General Instructions: Same as in Homework 1. **Honor Principle:** Same as in Homework 1.

10. For a string $x \in \{0,1\}^*$, let $N_1(x)$ denote the number of 1s in x. The majority function $MAJ_n : \{0,1\}^n \to \{0,1\}$ is defined as follows:

$$\mathrm{MAJ}_n(x) = \begin{cases} 1 \,, & \text{if } N_1(x) \ge n/2 \,, \\ 0 \,, & \text{otherwise.} \end{cases}$$

Show that MAJ_n can be computing using O(n)-sized circuits. [This is essentially Sipser's Problem 9.26 — if you use the approach suggested in the book, you need to first solve (in sufficient detail) any subproblems that come up, such as Sipser's Problem 9.24.]

(Just one problem this time. Maybe more after we've seen more of circuit complexity.)