
CS 105: Algorithms (Grad)
Solving Shortest Superstring via Set Cover

Khanh Do Ba
Feb 24, 2005

1 Recap: Minimum Set Cover

Recall the (Weighted) Set Cover problem, defined as follows.

Set Cover Problem (SC): Given a universe X of elements, and a collection F of subsets
S ⊂ X, where each S ∈ F has an associated non-negative cost, find a subcollection C ⊂ F of
minimum total cost that covers X, assuming one exists.

Valika showed us last time that although this problem is NP-hard to solve exactly, it can be
approximated to a factor of Hd = log d + O(1), where d = max{|S| : S ∈ F}, at least for the
special case where cost(S) = 1 ∀S ∈ F . In fact, the algorithm and analysis generalizes quite
naturally to the weighted problem, but I will give an alternate, perhaps more intuitive, proof
of the approximation factor anyway. First, the algorithm is as follows.

Algorithm 1: GreedySetCover(X, F)

C ←− ∅1

U ←− X2

while U 6= ∅ do3

Find set S ∈ F \ C that minimizes α := cost(S)
S∩U .4

for each x ∈ S ∩ U do5

price(x)←− α6

C ←− C ∪ {S}7

U ←− U \ S8

return C9

Note the only 2 modifications in this algorithm from the one Valika presented yesterday, namely,
the minimized quantity α in each iteration is now cost(S)

S∩U instead of simply 1
S∩U , and we incor-

porate this price associated with each element x covered for the first time into the algorithm
(strictly to aid in the analysis).

Now, we will show the slightly weaker bound than yesterday, that is, that GreedySetCover
is an Hn-approximation for Set Cover, where n = |X|. Observe that the cost of the returned
solution C is precisely the total assigned price of each element in X,

∑
x∈X price(x). If we order

the elements of X as x1, x2, . . . , xn by the order in which they were covered by the algorithm,
breaking ties arbitrarily, then we can write this total cost as

∑n
k=1 price(xk). In order to show∑n

k=1 price(xk) ≤ Hn OPT, it thus suffices to prove the following lemma.

Lemma: For each k ∈ {1, 2, . . . , n}, price(xk) ≤ OPT
n−k+1 , where OPT is the cost of the optimal

cover.
Proof: Consider the iteration during which xk is covered. At the beginning of the iteration,
U contains all the elements as yet uncovered, of which there are at least n − k + 1. Now, the
optimal cover covers all of X, so in particular it certainly covers U . This implies that there
exists a set that achieves α ≤ OPT

|U | . Why is this?

Imagine, for this and future iterations, we choose sets from the optimal cover instead of min-
imizing α. If we maintain element prices as usual, then 1 of the elements x0 ∈ U must have

Page 1 of 4

CS 105: Algorithms (Grad)
Solving Shortest Superstring via Set Cover

Khanh Do Ba
Feb 24, 2005

price(x0) ≤ OPT
|U | , since otherwise the total tally over the optimal cover will end up being > OPT,

which is absurd. But then the set S that covered x0 is precisely the one we’re looking for, since
its α can only increase over iterations as fewer and fewer elements become available over which
it can distribute its cost.

So coming back to our original algorithm, the existence of a set with α ≤ OPT
|U | means that since

we take the set that minimizes α, the set we end up selecting during the current iteration must
also have α ≤ OPT

|U | . But α is the value we assign to price(xk), so we have price(xk) ≤ OPT
|U | ,

where |U | ≥ n− k + 1, which gives us our lemma. �

This gives us the following theorem.

Theorem: GreedySetCover is an Hn-approximation algorithm for the Set Cover problem.

2 Today: Shortest Superstring

So now we move on to our main topic of today. We will see an application of the Vertex
Cover approximation to in turn approximate a seemingly unrelated problem, namely Shortest
Superstring (SS). This is not the best approximation known for SS, but it is nonetheless an
interesting reduction.

Applications of SS include DNA analysis and data compression. A strand of human DNA can
be viewed as a long string over a 4-letter alphabet. Typically, only short substrings at a time
can be read from arbitrary and unknown positions in the long strand, many of which may
overlap, and it is conjectured that the shortest DNA string that contains all the read segments
as substrings is a good approximation of the actual DNA strand. In data compression, instead
of sending/storing a lot of strings independently, we can store a single shortest superstring,
together with beginning and ending positions in it for each substring.

2.1 Definition

Shortest Superstring Problem (SS): Given a finite alphabet Σ and a set of n strings
S = {s1, s2, . . . , sn} ⊂ Σ∗, find a shortest string s ∈ Σ∗ that contains si as a substring for each
i = 1, 2, . . . , n. WLOG, assume no si is a substring of sj , for i 6= j.

This problem is NP-hard, and a simple greedy algorithm for it (which I nevertheless don’t
have time/space to describe) is conjectured to be a 2-approximation. I guess that means this
is still an open problem, at least at the time the book was written. We will instead use the
Hn-approximation of SC above to obtain a 2Hn-approximation of SS.

2.2 The Algorithm

Given an instance S ⊂ Σ∗ of SS, we wish to construct a corresponding instance (X, F) of SC.
In the SS problem, the set we need to ‘cover,’ in some sense, is the set S of strings. So let
our universe X of elements that need to be covered in the SC problem be S. Now, how do we
associate a set set(σ) ∈ F with a string σ ∈ Σ∗ so that set(σ) covers a string τ ∈ X = S if and

Page 2 of 4

CS 105: Algorithms (Grad)
Solving Shortest Superstring via Set Cover

Khanh Do Ba
Feb 24, 2005

only if τ is a substring of σ? We could define it to be the set of all substrings of σ, but since
we want to limit our sets to subsets of X = S, we will define it as follows:

set(σ) := {τ ∈ S : τ is a substring of σ} (1)

A set cover, then, will be a collection of such sets set(σ), from which we derive a superstring
of S by concatenating all the σ’s together. However, we can’t define F to be the collection of
set(σ)’s for all σ ∈ Σ∗, since F needs to be finite. On the other hand, we can’t limit the σ’s to
just S, since the only superstring we would then get is the concatenation of all strings in S, a not
very useful solution. To strike a balance, we wish the set of σ’s to include various superstrings
of every pair of strings in S. To be precise, let us pick an arbitrary order {s1, s2, . . . , sn} of S.
Then for strings si, sj ∈ S, if the last k > 0 symbols of si are the same as the first k symbols
of sj , let σijk denote the string obtained by overlapping these k symbols of si and sj . Let I
then be the set of σijk’s for all valid choices of i, j, k, that is, the set of all ‘good’ superstrings
of pairs of strings in S. We can now define F as {set(σ) : σ ∈ S ∪ I}, and the associated cost
of each set set(σ) is simply the length of σ, that is, |σ|. Based on this, we can now write down
the algorithm for SS as follows.

Algorithm 2: ShortestSuperstring(S)

Compute the instance (X, F) of SC as described above.1

Let {set(σ1), set(σ2), . . . , set(σk)} be the collection of sets returned by2

GreedySetCover(X, F).
return s := σ1 · σ2 · · · · · σk3

2.3 Example

The following is a simple example of the reduction. Consider the simplest alphabet Σ = {0, 1},
over which we have the SS problem instance S = {s1 = 001, s2 = 01101, s3 = 010}. Then for
the string 11010010 ∈ Σ∗, for instance, we have set(11010010) = {s1 = 001, s3 = 010}. Next,
we find I to be

I = {σ122 = 001101, σ132 = 0010, σ232 = 011010, σ311 = 01001, σ321 = 0101101} (2)

And finally, we have the SC instance (X, F), with X = S,

F = {{s1}, {s2}, {s3}, set(σ122), set(σ132), set(σ232), set(σ311), set(σ321)} (3)

and set costs cost({s1}) = |s1| = 3 and cost(set(σ122)) = |σ122| = 6 as representative examples.

2.4 The Analysis

It is clear that this is a polynomial time reduction, and that ShortestSuperstring gives
some superstring of S. Since we know that GreedySetCover is an Hn-approximation for
SC, in order to show that ShortestSuperstring is a 2Hn-approximation for SS it suffices to
prove the following lemma.

Lemma: Let OPTSC denote the cost of an optimal solution to the SS instance (X, F), and
OPTSS denote the length of the shortest superstring of S. Then OPTSC ≤ 2×OPTSS .

Page 3 of 4

CS 105: Algorithms (Grad)
Solving Shortest Superstring via Set Cover

Khanh Do Ba
Feb 24, 2005

Proof: It suffices to exhibit some set cover of cost ≤ 2×OPTSS . Let s be a shortest superstring
of S, that is, one of length OPTSS , and let S = {s1, s2, . . . , sn} be ordered by each string’s
leftmost occurrence in s. For the rest of the proof, when we talk about strings in S we will
be referring to this ordering and to that particular leftmost occurrence. It helps to follow the
proof with Figure 1 for illustration.

� Set cover and its application to shortest superstring

Let OPTS and OPTdenote the cost of an optimal solution to S and the length of the shortest
superstring of S respectively� As shown in Lemma ���� OPTS and OPTare within a factor of � of
each other� and so an approximation algorithm for set cover can be used to obtain an approximation
algorithm for shortest superstring� The complete algorithm is�

Algorithm ��� �Shortest superstring via set cover�

�� Use the greedy set cover algorithm to �nd a cover for the instance S� Let
set���� � � � � set�k	 be the sets picked by this cover�

�� Concatenate the strings ��� � � � � �k in any order�

�� Output the resulting string� say s�

Lemma ���
OPT � OPTS � � �OPT�

Proof � Consider an optimal set cover� say fset�i�j
 � i � lg� and obtain a string� say s� by
concatenating the strings �i�
 � i � l in any order� Clearly� jsj � OPTS � Since each string of S is
a substring of some �i�
 � i � l� it is also a substring of s� Hence OPTS � jsj
 OPT�

To prove the second inequality� let s be a shortest superstring of s�� � � � � sn� jsj � OPT� It
su�ces to produce some set cover of cost at most � �OPT�

Assume that s�� � � � � sn are numbered in order of their leftmost occurrence in s� For the rest
of the proof� we will only consider the leftmost occurrences of s�� � � � � sn in S� For any i � j� the
occurrence of si in s must end before the occurrence of sj otherwise sj would be a substring of si��

sb�

se�

sb�

se�

sb�

se�

��
��

��

s
� � �

� � �

� � �

We will partition the ordered list of strings s�� � � � � sn in groups� Each group will consist of a
contiguous set of strings from this list� bi and ei will denote the index of the �rst and last string
in the ith group bi � ei is allowed�� Let b� �
� and let e� be the largest index of a string that

Figure 1: Partitioning and recovering of strings in S within shortest superstring.

Note that since no string in S is a substring of another, for all i < j, si must start before and
end before sj . We will partition the ordered list s1, . . . , sn into groups as follows. Denote by
bi and ei the indices of the first and last string in the ith group. We let b1 = 1 and e1 be the
highest index such that se1 still overlaps with sb1 . Then b2 = e1 +1, and e2 is the highest index
such that se2 still overlaps with sb2 , and so on, until we eventually have et = n.

Now, for each i ∈ {1, . . . , t}, by definition sbi
must overlap sei by some ki number of symbols.

So let πi = σbieiki
. Clearly, πi ‘covers’ sj for bi ≤ j ≤ ei, so that {set(πi) : i ∈ {1, . . . , t}} is

a set cover of the SS instance (X, F). We now make the final and key observation that each
symbol in s is ‘covered’ by at most 2 of the πi’s. Why is this? Consider any i ∈ {1, . . . , t− 2}
and we will show that πi cannot overlap πi+2. This is equivalent to saying sei does not overlap
sbi+2

. But we know that sei must end before sbi+1
ends, and by construction sbi+2

must start
after sbi+2

ends, so sei certainly cannot overlap sbi+2
. It follows that this set cover that we just

found has a cost of
∑

1≤i≤t |πi| ≤ 2×OPTSS , completing our proof. �

This gives us the following theorem.

Theorem: ShortestSuperstring is a 2Hn-approximation algorithm for the Shortest Super-
string problem.

Page 4 of 4

