
CS 105 (Winter 2005)
Homework 1 Solutions

Problem 1

We have a function family hA : {0, 1}m → {0, 1}n, parametrized by a Boolean matrix A ∈ {0, 1}(m+1)×n, and defined
thus:

hA(x) = x(1)A ,

where all arithmetic is done modulo 2 and where x(1) denotes the vector x with a 1 appended at the end. We shall prove
straightaway that the family {hA} is strongly 2-universal. By a result in Problem 2, this implies that it is also 2-universal.

Let x, y ∈ {0, 1}m be two distinct keys (i.e., x 6= y) and let r, s ∈ {0, 1}n be two (not necessarily distinct) hash values.
Our goal is to show that PrA[hA(x) = r ∧ hA(y) = s] = 2−2n. Let xi denote the ith entry of x, etc. and let aij denote
entry (i, j) in A. Since x 6= y there must exist a k ∈ [1,m] such that xk 6= yk.

For j ∈ [1, n], let Ej denote the event “(hA(x))j = rj ∧ (hA(y))j = sj”. Since the columns of A are chosen indepen-
dently and since the jth entries of hA(x), hA(y) depend only on the jth column of A, it follows that the n events E1, . . . , En

are pairwise independent. Therefore

Pr[hA(x) = r ∧ hA(y) = s] = Pr[E1 ∧ · · · ∧ En] =
n∏

j=1

Pr[Ej] . (1)

Fix a column j ∈ [1, n] and fix any arbitrary assignment of values to aij for i ∈ [1,m], i 6= k. The event Ej is equivalent
to the following system of two linear equations (remember, all arithmetic is modulo 2):

m∑
i=1

aijxi + a(m+1),j = rj ,

m∑
i=1

aijyi + a(m+1),j = sj .

Since all values above except for akj and a(m+1),j are fixed, we can think of this as a system of equations in those two
unknowns: [

xk 1

yk 1

] [
akj

a(m+1),j

]
=

[
r′

s′

]
, (2)

where r′ and s′ are some fixed values in {0, 1}. The determinant∣∣∣∣ xk 1
yk 1

∣∣∣∣ = xk − yk 6= 0

by assumption, so this system has a unique solution. Since the two random bits (akj , a(m+1),j) together have four equally
likely values in all, the probability that they take on exactly the values given by this unique solution is 1/4. Thus, for every
fixed setting of aij for i ∈ [1,m], i 6= k, the conditional probability of Ej is 1/4.

Since this is true for every fixed setting, the unconditional probability Pr[Ej] = 1/4 as well.
Using this in (1), we reach our goal:

Pr[hA(x) = r ∧ hA(y) = s] =
n∏

j=1

1
4

= 2−2n .

It’s clear that our argument made use of the padding of x, y to x(1), y(1) when we considered equation (2). Indeed,
if we did not pad, we would have always hashed the zero vector 0m to 0n for every A and the family {hA} would not
have been strongly 2-universal. It would still have been 2-universal, though. (So what does this say about the definition
of 2-universal?)

1

Problem 2

Part (a) We’ll use [CLRS] terminology in this solution. Suppose H is 2-universal. Suppose x and y are two distinct keys
in U . Let Ei denote the event “h(x) = i ∧ h(y) = i”, where i ∈ {0, 1, . . . ,m − 1}. By definition of 2-universality, for any
such i, we have

Pr
h←H

[Ei] = 1/m2 .

Note that the event “h(x) = h(y)” is simply E0 ∪ · · · ∪ Em−1. Since the events {Ei} are mutually exclusive,

Pr
h←H

[h(x) = h(y)] = Pr
h

[E0 ∪ · · · ∪ Em−1] =
m−1∑
j=0

Pr
h

[Ej] =
m−1∑
j=0

1/m2 = 1/m .

Therefore H is universal.

Part (b) We’ll continue to use [CLRS] terminology. We’ll do arithmetic in the field Zp for this solution, so we don’t have
to keep writing “mod p” repeatedly. Suppose x = 〈x0, . . . , xn−1〉 and y = 〈y0, . . . , yn−1〉 are two distinct keys. There must
exist a k ∈ [0, n− 1] such that xk 6= yk. Consider any two (not necessarily distinct) hash values r, s ∈ Zp. The event E :=
“ha,b(x) = r ∧ ha,b(y) = s” occurs iff the following equation holds:[

xk 1

yk 1

] [
ak

b

]
=

 r −
∑n−1

i=0,i 6=k aixi

s−
∑n−1

i=0,i 6=k aiyi

Consider any fixed assignment of values in Zp to the ai’s for i ∈ [0, n − 1], i 6= k. Then, the above equation can be

viewed as a system of two linear equations in the unknowns ak and b. Since the determinant = xk − yk 6= 0, the system
has a unique solution in Zp (here, we are using the fact that Zp is a field and so the nonzero quantity (xk − yk) has a
multiplicative inverse). Since ak and b are chosen uniformly at random from Zp, they will attain the values given by the
unique solution with probability 1/p2. Therefore, conditioned on the above fixed assignment, the probability of E is 1/p2.

Since this conditional probability is 1/p2 for every such assignment of values to ai, i 6= k, the unconditional probability
Pr[E] = 1/p2 as well. This proves the 2-universality, as required.

Problem 3

Part 3.1 Let d1, . . . , dn be the depths of the n nodes in the binary search tree. The average access time under a uniform
distribution is, by definition,

∑n
i=1(di/n). We are given that this average is Θ(log n), so we have

n∑
i=1

di = Θ(n log n) . (3)

Since the cost of splaying at a node is a linear function of its depth, the worst case cost of splaying in this tree is
Θ(h), where h is the depth of the deepest node. The path from the root to this deepest node consists of nodes at depth
1, 2, . . . , h. The sum of these depths is clearly 1 + 2 + · · ·+ h = h(h + 1)/2 ≥ h2/2. Using this in (3), we see that

h2/2 ≤ Θ(n log n) ,

whence h = O(
√

n log n).

Part 3.2 Consider a tree T whose root’s left child TL is a left path of length ` := d
√

n log ne and whose root’s right child
TR is a balanced (or as close to balanced as possible) binary tree on (n − 1 − `) nodes. Clearly, it costs Θ(

√
n log n) to

splay at the deepest node in such a tree.

2

To analyze the average access time, let d(x) denote the depth of a node x in this tree. Notice that any x ∈ TR satisfies
d(x) ≤ 1 + blog(n− 1− `)c ≤ dlog ne. Therefore,

average access time =
∑
x∈T

d(x)
n

=
1
n

+
∑

x∈TL

d(x)
n

+
∑

x∈TR

d(x)
n

=
(` + 1)(` + 2)

2n
+

∑
x∈TR

d(x)
n

≤ `2

n
+

∑
x∈TR

dlog ne
n

=
O(n log n)

n
+
dlog ne

n
· |TR|

= O(log n) ,

because |TR| ≤ n. This proves the result.

Problem 4

Define an “n-gloop” to be a binary tree consisting of a single path alternating between left and right children and with the
root’s child being a left child. We would like to show that, for any odd n ≥ 5, there is a sequence of accesses that turns
any n-node splay tree into an n-gloop. We may assume, WLOG, that the keys stored in the tree are {1, 2, . . . , n}.

We shall prove this by induction on n. For the base case, n = 5, we can easily work out that the access sequence
〈1, 2, 3, 4, 5, 2, 4, 1, 5〉 will turn any 5-node splay tree into a 5-gloop.

For the induction step, suppose n is odd and n ≥ 7. Consider the access sequence σi = 〈1, 2, . . . , i〉, where i ≤ n. We
shall show that applying σn−1 to any n-node splay tree T turns it into the tree T1 shown in Figure 1. (You may skip the
following claim and its proof if you find this obvious.)

CLAIM: Applying σi to T turns it into a tree T ′ consisting of the nodes i, i − 1, . . . , 1 along a root-to-leaf left
path and the remaining nodes in the right subtree of the root.

PROOF: We proceed by induction on i. For the base case i = 1, the claim is clear because splaying moves 1 to
the root and all other nodes, which have keys > 1, must fall into the right subtree of this new root. For i > 1,
let T̂ be the tree obtained by applying σi−1 to T . By induction hypothesis, the node i is the smallest node in
the right subtree of the root. Therefore, when we access i in T̂ and splay at that node, it can never become the
right child of the right child of the root, i.e., the final splaying step can never be a zig-zig. Now a simple study
of the definitions of the zig and zig-zag operations shows that T ′ has the desired structure, which completes
the proof.

Let T ′1 be the subtree of T1 consisting of nodes {2, 3, . . . , n − 1}. By induction hypothesis, there is an access sequence
π that turns T ′1 into an (n− 2)-gloop. Let x be the root and y the left child of the root in this gloop, as shown in Figure 2.
Let us apply π to T1 to get a tree T2. We ask ourselves: where do nodes 1 and n end up in T2?

3

���
�

?

1 n

y

x

?

(n
−4

)−
gl

oo
p

n

1

y

x

(n
−4

)−
gl

oo
p

n

x

1

y

(n
−4

)−
gl

oo
p

���
�

���
�

1

n

2

access
access

Figure 1 Figure 4Figure 3Figure 2

n−1

n−2

induction
hypothesis

Since n and 1 are the largest and smallest keys, respectively, the only possible locations for them are as the right child
of x and as the left child of y, respectively. No other locations are consistent with the binary search tree ordering rules
and with the fact that 1 and n must be non-roots (why?). Therefore, our splay tree now looks like the tree in Figure 3.

Apply the access sequence 〈1, n〉 to T2. The first of these results in a zig-zig and the second in a zig-zig followed by
a zig. It is straightforward to check that the final result is the tree T3 shown in Figure 4. And T3 is an n-gloop, which
completes our proof!

Thanks to Rajendra Magar for this most elegant solution. Khanh Do Ba also wrote up a very rigorous proof, as did
Anne Loomis. Most students found an access sequence that works but did not argue the correctness very rigorously.

Problem 5

Almost every submitter had a good solution for this problem, so we shall skip it here. The only part that might be
considered tricky is the selection of a edge uniformly at random in O(n) time. The way to do it is to maintain not just a
weighted adjacency matrix of the graph but also the sum of the entries in each row of such a matrix (i.e., the degree of
each vertex) and the sum of these sums (i.e., the total number of edges times two).

Let m be the current number of edges. To choose a random edge, first pick an integer k ∈ [1, 2m] uniformly at
random; this can be done using dlog(2m)e random bits. Let di be the degree of the ith vertex. Find the smallest i such
that d1 + d2 + · · ·+ di ≥ k. Then, within the ith row of the adjacency matrix, find the column j such that d1 + · · ·+ di−1+
the sum of the first j entries of this ith row ≥ k. The pair (i, j) is the next pair to be contracted.

Problem 6

We worked out in class that contraction to t vertices discards a min cut with probability at most 1 − t(t − 1)/n(n − 1) =
1−Θ(t2/n2). With k repetitions, the probability of discarding the min cut each time falls to

(1−Θ(t2/n2))k ≤ e−k·Θ(t2/n2) .

To make this less than 1/2, we need k = Θ(n2/t2) repetitions.
Each contraction can require up to Θ(n) time, so each series of (n− t) contractions takes Θ(n(n− t)) time. The cubic

time algorithm applied to the remaining t-vertex graph takes a further Θ(t3) time. Therefore, the k repetitions of the
entire algorithm to get the failure probability below 1/2 can make the overall running time as high as

Tt(n) := Θ
(
(n(n− t) + t3) · n2/t2

)
= Θ(ft(n) + gt(n)) ,

4

where ft(n) := n3(n− t)/t2 and gt(n) = n2t. We shall show that even if we choose the best t that minimizes ft(n)+gt(n),
we will still have Tt(n) = Ω(n8/3).

At this point, just about every submitted solution resorted to calculus to do the minimization. This is unnecessarily tedious
and in fact hard to get right, because you have to compute two derivatives and “solve” a cubic equation. Life is a lot simpler
than that: we only seek to prove an Ω()-bound on the running time, so we don’t need the precision that calculus give us.

First, we note that we may assume t < n/2. If not, gt(n) = Ω(n3) > Ω(n8/3) already. So, with this assumption,
ft(n) ≥ ht(n) := n4/(2t2). There is a point t0 ∈ [1, n/2] at which ht0(n) = gt0(n): this t0 is given by

n4

2t20
= n2t0 , i.e., t0 = Θ(n2/3) .

Now note that, as a function of t in the interval [1, n/2], ht(n) is decreasing and gt(n) increasing. Therefore, at any point
in the interval, one of these two quantities must be ≥ ht0(n) = gt0(n) = n2t0 = Θ(n8/3).

Thus, for t ∈ [1, n], Tt(n) ≥ Θ(n8/3), i.e., Tt(n) = Ω(n8/3).
Elizabeth Moseman was the only submitter to give this simple, calculus-free solution.

5

