
COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

1 Hashing

1.1 On Hashing

We are given the task of storing a dictionary of word-definition pairs – i.e., a set of n(key, value) pairs. We could
store these pairs in a linked list, but this requires aO(n) access time.

We can choose a hash table as an alternative storage structure. Instead of keeping then keys in order with theirn
values, we divide the keys intom slots, or bins, using a hash functionf : f(keyk) → bins, 0 < s ≤ m. Within each
bin we maintain a data structure, such as a listLk, that allows us to search within the keys which hash to bink.

1.1.1 The advantage of hashing over binary search trees

Hash tables are efficient when it comes to random access. Unlike in lists, where we do not know ahead of time where
we will find a value, the hash function points to the bin where the value is expected to be.

In the good case, each bin containsn/m keys, and we can expect to search in≈ n/m = α, whereα is the load
factor. Thus, the expected search time isO(1) by assumption.

In this good case, the length of the lists holding the values that have collided, or hashed to the same bin, areα.
However, in the worst case (when all the keys hash to the same bin), the search time isO(n)!

We thus considertwo strategies when the worst case is unacceptably bad:

1. We assume that the worst case won’t occur, or that it is very unlikely. In the case of hash tables, this makes an
assumption about the input, i.e., that it is evenly distributed.This is the study of average case analysis.

2. Use randomness inside the algorithm.This is the study of randomized algorithms.

In this class, we will focus on the second of these strategies.

1



COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

1.1.2 Probability theory

Probability distribution: Over a finite spaceΩ, we consider the functionp : Ω→ [0, 1] with the property∑
x∈Ω

p(x) = 1

.
(i.e., the spaceΩ is a finite collection of numbers whose sum is 1.)
For any eventE ⊆ Ω, the probability thatE occurs, orPr[E] is

∑
x∈E p(x). It follows that0 ≤ Pr[E] ≤ 1.

We consider a random variable functionX : Ω→ R.
We use as an example a coin toss. In this case,

Ω = {outcomes(5 coin tosses)} = {HHHHH,HHHHT, . . .}

Expectation: E[X] =
∑

x∈Ω p(x)×X(x) (This is sometimes referred to as a weighted average since
∑

p(x) =
1.)

THEOREM : Linearity of expectation: If x, y are random variables andc is a constant, then

E[x + y] = E[x] + E[y]
E[cx] = cE[x]

DEFINITION : We define anindicator random variable I(E) : Ω→ R for an eventE ⊆ Ω:

I(E) =
{

1 if the event occurs
0 otherwise

More formally,I(E) : Ω→ R is defined as

I(E)(x) =
{

1 if x ∈ E
0 otherwise

We note that ifI is an indicator random variable, then

E[I] = Pr[I = 1] = Pr[the corresponding event occurs]

.
PROOF: E(I) = 0(Pr[I = 0]) + 1(Pr[I = 1]) = 0 + Pr[I = 1]

1.2 Universal Hashing

[CLRS: 1.3.3; MR 8.4.1-4]
Note: We will be using the notation and reference to “universal” and “two universal” of the CLRS presentation.

For this presentation, we assume thatα = O(1).
In designing an efficient hashing scheme, we know that we can’t just use a fixed hashing algorithm, because it

would be possible for our adversary to design input that would put our search algorithm in its worst case (i.e., all the
input keys could hash to the same location).

We thus consider a family of functions as part of our hashing scheme. When we need to construct a new hash table,
we choose one function of this family at random, and use it in the construction. (We also remember which function
we used, or else we would not be able to search the table after construction.) Given a familyH of hash functions from
M to N , M = {0, 1, . . . ,m− 1}, we pick one functionh fromH uniformly at random.

2



COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

DEFINITION : H is calleduniversal if ∀ keysk, l, k 6= l, Prh∈H[h(k) = h(l)] ≤ 1/m.

This goes to say that the number of hash functionsh ∈ Hfor which h(k) = h(l) is at most|H|/m, or, with a
randomly chosenh the chance of a collision is no more than ifh(k) andh(l) were randomly chosen from the values
{0,1,. . . ,m-1}.

DEFINITION : We say thatH is two-universal if ∀ x1, x2 ∈ M , x1 6= x2, any y1, y2 ∈ N , andh chosen uni-
formly at random fromH,

Pr[h(x1) = y1 andh(x2) = y2] = 1/n2

We note that the first form of universality regards the probability that two keys collide; the second form concerns
the probability that two keys hash to two certain values (which may or may not constitute a collision).

THEOREM : Using a universal hash function family givesE[search time] ≤ 1 + α.

PROOF: We define two indicator random variables:

Xkl = I{h(k) = h(l)}

which is the indicator random variable for the event thatk andl collide;

Yk =
∑

l∈M ;l 6=k

Xkl

which is the number of other keys that hash into the same slot ask (h(k)).

E[Yk] =
∑

l∈M ;l 6=k

E[Xkl]

=
∑

l∈M ;l 6=k

Pr[Xkl = 1]

=
∑

l∈M ;l 6=k

Pr[h(k) = h(l)]

≤
∑

l∈M ;l 6=k

1/m(by definition)

= 1/m(the number of keys 6= k)
≤ 1/m(n)
= α

We note forYk thatk is from a larger universe of possible keys;k doesn’t have to already be in the table. If itis in
the table, we don’t want to count the collision ofk with itself. So, we boundYk by α.

Search time: the length of the list at locationh(k)

=
{

Yk if k /∈ the table
Yk+1 if k ∈ the table

E[search time] ≤ E[Yk + 1]
= E[Yk] + 1
≤ α + 1

3



COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

1.3 Designing a Universal Hash Family

For this discussion, we will consider the keys of our hash functions as integers. We letp be some prime> any key.
We define the hash familyH which consists of functionsHa.b : {0, 1, . . . , p− 1} → {0, 1, . . . ,m− 1} for all a andb

ha,b(k) = ((ax + bmod p)mod m

THEOREM :{ha,b : a ∈ {1, . . . , p− 1}, b ∈ {0, p− 1} is universal.

PROOF: We note thata can’t be 0, or all keys would map to the same slot. We note also that a functionmod p
is a linear operation over some field{0,. . . ,p-1}.

We want to prove that the probability of a collision is bounded by a value. There are two places for a possible
collision to occur:mod p andmod m.

We show first that there cannot be a collision atmod p.

• We suppose thatk 6= l and(ak + b)mod p = (al + b)mod p. So,p dividesa(k− 1), sincep does not dividea,
because|a| < p, a 6= 0.

• Becausep is prime, we cannot factor it, and it must thus divide(k − l). However,|k − l| < P , 6= 0, sop can’t
divide (k − l) either.

• This yields a contradiction; distinct keys thus cannot collide at the level ofmod p.

Next, we suppose thatk 6= l are two distinct keys. Let

(1) r = (ak + b)mod p (2) s = (al + b)mod p.

Then,r 6= s. We show thatr ands can take on all possible values in{0, . . . , p − 1} × {0, . . . , p − 1} except for
those wherer = s. As an aside, we note that:

r1 = (akb)mod p
s1 = (alb)mod p

}
has a solution in a, b.

Two linear equations have a solution when

k × a + 1× b = r
l × a + 1× b = s

,

∣∣∣∣ k 1
l 1

∣∣∣∣ 6= 0

The determinant is easy to evaluate:

k − l 6= 0

k 6= l

(We started with the second condition.)
Everything is still acceptablemod p becausep is prime; working mod a prime is the same as working in real

numbers.
If the determinant is non-zero, there is a solution and it is a unique solution.
By the theory of linear equations,∀(r, s), r 6= s,∃ a unique(a, b) such that(1) and(2) hold.
This means that there is a one-to-one correspondance between(a, b) and(r, s); choosingha,b at random is equiv-

alent to choosing(r, s) at random, subject to the condition thatr 6= s.
Thus,Pr[collision] = Pr[r mod m = s mod m] (wherer, s ← 0, . . . , p− 1 andr 6= s). If we remove the

requirement thatr 6= s, we find that

Pr[collision] = Pr[r mod m = s mod m]− 1/p
= Pr[s mod m = some particular value− 1/p

4



COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

Thus we see that the the probability of a collision is bounded:

Pr[collision] = Prr,s←{0,...,p−1},r 6=s[r mod m = s mod m]
= Prs←{0,...,p−1},r 6=s[r mod m = s mod m]

(Which is the same probability that ans chosen at random results in a collision.)

= Prs←{0,...,p−1}[r mod m = s mod m]− 1/p

(the1/p represents an additional value ofs, wheres = r)

= Prs←{0,...,p−1}[s mod m = some particular value]− 1/p

(Say you pick the number 3– we can have a collision by choosing 3,m + 3, 2m + 3, 3m + 3, etc.)
We note that the final segment of this drawing is of size< m, asp is a prime and does not divide bym. Since it is

thus possible that it will not contain the value we’re looking for, we take the ceiling of this value.

Pr[collision] ≤
⌈

p− 1
m

⌉
1/p− 1/p ≤ 1/m

1.4 Perfect Hashing

[CLRS 11.5; MR 8.5]
What if we could make the search timeO(1) in theworst case? We can accomplish this using a two-level hash

table in which the second hash function is collision-free. How do we achieve a simple hash function that is collision
free? We use a universal hash family with a table size ofn2, according to the scheme discovered by Fredman, Komlos,
and Szemeredi (1984-1986).

CLAIM : Let h be chosen uniformly at random from a universal hash family mapping keys to0, . . . , n2 − 1. Then, if
we hashn keys usingh, Pr[∃collision] < 1/2.

To prove this, we digress for a moment to note Markov’s inequality: ifx ≥ 0 is a random variable, thenPr[x ≥
t] ≤ E[x]

t for anyt > 0.
Intuitively, this tells us that a random variable’s probability to take on a value decreases the further that value strays

from the variable’s expected value.

PROOF: Of Markov’s Inequality (for finite probability spaces)
Let x1, . . . , xr be the possible values ofx. Then,

E[x] =
∑r

i=1 xi Pr[x = xi]
=
∑

xi<t xi Pr[x = xi] +
∑

xx≥t xi Pr[x = xi]
≥
∑

xx≥t xi Pr[x = xi](because x ≥ 0)
≥
∑

xx≥t t Pr[x = xi]
= t Pr[x ≥ t]

5



COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

Dividing by t,

E[x]
t
≥ Pr[x ≥ t]

Now, we prove the above claim concerning the probability of a collision for universal hash functions and a hashed
space of sizen2.

PROOF: Let x = the number of collisions.

E[x] =
∑

all pairs (k,l)

Pr[h(k) = h(l)]

=
∑

all pairs (k,l)

1/n2

=
(

n
2

)
1/n2 =

n− 1
2n

< 1/2

So we know that the expected number of collisions is1/2. We want to say something about the probability of a
collision. Applying Markov’s inequality:

Pr[∃ collision] = Pr[x ≥ 1]
≤ E[x]

1 < 1/2

The idea here is that if we have an initial set of data, given that it is more likely than not that there will be no
collisions, it is quick to find within a few random guesses a hashing function that gives no collisions.

1.5 Optimized Space for Perfect Hashing

We showed above that picking a hash function uniformly at random fromHp,n2 givesno collisionswith probability
> 1/2. However, we should ideally only useO(n) space to storen keys. Our second try for a bound on this space
used to store the hash table will ben + O(n).

The size of this data structure will ben + n1
2 + n2

2 + · · ·+ nn
2, orn +

∑n
j=1 nj

2. We note that the number of
keys that hash to a particular bin (i.e., the values ofnj in the preceeding sum) is determined by the hash function that
is chosen.

We want to boundE[n +
∑n

j=1 n2
j ] = n + E[

∑n
j=1 n2

j ]. We do this with an algebraic trick:a2 = a + 2
(

a
2

)
.

Using this trick, we find
∑n

j=1 n2
j =

∑n
j=1 n+2

∑n
j=1

(
nj

2

)
= 2n times number of collisions in the hash function).

6



COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

E[
∑n

j=1 n2
j ] = n + 2 × E[#collisions of primary hash function]

≤ n + 2 ×
(

nj

2

)
× 1/n

= n + (n− 1) = 2n− 1
E[size of data structure] = E[n +

∑n
j=1 n2

j ] ≤ n + (2n− 1) < 3n

How likely is it that we’ll actually get the expected size of this data structure when implemented? To discover this,
we apply Markov’s Inequality.

Pr[size ≥ 6n] ≤ E[size]
6n

< 1/2

We note that to use this, we must obey the condition that the random variable be> 0. This is true in this case,
since the size of the structure will be greater than zero.

It is actually possible to come up with a slightly tighter bound:

E[
∑n

j=1 nj
2] ≤ 2n− 1 < 2n

Pr[
∑n

j=1 nj
2 ≥ 4n] < 2n

4 = 1/2
Pr[size ≥ 5n] < 1/2

1.6 Algorithm and Run Time for Space-Optimized Perfect Hashing

We consider the algorithm by which one constructs a hash table in this way.

1. Choose a function fromHp,n uniformly at random.

2. Compute allhj and setskj of keys hashing to slotj by actually performing the hashing.

3. If
∑n

j=1 nj
2 > 4, go to step 1.

4. Forj = 0 to n− 1,

(a) Choose a functionhj fromHp,nj uniformly at random.

(b) Hash the keys inkj usinghj .

(c) If there is a collision inH, go to step 4.1.

The expected run time isO(n) for steps 1-3 and
∑n

j=1(O(nj
2)) for steps 4.1-4.3, for a total of≤ O(n).

1.7 Refining the Space Optimization for Perfect Hashing

(The notation used in this section is similar to that of the paper of which it is a presentation,Storing a Sparse Table
with O(1) Worst Case Access Time, by Fredman, Komlos, and Szemeredi.)

Given W ⊆ U with |W | = r, k ∈ U , ands ≥ r, let B(s,W, k, j) be the number of times that the valuej is
achieved by the functionx→ (lk mod p)mod s whenx is restricted toW . This refers to the number of values in the
bin, not the number of collisions.

We note thatk plays the same role asa in ha,b, and thats plays the same role asm from ha,b. The range of the
function is from{0 . . . s− 2}; it is not universal.

L EMMA 1: Given the above, there exists ak ∈ U such that
∑s

j=1

(
B(s,W, k, j)

2

)
< r2/s

p−1∑
k=1

s∑
j=1

(
B(s,W, k, j)

2

)
<

(p− 1)r2

s
(1)

7



COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

Equation 1 expresses the number of(kx, y) with x, y ∈ W,x 6= y, 1 ≤ k ≤ p, such that(kx mod p) mod s >
(ky mod p)mod s; i.e., the number of actual collisions.

The contribution ofx, y to this quantity is at most the number ofk for which

k(x− y)mod p ∈ s, 2s, 3s, . . . , p− s, p− 2s, p− 3s, . . . (2)

Becausex− y has the multiplicative inversemod p, the number ofk satisfying 2 is≤ 2(p−1)
s .

(This is similar to the argument we saw in class.)

When we sum over the

(
r
2

)
possible choices forx, y, we get

(
r
2

)
2(p−1)

s = (p−1)(r(r−1))
s .

We conclude that the sum in (1) is bounded by(p−1)r2

s .
Using Lemma 1, we letW = S, s = g(n), r = n. We find that for somek,

O(n)∑
j=1

(
B(s,W, k, j)

2

)
= O

(
n2

g(n)

)
(3)

We note a quick algebraic trick:x2 = O(
(

x
2

)
) for x ≥ 2, and use it to find that

′∑
(B(g(n), s, k, j)2 = O

(
n2

g(n)

)
(4)

Where
∑′ denotes the sum overj, asj goes from 1 tog(n) and(B(g(n), s, k, j) ≥ 2.

Sinceg(n) will be chosen such thatlim n
g(n) = 0, 4 implies that the total space required to resolve those blocks

having 2 or more values isO(n).

Wj can be a pointer to a secondary table or an immediate value. It’s hard to know which is which, so we maintain
another data structure to keep track of this information. It contains “tag bits” that identify whether a binWj in the
first-level table contains an immediate value or a pointer to a secondary-level table.

These tag bits will take upO( n
log m ) space, oro(n) words. (These are single binary bits, and words are of length

log m bits.)
We need an auxiliary data structure to determine also whether a blockWj is nonempty. GivenT , the memory used

to store the table, we noteT ′, which is the first address of the cellsW1 . . .Wg(n) which are allocated consecutively in
order in memory.

On the intervalI = [1, g(n)] we partition n2

g(n) subintervals of size( g(n)
n )2.

With each subintervalσ of I, we associate a base addressBA[σ]. This is the base address of the location preceding
the cells inT ′ associated with the non-emptyWj , j ∈ σ. These base addresses are stored in a table of sizen2

g(n) =
O(n).

8



COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

We create a second table of addresses,A[j], j ∈ I, that is used to store the offsets.A[j] = 0 if Wj = ∅; otherwise,
BA[j] + A[j] is the address inT ′ associated withWj for j ∈ σ.

How much space does this new table take? SinceA[j] assumes at most( g(n)
n )2 possible values, allA[j], j ∈ I can

be packed into space

O

(
g(n)log( g(n)

n )
log m

)
(5)

In 5, g(n) is the number of blocks inWi, log
(

g(n)
n

)
comes fromlog

(
g(n)

n

)2

and the fact thatlog(x2) = 2 log x

and expresses the number of bits used to storeA[j], andlog m is the number of bits that can fit in a word,m > n.
We chooseg(n) = n

√
log n :

O

(
g(n)log(

g(n)
n )

log n

)
= O

(
m
√

log n log(
√

log n)

log n

)
= O

(
n× 1

2 log log n√
log n

)
We note that the denominator grows faster than the numerator; thus, the total space used isO(n).

9


