
CS 105 (Winter 2005)
Homework 2 Solutions

Problem 1

Part (a) We shall prove that a graph G with distinct edge weights has a unique MST. Suppose that G has two different
MSTs, T and T ′. Let e ∈ T ′− T . As shown in class, ∀ f ∈ cycT (e), T + e− f is a spanning tree of G. Since T is minimum,
this means wt(e) ≥ wt(f). Since weights are distinct, we have wt(e) > wt(f). Therefore e is the heaviest edge in the cycle
cycT (e). The Red Rule implies that e cannot belong to the MST T ′, a contradiction.

Everyone successfully found a graph with distinct edge weights and two different second-best-MSTs (2BMSTs), so I
shall skip this.

Part (b) We shall show that a 2BMST of G can be obtained by doing just a single edge switch to the MST. In fact we
shall show something stronger: that every 2BMST can be obtained this way.

Let T2 be a 2BMST of G. There must exist an edge in E(G)− T2 to which the Red Rule does not apply, or else no edge
in E(G) − T2 could be an MST edge and T2 would have to be an MST, which it isn’t. Let e ∈ E(G) − T2 be such an edge.
Since the Red Rule does not apply to e, it is not the heaviest edge in cycT2

(e). In other words ∃ f ∈ cycT2
(e) such that

wt(f) > wt(e). Therefore, the spanning tree T2 + e− f is lighter than T2, whence it must be the unique MST of G.
This shows that T2 = MST(G)− e + f , as desired.

Part (c) We must determine max[u, v] for all pairs of vertices u and v in time O(n2). There are many different ways of
doing this. Amazingly, I received ten different solutions to this problem and they were all more-or-less correct!

Pick a vertex r of T and run a DFS of T from r, keeping track of the heaviest edge on the path from r to the current
vertex. This can be done by, for instance, passing along an extra “max-so-far” parameter in a recursive implementation
of DFS. Just before recursing on the children of a vertex v 6= r, fill in the table entries max[r, v] and max[v, r]. The entire
operation takes O(n) time, as T has n− 1 edges and n vertices.

The above procedure computes max[r, v] and max[v, r] for a particular r. Repeat the procedure n times, letting r range
over all the vertices of the graph. Clearly this fills in the max table completely, correctly, and in O(n2) time.

Part (d) To find a 2BMST of a given graph G, first find the MST T of G using Prim’s algorithm. This takes O(m+n log n)
time. Then, compute the max[u, v] array with respect to T , using the above O(n2) algorithm. Finally, looping over all
pairs u, v of vertices, find one that minimizes the quantity (wt(u, v)− wt(max[u, v])); this takes O(n2) time.

By the result of part (b), T −max[u, v] + {u, v} is a 2BMST of G.

Problem 2

Part (a) We shall prove that an MST of a graph is also a bottleneck spanning tree (BNST). Suppose not; i.e., suppose T
is an MST of a graph G and that there is a BNST T ′ such that

max{wt(e) : e ∈ T} = α > β = max{wt(e′) : e′ ∈ T ′} .

Let em be an edge in T of weight α. The above condition implies that em /∈ T ′ and that em is the heaviest edge in
cycT ′(em), because all other edges in that cycle are of weight β or less. By the Red Rule, em cannot belong to any MST, a
contradiction.

Part (b) Given a graph G and a value β, we wish to determine, in linear time, whether G has a BNST with maximum
edge weight ≤ β. This is almost trivial: just delete all edges in G with weight > β to obtain a subgraph G′. Then G
has a BNST of the required type iff G′ is connected. To check this connectedness condition, use any linear time search
algorithm, such as DFS, on G′.

1

Part (c) We wish to find a BNST of a given graph connected graph G in linear time. The key step is to call the algorithm
from part (b) passing it the median edge weight, wm, of G. Recall that median finding can be done in linear time, so this
does not require sorting the edges of G by weight.

Let E> denote the set of edges with weight > wm. If G happens to have a BNST of weight ≤ wm, we can safely delete
all edges in E>; note that this gets rid of about half the edges of G. On the other hand, if G does not have such a BNST,
then we can use DFS to find a spanning forest of G − E> and, in linear time, contract all such components to single
vertices. Note that this also gets rid of about half the edges of G. Therefore, in either case, we may safely recurse on the
remaining graph, for a total running time of something like

O(m + m/2 + m/4 + · · ·) = O(m) .

We keep track of all spanning forest edges we find during this algorithm and return the union of these edges as our
BNST.

We claim that this algorithm is correct. Proof to come...

Problem 3

Almost everyone solved this problem perfectly. The main observation is that the arrangement of the m rooks on an
n × n chessboard translates naturally into an m-edge bipartite graph on n left vertices {u1, . . . , un} and n right vertices
{v1, . . . , vn}. We put an edge between ui and vj iff there is a rook at position (i, j) on the board.

Now, a subset of rooks has the property that no two rooks attack each other iff the corresponding subset of edges in
the graph has the property that no two edges share a vertex, i.e., iff the corresponding subset of edges is a matching.
Therefore the problem is simply maximum bipartite matching in disguise and we can use the algorithm we studied in
class.

Problem 4

Again, almost everyone found a counterexample showing that Professor Nixon’s algorithm (call it ANIX) is not a 2-
approximation. A few people gave constant-sized examples which are not very satisfactory, for reasons I have discussed
in class. Others came up with an infinite family of examples, each of which had ANIX producing a vertex cover of just
over twice the optimal size. Only two students came up with really solid lower bounds on the approximation guarantee
of ANIX.

Khanh Do Ba gave a very original solution using Gronwall’s Theorem (look it up on mathworld.wolfram.com) which
showed that ANIX is an Ω(log log n)-approximation. Paritosh Kavathekar went one step futher and showed that in fact ANIX

is an Ω(log n)-approximation. This is optimal. Paritosh’s solution cannot be improved because ANIX happens to be equiva-
lent to the greedy set cover algorithm applied to the vertex cover problem; therefore, it is an O(log n)-approximation.

Construct a bipartite graph with n left vertices L and with several right vertices R; we shall eventually see what |R| is.
We think of R as partitioned into subsets R1, R2, . . . , Rn, where |Ri| = bn/ic. Assume that each of these sets of vertices is
totally ordered in some arbitrary way. Add edges to this graph as follows: for each i ∈ {1, . . . , n}, connect the first vertex
of Ri to the first i vertices of L, the next vertex of Ri to the next i vertices of L and so on. Thus, after all such edges have
been added, the graph (G, say) will have the following properties:

1. Each vertex in Ri has degree exactly i.

2. For each i ∈ {1, . . . , n}, each vertex in L is connected to at most one vertex in Ri. Also, the first vertex in L is
connected to exactly one vertex in Ri.

We claim that if the tie-breaking amongst vertices of equal degree is done by an adversary, then ANIX can be made
to return R1 ∪ · · · ∪ Rn as its choice for a vertex cover of G. To see this, let Gk be the subgraph of G induced by
L ∪ (R1 ∪ · · · ∪ Rk), where k ∈ {1, . . . , n}. Then, the above properties ensure that the maximum degree in Gk is exactly
k. Therefore, assuming that at some point ANIX is dealing with the graph Gk, an adversary can force ANIX to pick all the
vertices in Rk. Having done this, ANIX is now left with the graph Gk−1.

2

Since ANIX starts with the graph G = Gn, it can thus be made to pick all of Rn, then Rn−1, and so on down to R1,
causing it to return the vertex cover R. The size of this cover is

|R1|+ · · ·+ |Rn| =
n∑

i=1

⌊n

i

⌋
>

n∑
i=1

n

2i
=

nHn

2
= Ω(n log n) ,

whereas G has the much smaller vertex cover L of size n. Therefore, the approximation ratio of ANIX is at least as bad as
Ω(log n).

3

