
CS 105: Algorithms (Grad)
Subset Sum Problem

Soumendra Nanda
March 2, 2005

1 What is the Subset Sum Problem?

An instance of the Subset Sum problem is a pair (S, t), where S = {x1, x2, ..., xn} is a set of
positive integers and t (the target) is a positive integer. The decision problem asks for a subset
of S whose sum is as large as possible, but not larger than t.

This problem is NP-complete.

This problem arises in practical applications. Similar to the knapsack problem we may have a
truck that can carry at most t pounds and we have n different boxes to ship and the ith box
weighs xi pounds.

The naive approach of computing the sum of the elements of every subset of S and then selecting
the best requires exponential time. Below we present an exponential time exact algorithm.

2 An Exact Algorithm for the Subset-Sum Problem

In iteration i, we compute the sums of all subsets of {x1, x2, ..., xi}, using as a starting point
the sums of all subsets of {x1, x2, ..., xi−1}. Once we find the sum of a subset S’ is greater than
t, we ignore that sum, as there is no reason to maintain it. No superset of S’ can possibly be
the optimal solution.

Notation: If L is a list of positive integers and x is another positive integer, then we let
L + x denote the list of integers derived from L by increasing each element of L by x. For
example, if L = 〈1, 2, 4〉 then L + 2 = 〈3, 4, 6〉

MergeLists(L,L′) returns the sorted list that is the merge of two sorted input lists L and L’

Algorithm 1: Exact-Subset-Sum(S, t)

n←− |S|1

L0 ←− 〈0〉2

for i = 1 to n do3

Li ←−MergeLists(Li−1, Li−1 + xi)4

remove from Li every element greater than t5

return the largest element in Ln6

Analysis:
It can be shown by induction that above algorithm is correct. Exact-Subset-Sum(S, t) is an
exponential time algorithm in general since the length of Li can be as high as 2i.
Example: Let S = {1, 4, 5} then.......
L0 = {0}
L1 = {0, 1}
L2 = {0, 1, 4, 5}
L3 = {0, 1, 4, 5, 6, 9, 10} So if the target was 9 we would have removed 10 from the last list.

Page 1 of 4

CS 105: Algorithms (Grad)
Subset Sum Problem

Soumendra Nanda
March 2, 2005

3 FPTAS for the Subset-Sum Problem

3.1 What is a PTAS / FPTAS?

A polynomial time approximation scheme (PTAS) is an algorithm that takes as input not only
an instance of the problem but also a value ε > 0 and approximates the optimal solution to
within a ratio bound of 1 + ε. For any choice of ε the algorithm has a running time that is
polynomial in n, the size of the input.
Example: a PTAS may have a running time bound of O(n2/ε)

A fully polynomial-time approximation scheme (FPTAS) is a PTAS with a running time that
is polynomial not only in n but also in 1/ε.
Example: a PTAS with a running time bound of O((1/ε)2n3) is an FPTAS

3.2 Trim Subroutine for Approximate Subset Sum Algorithm

Before we explain the approximation algorithm, we explain how to trim our list Li using the
parameter δ. If several values in L are close to each other, maintain only one of them,i.e we
trim each list Li after it is created.

Given a parameter δ, where 0 < δ < 1 , element z approximates element y if y/(1 + δ) ≤ z ≤ y.
To trim a list Li by δ, remove as many elements as possible such that every element that is
removed is approximated by some remaining element in the list.

Example:

If δ = 0.1 and
L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
will be trimmed to
L = 〈10, 12, 15, 20, 23, 29〉
since 11 approximates 12, 20 approximates 21 and 22 and similarly 23 approximates 24.

Algorithm 2: Trim(L, δ)

m←− |L|1

L′ ←− 〈0〉2

last←− y13

for i = 2 to n do4

if yi > last.(1 + δ) then5

append yi onto the end of L′6

last←− yi7

return L′8

The running time for above algorithm is Θ(m). We now present the approximate subset sum
algorithm that uses Trim and MergeLists.

Page 2 of 4

CS 105: Algorithms (Grad)
Subset Sum Problem

Soumendra Nanda
March 2, 2005

3.3 Approximate Subset Sum Algorithm

Algorithm 3: Approx-Subset-Sum(S, t, ε)

n←− |S|1

L0 ←− 〈0〉2

for i = 1 to n do3

Li ←−MergeLists(Li−1, Li−1 + xi)4

Li ←− Trim(Li, ε/2n)5

remove from Li every element greater than t;6

return the largest element in Ln7

3.4 Analysis of Approximate Subset Sum Algorithm

Theorem: For 0 < ε < 1, Approx-Subset-Sum(S, t, ε) is a FPTAS for the subset sum problem.

Proof:
We need to show that

1. The solution returned is within a factor of 1 + ε of the optimal solution.

2. The running time is polynomial in both n and 1/ε

Let z∗ be the value returned by Approx-Subset-Sum(S, t, ε) and let y∗ be an optimal solution.

As z∗ ≤ y∗, we need to show that y∗

z∗ ≤ 1 + ε

For every element y ≤ t that is the sum of a subset of the first i numbers in S, there is a
z ∈ Li, such that

y

(1 + ε/2n)i
≤ z ≤ y

Taking i = n and using the fact that z∗ is the largest element in Ln,

y∗

z∗
≤ (1 + ε/2n)n ≤ eε/2 ≤ 1 + ε

Therefore,

y∗

z∗
≤ 1 + ε (1)

Now lets look at the number of elements in Li:
After trimming, successive elements z and z′ in Li must differ by at least 1 + ε/2n
The number of elements in Li is at most

2 + log1+ε/2n t = 2 +
ln t

ln(1 + ε/2n)

Page 3 of 4

CS 105: Algorithms (Grad)
Subset Sum Problem

Soumendra Nanda
March 2, 2005

≤ 2 +
4n ln t

ε
(2)

This implies that this above value is polynomial in size of the input(i.e log t plus some polyno-
mial in n) and in 1/ε.

Therefore since the running time of Approx-Subset-Sum is polynomial in size of the length
of Li, from (1) and (2) we have shown that Approx-Subset-Sum is an FPTAS.

Page 4 of 4

