except with
probability 1

n , the interval I has length at most 10
√

sn.
If we break the range [2n] into `1 equal-sized buckets, the
interval I will fit into a union of at most 10

√
sn·`1/(2n) ≤

5
√

s ≤ 5s consecutive buckets. By the defining property
of F , this means |Pπ

1 ∩ I| ≤ 10s. Since T1 ⊂ Pπ
1 , we are

done.

COROLLARY 3.4. Pr
[
|RANK(A, T2) − r1(T1)| > ∆ +

10s | T2 ∈ X2

]
≤ 1

3 + o(1).

Proof. Suppose |RANK(A, T) − n
2 | ≤ ∆ and

|RANK(MEDIAN(T), T2) − r1(T1)| ≤ 10s. By Lem-
mas 3.2 and 3.3, it suffices to show that these conditions
imply |RANK(A, T2)− r1(T1)| ≤ ∆ + 10s. To do so, note
that the former condition is saying that there are at most ∆
values in T between A and MEDIAN(T). Since T2 ⊂ T ,
we have |RANK(A, T2) − RANK(MEDIAN(T), T2)| ≤ ∆.
Now we simply apply a triangle inequality.

The above lemma establishes the “estimator property”
of r1(T1) mentioned earlier. We now show that r1 has high
variability even when restricted to inputs T1 on which the
protocol does not err much. For sets S ⊂ [2n], define

e(S) := Pr
[
|RANK(A, T2)− r1(T1)| > ∆ + 10s

| T2 ∈ X2, T1 = S
]
,

i.e, the error probability of the protocol when Player 1’s in-
put is S and Player 2 sends his fixed message correspond-
ing to X2.

LEMMA 3.5. Define R := {r1(T1) : e(T1) ≤ 0.35}.
Then |R| = Ω(

√
`1).

Proof. By Corollary 3.4, ET1 [e(T1)] ≤ 1
3 + o(1). So, by

a Markov bound, PrT1 [r1(T1) ∈ R] ≥ 0.01. To obtain
the conclusion, we now show that Pr[r1(T1) ∈ R] =
O(|R|/

√
`1).

As before, it is sufficient to perform an analysis under
the assumption that T1 ⊂ Pπ

1 is chosen by including every
element with probability 1/2, independently. Examining
Definition 3.1, we see that

r1(T1) =
n

2
− RANK(n, T1) =

n

2
− |Pπ

1 ∩ [n]| .

By the defining property ofF , we have |Pπ
1 ∩[n]| = Θ(`1),

so r1 has a binomial distribution with standard deviation
Θ(
√

`1). It follows that, for any x, Pr[r1(T1) = x] ≤
O(1/

√
`1). Therefore Pr[r1(T1) ∈ R] = O(|R|/

√
`1), as

desired.

We can now prove the one-pass lower bound as fol-
lows. Define ∆1 := ∆ + 10s. For any N ≥ 1, we
can clearly find |R|/N elements in R such that any two
are at least N apart. Combining this simple observa-
tion with Lemma 3.5, we see that there exist instantia-
tions T

(1)
1 , . . . , T

(B)
1 of the random set T1, with B ≥

|R|/(100∆2
1) = Ω(

√
`1/∆2

1), such that

1. for all i ∈ [B] , e
(
T

(i)
1

)
≤ 0.35, and

2. for all i ∈ [B − 1] , r1

(
T

(i+1)
1

)
− r1

(
T

(i)
1

)
≥ 100∆2

1

and r1

(
T

(1)
1

)
≥ 100∆2

1.

Recall that X2 has been fixed, so A is a function of
T1 alone. Let A(i) be the output of the protocol when
T1 = T

(i)
1 and, for convenience, define A(0) = 0. Define

the intervals Ri :=
[
r1

(
T

(i)
1

)
−∆1, r1

(
T

(i)
1

)
+ ∆1

]
. Pick

any i ∈ [B − 1]. By condition 1 above,

Pr
[
RANK

(
A(i), T2

)
∈ Ri

∧
RANK

(
A(i+1), T2

)
∈ Ri+1

]
≥ 1− e

(
T

(i)
1

)
− e

(
T

(i+1)
1

)
> 0 .

Therefore, by condition 2, there exists an instantiation T ∗
2

of T2 such that RANK
(
A(i+1), T ∗

2

)
− RANK

(
A(i), T ∗

2

)
≥

100∆2
1 − 2∆1 ≥ 99∆2

1. Thus, A(i+1) − A(i) ≥ 99∆2
1.

Similar reasoning shows that this inequality in fact holds
for i = 0 as well. In summary, the values A(0), . . . ,A(i)

are seen to be well dispersed.
On the other hand, condition 1 above can be written as

∀ i ∈ [B] : Pr
U

[
RANK

(
A(i), U

)
∈ Ri

∣∣ U ∈ X2

]
≥ 0.65 ,

where U denotes a uniform random subset of [`2]. Let E∗
denote the event

∣∣{i ∈ [B] : RANK
(
A(i), U

)
∈ Ri

}∣∣ ≥
0.6B. A Markov bound gives us Pr[E∗ | U ∈ X2] ≥ 1/8.
Furthermore,

Pr[U ∈ X2] = 2−`2 |X2| ≥ 2−`2−2s|X2|

= 2−`2−2s

(
`2
t2

)
≥ 2−2s

n2
,

where the final inequality used (2.1). Therefore, Pr[E∗] ≥
(1/8) · 2−2sn−2.

At this point we invoke a key probabilistic fact — the
Dispersed Ranks Lemma — which says that for such well
dispersed A(i) values, we must have Pr[E∗] ≤ 2−Ω(B).
Combined with the above lower bound on Pr[E∗], this im-
plies s ≥ Ω(B) − O(log n) = Ω(

√
`1/(∆ + 10s)2) −

O(log n). Setting `1 =
√

n (the maximum allowed
by Lemma 3.3) and rearranging gives max{s,∆} =
Ω(n1/12), the desired lower bound.

4 The Dispersed Ranks Lemma
We now introduce a key technical probabilistic fact that
lies at the heart of our lower bound argument and captures
the intuition behind round elimination in our setting. The
theorem was used in the above proof of the lower bound
for one-pass algorithms. Later, it will be used repeatedly
for the multipass lower bound.

LEMMA 4.1. (DISPERSED RANKS LEMMA) Let ` and B
be large enough integers and let U denote a uniform
random subset of [`]. Let q0 = 0 and let q1, q2, . . . , qB ∈
[`] be such that ∀ i : qi+1 − qi ≥ 99∆2. Let Ri :=
[qi − ∆, qi + ∆] for i ∈ [B], and let E∗ denote the
event

∣∣{i ∈ [B] : RANK(qi, U) ∈ Ri

}∣∣ ≥ 0.6B. Then
Pr[E∗] = 2−cB , for some constant c > 0.

Proof. Let Zi denote the random variable RANK(qi, U) for
all i ∈ [B]. By the union bound,

Pr[E∗] ≤
∑
S

Pr
[∧

i∈S

(Zi ∈ Ri)
]
,

where S ranges over all subsets of [B] containing exactly
0.6B indices. We will show that each probability within
the sum is at most 2−c′B for some constant c′ > 1. Since
the number of choices of S is at most 2B , the proof of the
lemma follows.

Fix a set S ⊆ [B] of size 0.6B. For each i ∈ S, define
Ji = {j ∈ S | j < i}. By the chain rule of probability,

Pr
[∧

i∈S

(Zi ∈ Ri)
]

=
∏
i∈S

Pr
[
Zi ∈ Ri

∣∣∣ ∧
j∈Ji

(Zj ∈ Rj)
](4.2)

Fix an i in the above product in (4.2) above. Also fix a set
of elements zj ∈ Rj for all j ∈ Ji. Let E denote the event∧

j∈Ji
(Zj = zj). We will upper bound the probability

Pr[Zi ∈ Ri | E]. By averaging, this will also yield the
same upper bound on the probability in (4.2).

Let k denote the largest element in Ji. Conditioned
on the event E , Zi is the sum of zk and a binomially
distributed random variable corresponding to a sum of

qi − qk independent Bernoulli random variables. By the
well-separated property of the qj’s we have qi − qk ≥
99∆2. Using the property of the binomial distribution, the
probability that Zi attains any value is at most 1/

√
99∆2.

Therefore, Pr[Zi ∈ Ri | E] ≤ |Ri|/
√

99∆2 ≤ 2/
√

99.
Using this bound in (4.2), it follows that

Pr
[∧

i∈S

(Zi ∈ Ri)
]
≤ (2/

√
99)|S| = 2−c′B ,

where c′ > 1.

5 Two Passes
In this section, we show that a 2-pass algorithm requires
max{s,∆} = Ω(n3/80). This proof contains all the ideas
needed for the general lower bound for p passes. However,
in this extended abstract, we choose to present the lower
bound for p = 2, which allows for much more transparent
notation and discussion. A proof of the general lower
bound is deferred to the full version of the paper.

We fix the number of players p̃ = 3, for the commu-
nication problem MEDCOMMπ,`,t. In general, for a p-pass
algorithm, we would fix p̃ = p + 1. Assume we have a 1

3 -
error 2-round deterministic protocol for the problem with
message size s.

We begin by fixing the first round of communication
in essentially the same way as in the one-pass lower
bound. First, we fix the messages of Players 3 and 2 as
in Lemma 3.2. Now define r1(T1) as before, and conclude
that there exist Ω(

√
`1) settings of T1, leading to distinct

r1 values, where the protocol’s error is at most 0.35. To
maximize hardness, pick B choices r1

1, . . . , r
B
1 for r1 that

are as far away as possible, i.e. for all k, rk+1
1 − rk

1 =
Ω(
√

`1/B).
We now consider B simulations for the second round,

depending on the B picked choices of T1 (more precisely,
depending on the messages output by Player 1 given the B
choices of T1). Let A1, . . . ,AB be the algorithm’s output
in all these simulations. Now, Player 3 sends B messages
of s bits, effectively a Bs-bit message, which we fix as in
Lemma 3.2. At the end of all these steps, we have:

(T3, T2) ∈ X3 ×X2, |X3| ≥ |X3|/2O(Bs),

|X2| ≥ |X2|/2O(s) ;
(5.3)

∀ i : Pr
[∣∣RANK(Ai, T≥2)− ri

1

∣∣ ≥ ∆ + O(s)

| (T3, T2) ∈ X3 ×X2

]
≤ 0.35 + o(1) .

(5.4)

As before, to show that the information about T3

is not enough, we must analyze what problem is being
solved from Player 3’s perspective. That is, we want to
understand RANK(Ai, T3). By (5.4), we must understand
RANK(STAT(ri

1, T≥2), T3). Let us define

(5.5) ξi := STAT(ri
1, T≥2) .

Intuitively speaking, ri
1 and ri−1

1 are separated by
Ω(
√

`1/B), so there are on the order of `2
n ·

√
`1

B elements
in Pπ

2 between ξi and ξi−1. This makes for a variance of
RANK(ξi, T3) of roughly

(
`2
n ·

√
`1

B

)1/2
. Since the variance

needs to be high to make for a hard problem, we have
imposed a lower bound for `2/n.

On the other hand, we need to show RANK(ξi, T3)
has small variance conditioned on T2. That is done by
constructing a good estimator r2 based on T2. Our ability
to do that depends on how well we can understand ξi.
Specifically, if we understand it to within ±D, we have
D `2

n values in P2 that cannot be compared reliably to
ξi, so the estimator for RANK(ξi, T3) suffers an additive
approximation of D `2

n . To keep the approximation in
check, we must impose an upper bound on `2/n.

Thus, we have forces upper bounding and lower
bounding `2/n, and we must make sure that a good choice
actually exists. That is done by constructing an estimator
with small enough D. To make better estimation possible,
we need some more information about the stream. It turns
out that if we find out MEDIAN(T≥2), we reduce the uncer-
tainty range of ξi enough to get a good D. This is intuitive,
since ri

1 is only O(
√

`1) away from MEDIAN(T≥2). How-
ever, obtaining MEDIAN(T≥2) is hard in our model (that
is essentially what we are trying to prove). To circumvent
that, we note that it is an easy computation based on non-
determinism. On the other hand, a small intervention by a
nondeterministic prover cannot help solve all ri

1 problems,
so we still get a lower bound even if we allow nondeter-
minism in a brief part of the communication game.

5.1 Constructing an Estimator r2. We now attempt to
construct a good estimator r2(ri

1, T2) for the interesting
quantity RANK(ξi, T3). In general, T2 does not give
enough information to construct a very good estimator
r2. However, we restrict the problem to a subset of
the inputs where such an estimator exists. It turns out
that the one critical piece of information that we need is
MEDIAN(T2 ∪T3), so we work in a set of the inputs where
it is fixed.

LEMMA 5.1. Let X2 ⊂ X2, X3 ⊂ X3 be arbitrary. There
exist X ′

2 ⊂ X2,X ′
3 ⊂ X3 and a constant M such that:

• |X ′
2|/|X2| ≥ 2−O(log n) and |X ′

3|/|X3| ≥ 2−O(log n);

• Pr
[∣∣RANK(Ai, T≥2)− ri

1

∣∣ ≥ ∆ + O(s)
]
≤ 0.37;

• MEDIAN(T2 ∪ T3) = M for all (T2, T3) ∈ X ′
2 ×X ′

3.

Proof. Consider the following nondeterministic commu-
nication protocol for finding MEDIAN(T2 ∪ T3) with
O(log n) communication. The prover proposes the median
x and RANK(x, T2). Player 2 accepts iff this rank is cor-
rect. Player 3 accepts iff RANK(x, T3) + RANK(x, T2) =
(|T2|+ |T3|)/2.

Note that there is a unique acceptable witness (proof)
for every problem instance. In other words, the nonde-
terministic protocol induces a partition of X2 × X3 into a
certain number, NR, of rectangles. Let us discard all rect-
angles with size less than |X2 × X3|/(100NR). At least
a 0.99 fraction of the space X2 × X3 survives, so the av-
erage error over this remainder of the space increases by
at most 0.01. Pick any remaining rectangle over which
the error increases by at most 0.01 and call it X ′

2 × X ′
3.

Then, since |X ′
2 × X ′

3| ≥ |X2 × X3|/(100NR), we have
|X ′

2| ≥ |X2|/(100NR) and |X ′
3| ≥ |X3|/(100NR). Fi-

nally, observe that NR = 2O(log n), since the nondetermin-
istic protocol sends O(log n) bits.

Henceforth, we shall fix the spaces X ′
2 and X ′

3 (and
the constant M) guaranteed by the above lemma and work
within them.

Assume by symmetry that ri
1 ≥ (t2 + t3)/2, that is

ξi ≥ M . If we knew ξi, we could compute:

RANK(ξi, T3) = ri
1 − |{y ∈ T2 | y ≤ ξi}|

= ri
1 − RANK(M,T2)−

∣∣T2 ∩ [M, ξi]
∣∣ .

Since ξi is not known, we can proceed in the same way,
using E[ξi] instead. Unfortunately, a priori ξi is not con-
centrated too tightly, and this uncertainty would introduce
too large an approximation in the estimate of |T2∩[M, ξi]|.
However, this is precisely why we want to fix M : condi-
tioned on MEDIAN(T≥2) = M , ξi is much more tightly
concentrated, and

Ξi := E[ξi | MEDIAN(T≥2) = M]

is a good enough replacement for the real ξi. We thus
define:

r2(ri
1, T2) = ri

1 − RANK(Ξi, T2)

= ri
1 − RANK(M,T2)−

∣∣T2 ∩ [M,Ξi]
∣∣ .

LEMMA 5.2. For λ ≥ Ω(B), we have: Pr
[∣∣ξi − Ξi

∣∣ ≥
λ 4
√

`1 | (T3, T2) ∈ X ′
3 ×X ′

2

]
≤ 2−Ω(λ2).

Proof. The following random walk defines ξi =
STAT(ri

1, T≥2): start with MEDIAN(T≥2) and go up on
elements of Pπ

2 ∪ Pπ
3 , until you find ri

1 − t2+t3
2 elements

that are in T≥2. The length of this walk is an approximate
bound for ξi − MEDIAN(T≥2). The only discrepancy is
the number of elements in [2n] \ (Pπ

2 ∪ Pπ
3) = Pπ

1 that
are skipped. However, we will only be interested in walks
whose length does not deviate too much from its expecta-
tion. Thus, the length is O(ri

1 − t2+t3
2) ≤ O(

√
`1). By the

defining property of F , there are only O(log n) elements
of Pπ

1 in the relevant range, so the length of the walk is an
O(log n) additive approximation to ξi − MEDIAN(T≥2).

Now assume T≥2 is selected from Pπ
2 ∪ Pπ

3 by in-
cluding every element independently and uniformly. Then
the length of the walk deviates from its expectation by

λ
√

ri
1 − t2+t3

2 ≤ λ 4
√

`1 with probability 2−Ω(λ2). The
O(log n) approximation is a lower order term compared
to λ 4

√
`1 (affecting constant factors in λ), so this is a bound

on the deviation of ξi − MEDIAN(T≥2) from its mean.
Now to obtain the real process of selecting T≥2, all

we have to do is condition on |T2| = t2, |T3| = t3.
These events have probability 1/ poly(n) by (2.1), so the
probability of the bad event is ≤ 2−Ω(λ2) · poly(n). Since
λ = Ω(B) > log n, we have 2−Ω(λ2) ·poly(n) = 2−Ω(λ2).
Now we condition on (T3, T2) ∈ X ′

3 × X ′
2. By (5.3)

and Lemma 5.1, we have Pr[(T3, T2) ∈ X ′
3 × X ′

2] ≥
2−O(Bs)−O(log n) ≥ 2−O(Bs). So in the universe X ′

3×X ′
2,

the probability of a deviation is at most 2−Ω(λ2)/2−O(Bs).
If λ ≥ Ω(B), this is 2−Ω(λ2).

Finally, note that in X ′
3 × X ′

2, MEDIAN(T≥2) is fixed.
Then, the event that ξi − MEDIAN(T≥2) doesn’t deviate
from the expectation is the same as the event that ξi

doesn’t.

COROLLARY 5.3. If `2 < n/ 4
√

`1, then ∀ i ∈ [B],
Pr

[∣∣RANK(ξi, T3) − r2(ri
1, T2)

∣∣ > Ω(B) | (T3, T2) ∈
X ′

3 ×X ′
2

]
= o(1).

Proof. Inspecting the definition of r2, we observe that∣∣RANK(ξi, T3) − r2(ri
1, T2)

∣∣ ≤
∣∣T2 ∩ [ξi,Ξi]

∣∣. Setting
λ = Θ(B) in Lemma 5.2, |ξi − Ξi| ≤ O(B) · 4

√
`1 entails∣∣T2 ∩ [ξi,Ξi]

∣∣ ≤ ∣∣Pπ
2 ∩ [ξi,Ξi]

∣∣ ≤ (`2/n) · O(B 4
√

`1) =
O(B), where the final inequality follows from the defining
property of F .

5.2 The Variability of r2. Putting the bounds on the
estimator r2 together, we obtain the following problem:

(T3, T2) ∈ X3 ×X2, |X3| ≥ |X3|/2O(Bs),

|X2| ≥ |X2|/2O(s) ;

∀ i : Pr
[∣∣RANK(Ai, T3)− r2(ri

1, T2)
∣∣ ≥ ∆ + O(B)

| (T3, T2) ∈ X3 ×X2

]
≤ 0.37 + o(1) .

Thus, we have identified the problem that the algo-
rithm is solving with small approximation. The only re-
maining question is how many choices of r2 exist, for pos-
sible choices of T2. These are distinct problems that the
messages from Player 3 must have answered.

We now sketch the remainder of the analysis, defer-
ring a complete rigorous treatment to the full version of
the paper. The analysis is completed by applying a ver-
sion of the Dispersed Ranks Lemma to Player 2. Let
G be the set of r2 values that get generated by settings

(T2, T1) which don’t lead to error above 0.47. By Markov,
Pr[r2 ∈ G] ≥ 1/10. Note that rk+1

1 − rk
1 = Ω(

√
`1/B)

and there are Ω(`2
n ·

√
`1/B) values of Pπ

2 in this range.
With `1 =

√
n, `2 = n15/16, this gives Ω(n3/16/B) val-

ues. So the lemma is applied with ∆ = Ω(n3/32/
√

B).
The conclusion will be that an event of the form E∗ is expo-
nentially unlikely unless |G| = Ω(B∆) = Ω(

√
B ·n3/32).

Therefore, we have Ω(
√

B · n3/32) possible values for r2.
The proof is completed as before, using the dispersed

ranks property for the last player. We need B2 choices
of ri

2, so we can guarantee ri+1
2 − ri

2 = Ω(B∆/B2) =
Ω(n3/32/

√
B). Then the new ∆ for the lemma is

Ω(n3/64/ 4
√

B), and we thus obtain an inapproximability
of n3/64/ 4

√
B. On the other hand, we have an upper bound

for the approximation of O(∆ + B), so this is impossible
if ∆ = B and B5/4 < n3/64, if B < n3/80. That means
s + ∆ = Ω(n3/80).

Acknowledgments
We are grateful to Sudipto Guha for suggesting to us the
problem studied here, and for inspiring and motivating
conversations in the early stages of this work.

References

[ADHP06] Micah Adler, Erik D. Demaine, Nicholas J. A. Har-
vey, and Mihai Pǎtraşcu. Lower bounds for asymmetric
communication channels and distributed source coding. In
Proc. 17th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 251–260, 2006.

[Cha07] Amit Chakrabarti. Lower bounds for multi-player
pointer jumping. In Proc. 22nd Annual IEEE Conference
on Computational Complexity, pages 33–45, 2007.

[CKMS06] Graham Cormode, Flip Korn, S. Muthukrishnan, and
Divesh Srivastava. Space- and time-efficient deterministic
algorithms for biased quantiles over data streams. In Proc.
25th ACM Symposium on Principles of Database Systems,
pages 263–272, 2006.

[CM05] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and itsapplica-
tions. J. Alg., 55(1):58–75, 2005. Preliminary version in
Proc. 6th Latin American Theoretical Informatics Sympo-
sium, pages 29–38, 2004.

[CR04] Amit Chakrabarti and Oded Regev. An optimal ran-
domised cell probe lower bound for approximate nearest
neighbour searching. In Proc. 45th Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 473–482,
2004.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In Proc. 6th Sym-
posium on Operating System Design and Implementation,
pages 137–150, 2004.

[GK01] Michael Greenwald and Sanjeev Khanna. Space-
efficient online computation of quantile summaries. In
Proc. Annual ACM SIGMOD Conference, pages 58–66,
2001.

[GKMS02] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan,
and Martin Strauss. How to summarize the universe: Dy-
namic maintenance of quantiles. In Proc. 28th Interna-
tional Conference on Very Large Data Bases, pages 454–
465, 2002.

[GM06] Sudipto Guha and Andrew McGregor. Approximate
quantiles and the order of the stream. In Proc. 25th ACM
Symposium on Principles of Database Systems, pages 273–
279, 2006.

[GM07] Sudipto Guha and Andrew McGregor. Lower bounds
for quantile estimation in random-order and multi-pass
streaming. In Proc. 34th International Colloquium on
Automata, Languages and Programming, pages 704–715,
2007.

[GZ03] Anupam Gupta and Francis Zane. Counting inversions
in lists. In Proc. 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 253–254, 2003.

[MNSW98] Peter Bro Miltersen, Noam Nisan, Shmuel Safra,
and Avi Wigderson. On data structures and asymmet-
ric communication complexity. J. Comput. Syst. Sci.,
57(1):37–49, 1998. Preliminary version in Proc. 27th An-
nual ACM Symposium on the Theory of Computing, pages
103–111, 1995.

[MP80] J. Ian Munro and Mike Paterson. Selection and sorting
with limited storage. TCS, 12:315–323, 1980. Preliminary
version in Proc. 19th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 253–258, 1978.

[MRL98] Gurmeet Singh Manku, Sridhar Rajagopalan, and
Bruce G. Lindsay. Approximate medians and other quan-
tiles in one pass and with limited memory. In Proc. Annual
ACM SIGMOD Conference, pages 426–435, 1998.

[MRL99] Gurmeet Singh Manku, Sridhar Rajagopalan, and
Bruce G. Lindsay. Random sampling techniques for space
efficient online computation of order statistics of large
datasets. In Proc. Annual ACM SIGMOD Conference,
pages 251–262, 1999.

[PT06] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-
offs for predecessor search. In Proc. 38th Annual ACM
Symposium on the Theory of Computing, pages 232–240,
2006.

[PT07] Mihai Pǎtraşcu and Mikkel Thorup. Randomization
does not help searching predecessors. In Proc. 18th An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages
555–564, 2007.

[SBAS04] Nisheeth Shrivastava, Chiranjeeb Buragohain, Di-
vyakant Agrawal, and Subhash Suri. Medians and beyond:
new aggregation techniques for sensor networks. In Proc.
ACM SenSys, pages 239–249, 2004.

[Sen03] Pranab Sen. Lower bounds for predecessor searching
in the cell probe model. In Proc. 18th Annual IEEE
Conference on Computational Complexity, pages 73–83,
2003.

[VW07] Emanuele Viola and Avi Wigderson. One-way multi-
party communication lower bound for pointer jumping with
applications. In Proc. 48th Annual IEEE Symposium on
Foundations of Computer Science, 2007. to appear.

[Yao77] Andrew C. Yao. Probabilistic computations: Towards a
unified measure of complexity. In Proc. 18th Annual IEEE
Symposium on Foundations of Computer Science, pages
222–227, 1977.

